Worksheet 26 (April 14)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- Reduced SVD, full SVD;
- second-order, linear, homogeneous, constant-coefficient, ordinary, differential equations;
- linear algebra point of view of linear differential equations.

METHODS AND IDEAS

Theorem 1. For any $m \times n$ matrix A with $\operatorname{rank} A=r, \exists$ diagonal matrix $\hat{\Sigma}_{r \times r}$, matrices with orthonormal columns $\hat{U}_{m \times r}$ and $\hat{V}_{n \times r}$ such that

$$
A=\hat{U} \hat{\Sigma} \hat{V}^{T}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T} . \quad \text { (Reduced SVD) }
$$

Moreover, we may complete \hat{U} and \hat{V} into orthogonal matrices $U_{m \times m}$ and $V_{n \times n}$, and $\hat{\Sigma}$ into a "diagonal" but non-square matrix $\Sigma_{m \times n}$, such that

$$
A=U \Sigma V^{T} . \quad(\text { Full SVD })
$$

When A is a symmetric matrix, the latter is the orthogonal diagonalization.
Theorem 2. The solution set S of the 2nd-order homogeneous linear ODE with constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=0,
$$

where $a \neq 0 \in \mathbb{R}, b, c \in \mathbb{R}$, is a 2-dimensional subspace of the vector space of all smooth functions. Moreover, the initial value problems have unique solutions. In other words, for any initial value condition $y(0)=p, y^{\prime}(0)=q$, there exists a unique function $y=y(x)$ satisfying both the $O D E$ and the initial value conditions.

2 Problems

Example 1. Example 3 of Worksheet 24. Find both the reduced and the full SVD of the matrix

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 2 \\
3 & 1
\end{array}\right)
$$

Example 2. Consider the second-order linear ODE

$$
y^{\prime \prime}+y=0 .
$$

(1) Check that $f(x)=\sin x$ and $g(x)=\cos x$ are both solutions of the equation.
(2) Solve the initial value problem $y(0)=2, y^{\prime}(0)=-1$. (3) Solve the initial value problem $y(\pi)=2, y^{\prime}(\pi)=-1$. (4) Find all solutions of the ODE.

