Worksheet 3 (Jan. 27)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- vector, zero vector, \mathbb{R}^n , addition, scalar multiplication;
- three things are identified: the numerical vector, the geometric vector, and the endpoint of the geometric vector;
- linear combination, span;

METHODS AND IDEAS

• Expanded **criterion for existence**: the constant column is a linear combination (i.e. in the **span**) of the variable coefficient columns ⇔ solutions exist for a linear system ⇔ the last column in REF is not pivotal.

Remark 1. One implication of the expanded criterion above is that, if the coefficient matrix has pivot in each **row** already, which means the column vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ span the entire \mathbb{R}^m , the associated linear system is always consistent, no matter what the constant vector **b** is. In particular, this is **impossible** when n < m.

2 Problems

Example 1. We will do this together. Determine if **b** is a linear combination of $\mathbf{a}_1, \mathbf{a}_2$, where

$$\mathbf{b} = \begin{bmatrix} 9\\1\\10 \end{bmatrix}, \mathbf{a}_1 = \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 4\\1\\5 \end{bmatrix}.$$

After you have solved this, think: what does it mean geometrically? Are there easier solutions?

Example 2. True or false.

- () The 3-dimensional zero vector ${\bf 0}$ is a linear combination of the vectors ${\bf a}_1$ and ${\bf a}_2$ as in Example 1.
- () The columns of an $m\times n$ matrix A span the entire \mathbb{R}^m if and only if m=n.
- () $\mathbf{b} \in \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\}$ if and only if the augmented matrix $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$ has the last column as one of its pivot columns.

Example 3. Find the values of h such that $\mathbf{v} \in \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}$, where

$$\mathbf{v} = \begin{bmatrix} h \\ -5 \\ -3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -3 \\ 1 \\ 8 \end{bmatrix}.$$

Example 4. With a view toward future lectures. Graph the following spans in \mathbb{R}^2 :

$$(1) \operatorname{span} \left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}; \qquad (2) \operatorname{span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\};$$
$$(3) \operatorname{span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}; \qquad (4) \operatorname{span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}.$$

How is the 4th case different, and why?