Worksheet 29 (April 23)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- fundamental solution set, fundamental solution matrix.

METHODS AND IDEAS

Theorem 1. Consider the 1st-order linear ODE system

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

with A being a diagonalizable $n \times n$ matrix. Assume $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ is an eigenbasis of A, and denote by $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$ the corresponding eigenvalues. Then

$$
\left\{e^{\lambda_{1} t} \mathbf{v}_{1}, \cdots, e^{\lambda_{n} t} \mathbf{v}_{n}\right\}
$$

is a fundamental solution set. In other words, the general solution is

$$
\mathbf{x}(t)=c_{1} \cdot e^{\lambda_{1} t} \mathbf{v}_{1}+\cdots+c_{n} \cdot e^{\lambda_{n} t} \mathbf{v}_{n}
$$

Remark 1. When A is diagonalizable over \mathbb{C}, we have a similar theorem. More precisely, let's assume $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$ are the two complex eigenvalues, and $\mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}$ and $\mathbf{v}_{2}=\mathbf{a}-i \mathbf{b}$ be the complex eigenvectors (complex eigenvalues and eiigenvectors come in pairs). Then,

$$
\left\{e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta t \mathbf{b}, e^{\alpha t} \cos \beta t \mathbf{b}+e^{\alpha t} \sin \beta t \mathbf{a}, e^{\lambda_{3} t} \mathbf{v}_{3}, \cdots, e^{\lambda_{n} t} \mathbf{v}_{n}\right\}
$$

is a fundamental solution set. Note that for the first two terms, we are simply taking the real and imagnary parts of $e^{\lambda_{1} t} \mathbf{v}_{1}$:

$$
\begin{aligned}
& e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta t \mathbf{b}=\operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{v}_{1}\right)=\operatorname{Re}\left(e^{(\alpha+i \beta) t}(\mathbf{a}+i \mathbf{b})\right), \\
& e^{\alpha t} \cos \beta t \mathbf{b}+e^{\alpha t} \sin \beta t \mathbf{a}=\operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{v}_{1}\right)=\operatorname{Im}\left(e^{(\alpha+i \beta) t}(\mathbf{a}+i \mathbf{b})\right) .
\end{aligned}
$$

2 Problems

Example 1. Consider the 1st order homogeneous linear system of ODE

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right) \mathbf{x}(t)
$$

(a) Find a fundamental solution matrix of the system.
(b) Solve the initial value problem $\mathbf{x}(0)=\binom{2}{3}$.
(c) Sketch the trajectory of $\mathbf{x}(t)$ in (b).

Example 2. Find the general solution of the linear ODE

$$
y^{\prime \prime \prime}(t)+y(t)=0 .
$$

