Worksheet 24 (April 9)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- symmetric matrices, orthogonally diagonalizable;
- singular value (of non-square matrices).

METHODS AND IDEAS

Theorem 1. (Properties of Symmetric Matrices)
Let A be a symmetric $n \times n$ matrix, then:
(a) all eigenvalues of A are real;
(b) eigenspaces of different eigenvalues of A are orthogonal;
(c) there is a basis of \mathbb{R}^{n} consisting of orthonormal eigenvectors of A (which means A is orthogonally diagonalizable).

In fact the converse of (c) is also true: if a square matrix is orthogonally diagonalizable, it must be symmetric, too.

Method 1. (Algorithm of Singular Value Decomposition)
Assume that we are given an $m \times n$ matrix A with $m>n$.
1 Find eigenvalues of the symmetric matrix $A^{T} A$, which are all real and non-negative. Denote them by $\lambda_{1}, \cdots, \lambda_{n}$. Assume that the first r of them are strictly positive and the rest are zero.

2 Find orthonormal eigenvectors of $A^{T} A$ corresponding to the strictly positive eigenvalues $\lambda_{1}, \cdots, \lambda_{r}$. Denote them by $\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}$.

3 Let $\sigma_{i}=\sqrt{\lambda_{i}}$ for $i=1, \cdots, r$. These are the singular values of A.
4 Let $\mathbf{u}_{i}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i}$ for $i=1, \cdots, r$. Then,

$$
A=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
$$

This is the singular value decomposition(SVD) of A.
Note that in this case $\operatorname{rank} A=r$. Moreover, $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ is an orthonormal basis of $\operatorname{Row}(A)$, while $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{r}\right\}$ is an orthonormal basis of $\operatorname{Col}(A)$.

2 Problems

Example 1. Diagonalize the matrix below with orthogonal matrices.

$$
S=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Example 2. Let us still consider the matrix S from the previous example. Is there a vector $\mathbf{x} \in \mathbb{R}^{3}$ such that $\mathbf{x}^{T} S \mathbf{x}<0$?

Example 3. Find SVD of the matrix

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 2 \\
3 & 1
\end{array}\right)
$$

