Worksheet 27 (April 16)

DIS 119/120 GSI Xiaohan Yan

1 Review

Theorem 1. The solution set of the second-order linear homogeneous ODE

$$
a \cdot y^{\prime \prime}(t)+b \cdot y^{\prime}(t)+c \cdot y(t)=0
$$

is a 2-dimensional vector space. More precisely, let λ_{1} and λ_{2} be the two roots of the quadratic equation $a \lambda^{2}+b \lambda+c=0$, then the general solution is given by

- if λ_{1} and λ_{2} are two distinct real numbers $\left(b^{2}-4 a c>0\right)$,

$$
y(t)=c_{1} \cdot e^{\lambda_{1} t}+c_{2} \cdot e^{\lambda_{2} t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

- if λ_{1} and λ_{2} are the same real number $\left(b^{2}-4 a c=0\right)$,

$$
y(t)=c_{1} \cdot e^{\lambda_{1} t}+c_{2} \cdot t e^{\lambda_{2} t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

- if λ_{1} and λ_{2} are two complex numbers $\left(b^{2}-4 a c<0\right)$, denote $\lambda_{1}=$ $u+i v$ and $\lambda_{2}=u-i v$,

$$
y(t)=c_{1} \cdot e^{u t} \cos v t+c_{2} \cdot e^{u t} \sin v t, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Remark 1. Intuitively, the trigonometric functions come from the Euler formula $e^{i \theta}=\cos \theta+i \sin \theta$. Following the pattern of the first two cases, the two basis functions in the third case should have been $e^{\lambda_{1} t}$ and $e^{\lambda_{2} t}$. However, by the Euler formula,
$e^{\lambda_{1} t}=e^{u t+i v t}=e^{u t} \cdot e^{i v t}=e^{u t}(\cos v t+i \sin v t), \quad e^{\lambda_{2} t}=\cdots=e^{u t}(\cos v t-i \sin v t)$,
so we might as well take the real and imaginary parts to be the basis functions.

2 Problems

Example 1. Solve the equations
(a) $2 y^{\prime \prime}(t)-5 y^{\prime}(t)+3 y(t)=0$;
(b) $2 y^{\prime \prime}(t)-8 y^{\prime}(t)+8 y(t)=0$;
(c) $y^{\prime \prime}(t)-4 y^{\prime}(t)+5 y(t)=0$.

Example 2. Consider the equation in (a) of the previous example. Denote by V its solution set. Prove that the linear transformation

$$
\begin{array}{rll}
T: V & \longrightarrow & \mathbb{R}^{2} \\
y(t) & \longmapsto & \binom{y(0)}{y^{\prime}(0)}
\end{array}
$$

is an isomorphism.
Hint: You already know a basis of V.

Example 3. Suppose that for $c \in \mathbb{R}$,

$$
y^{\prime \prime}(t)+2 c \cdot y^{\prime}(t)+c^{2} \cdot y(t)=0
$$

has a solution with $y(0)=0, y(1)=1, y(2)=4$. Find the value of c or disprove existence.

