Worksheet 31 (April 28)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- inner product: bilinear, commutative, positive definite;
- piece-wise continuous function, even function, odd function;
- Fourier series, Fourier expansion of a function

METHODS AND IDEAS

Idea 1. The space V_{π} of piece-wise continuous functions is an inner product space, under the inner product

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) g(x) d x .
$$

This is because $\langle\cdot, \cdot\rangle$ defined as above is indeed bilinear, commutative and positive definite. V_{π} has the following properties:

- It is infinite dimensional.
- It has two distinguished subspaces $V_{\pi}^{\text {even }}$ and $V_{\pi}^{\text {odd }}$. The two subspaces are orthogonal.
- $V_{\pi}^{\text {even }}$ has an orthogonal basis $\{\cos n x\}_{n \geqslant 0}$, and $V_{\pi}^{\text {odd }}$ has an orthogonal basis $\{\sin n x\}_{n>0}$. Altogether they form a basis of V_{π}.

Theorem 1. The Fourier expansion of $f(x)$ is given by

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x,
$$

where

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

Remark 1. The two functions

$$
f(x) \quad \text { and } \quad \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

are not completely equal. In fact, if $f(x)$ is piece-wise continuous, they are equal "almost everywhere". The discrepancy exists because V_{π} is infinitedimensional and the basis $\{1, \cos x, \sin x, \cdots\}$ is not "complete".

2 Problems

Example 1. Find a linear transformation $T: V_{\pi} \rightarrow V_{\pi}$ such that $V_{\pi}^{\text {even }}$ and $V_{\pi}^{\text {odd }}$ are both eigenspaces of T.

Example 2. True or false,
() If $f(x)$ is an odd piece-wise continuous function, then $a_{n}=0$ for all $n \geqslant 0$ in its Fourier expansion.
() The Fourier expansion of a piece-wise continuous function is unique.
() Let A be a 2×2 symmetric matrix which has two distinct eigenvalues 2 and 3 , then the pairing

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{T} A \mathbf{v}
$$

gives an inner product on \mathbb{R}^{2}.

Example 3. Consider the inner product $\langle\cdot, \cdot\rangle$ on \mathbb{P}^{2} defined by

$$
\langle f(x), g(x)\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Find $\left\langle 1+x, x^{2}\right\rangle$.
(b) Let $W=\operatorname{sgn}\left\{1, x^{2}\right\}$ and $u(x)=2+3 x+4 x^{2}$. Find $\operatorname{Proj}_{W} u(x)$ under the above inner product.

Example 4. Find the Fourier expansion of

$$
f(x)=\operatorname{sgn}(\cos x)
$$

on $[-\pi, \pi]$. Here sgn means taking the sign. In other words, $f(x)=1$ when $\cos x>0, f(x)=-1$ when $\cos x<0$, and $f(x)=0$ when $\cos x=0$.

Example 5. This is probably harder than you think. Find the Fourier expansion of

$$
g(x)=e^{x}
$$

on $[-\pi, \pi]$.

