Worksheet 3 (Jan. 27)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- vector, zero vector, \mathbb{R}^{n}, addition, scalar multiplication;
- three things are identified: the numerical vector, the geometric vector, and the endpoint of the geometric vector;
- linear combination, span;

METHODS AND IDEAS

- Expanded criterion for existence: the constant column is a linear combination (i.e. in the span) of the variable coefficient columns \Leftrightarrow solutions exist for a linear system \Leftrightarrow the last column in REF is not pivotal.

Remark 1. One implication of the expanded criterion above is that, if the coefficient matrix has pivot in each row already, which means the column vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$ span the entire \mathbb{R}^{m}, the associated linear system is always consistent, no matter what the constant vector \mathbf{b} is. In particular, this is impossible when $n<m$.

2 Problems

Example 1. We will do this together. Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, where

$$
\mathbf{b}=\left[\begin{array}{c}
9 \\
1 \\
10
\end{array}\right], \mathbf{a}_{1}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right] .
$$

After you have solved this, think: what does it mean geometrically? Are there easier solutions?

Example 2. True or false.
() The 3-dimensional zero vector $\mathbf{0}$ is a linear combination of the vectors \mathbf{a}_{1} and \mathbf{a}_{2} as in Example 1.
() The columns of an $m \times n$ matrix A span the entire \mathbb{R}^{m} if and only if $m=n$.
() $\mathbf{b} \in \operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\right\}$ if and only if the augmented matrix $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{n} \\ \mathbf{b}\end{array}\right]$ has the last column as one of its pivot columns.

Example 3. Find the values of h such that $\mathbf{v} \in \operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, where

$$
\mathbf{v}=\left[\begin{array}{c}
h \\
-5 \\
-3
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
-3 \\
1 \\
8
\end{array}\right]
$$

Example 4. With a view toward future lectures. Graph the following spans in \mathbb{R}^{2} :

$$
\begin{array}{cc}
\text { (1) span }\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} ; & (2) \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} \\
(3) \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} ; & \text { (4) span }\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right\} .
\end{array}
$$

How is the 4th case different, and why?

