Worksheet 26 (April 14)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- Reduced SVD, full SVD;
- second-order, linear, homogeneous, constant-coefficient, ordinary, differential equations;
- linear algebra point of view of linear differential equations.

METHODS AND IDEAS

Theorem 1. For any $m \times n$ matrix A with rank A = r, \exists diagonal matrix $\hat{\Sigma}_{r \times r}$, matrices with orthonormal columns $\hat{U}_{m \times r}$ and $\hat{V}_{n \times r}$ such that

$$A = \hat{U}\hat{\Sigma}\hat{V}^T = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T. \qquad (Reduced SVD)$$

Moreover, we may complete \hat{U} and \hat{V} into orthogonal matrices $U_{m \times m}$ and $V_{n \times n}$, and $\hat{\Sigma}$ into a "diagonal" but non-square matrix $\Sigma_{m \times n}$, such that

 $A = U\Sigma V^T. \qquad (Full \ SVD)$

When A is a symmetric matrix, the latter is the orthogonal diagonalization.

Theorem 2. The solution set S of the 2nd-order homogeneous linear ODE with constant coefficients

$$ay'' + by' + cy = 0,$$

where $a \neq 0 \in \mathbb{R}$, $b, c \in \mathbb{R}$, is a 2-dimensional subspace of the vector space of all smooth functions. Moreover, the initial value problems have unique solutions. In other words, for any initial value condition y(0) = p, y'(0) = q, there exists a unique function y = y(x) satisfying both the ODE and the initial value conditions.

2 Problems

Example 1. Example 3 of Worksheet 24. Find both the reduced and the full SVD of the matrix

$$A = \begin{pmatrix} 1 & 3\\ 2 & 2\\ 3 & 1 \end{pmatrix}.$$

Example 2. Consider the second-order linear ODE

$$y'' + y = 0.$$

(1) Check that $f(x) = \sin x$ and $g(x) = \cos x$ are both solutions of the equation. (2) Solve the initial value problem y(0) = 2, y'(0) = -1. (3) Solve the initial value problem $y(\pi) = 2, y'(\pi) = -1$. (4) Find all solutions of the ODE.