Worksheet 31 (April 28)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- inner product: bilinear, commutative, positive definite;
- piece-wise continuous function, even function, odd function;
- Fourier series, Fourier expansion of a function

METHODS AND IDEAS

Idea 1. The space V_{π} of piece-wise continuous functions is an inner product space, under the inner product

$$\langle f,g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx.$$

This is because $\langle \cdot, \cdot \rangle$ defined as above is indeed bilinear, commutative and positive definite. V_{π} has the following properties:

- It is infinite dimensional.
- It has two distinguished subspaces V^{even}_π and V^{odd}_π. The two subspaces are orthogonal.
- V^{even}_π has an orthogonal basis {cos nx}_{n≥0}, and V^{odd}_π has an orthogonal basis {sin nx}_{n>0}. Altogether they form a basis of V_π.

Theorem 1. The Fourier expansion of f(x) is given by

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx,$$

where

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

Remark 1. The two functions

$$f(x)$$
 and $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$

are not completely equal. In fact, if f(x) is piece-wise continuous, they are equal "almost everywhere". The discrepancy exists because V_{π} is infinite-dimensional and the basis $\{1, \cos x, \sin x, \cdots\}$ is not "complete".

2 Problems

Example 1. Find a linear transformation $T: V_{\pi} \to V_{\pi}$ such that V_{π}^{even} and V_{π}^{odd} are both eigenspaces of T.

Example 2. True or false,

- () If f(x) is an odd piece-wise continuous function, then $a_n = 0$ for all $n \ge 0$ in its Fourier expansion.
- () The Fourier expansion of a piece-wise continuous function is unique.
- () Let A be a 2×2 symmetric matrix which has two distinct eigenvalues 2 and 3, then the pairing

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T A \mathbf{v}$$

gives an inner product on \mathbb{R}^2 .

Example 3. Consider the inner product $\langle \cdot, \cdot \rangle$ on \mathbb{P}^2 defined by

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

(a) Find $\langle 1 + x, x^2 \rangle$. (b) Let $W = \operatorname{sgn}\{1, x^2\}$ and $u(x) = 2 + 3x + 4x^2$. Find $\operatorname{Proj}_W u(x)$ under the above inner product.

Example 4. Find the Fourier expansion of

$$f(x) = \operatorname{sgn}(\cos x)$$

on $[-\pi,\pi]$. Here sgn means taking the sign. In other words, f(x) = 1 when $\cos x > 0$, f(x) = -1 when $\cos x < 0$, and f(x) = 0 when $\cos x = 0$.

Example 5. This is probably harder than you think. Find the Fourier expansion of

$$g(x) = e^x$$

on $[-\pi,\pi]$.