Worksheet 22 (March 31)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- orthogonal matrix;
- least square solution of a linear system, existence and uniqueness?

METHODS AND IDEAS

Theorem 1. (Orthogonal Projection)
Let $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$ be an orthonormal basis of the subspace $W \subset \mathbb{R}^{n}$. Then the orthogonal projection $\operatorname{Proj}_{W} \mathbf{v}$ of a vector $\mathbf{v} \in \mathbb{R}^{n}$ is

$$
\operatorname{Proj}_{W} \mathbf{v}=U U^{T} \mathbf{v}
$$

where U is the matrix whose columns are $\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}$. In other words, the standard matrix (i.e. the matrix under the standard basis) of the linear transformation Proj_{W} is $U U^{T}$.
Remark 1. The kernel and image of Proj_{W} are W^{\perp} and W respectively.
Remark 2. Proj_{W} can only have two eigenvalues 0 and 1 . Moreover, $E_{1}=W$ and $E_{0}=W^{\perp}$

Method 1. (Gram-Schmidt Process)
Given a (not necessarily orthogonal) basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$ of $W \subset \mathbb{R}^{n}$, we construct inductively an orthogonal basis $\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{k}\right\}$ of W out of $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$, by taking

$$
\mathbf{w}_{1}=\mathbf{u}_{1}, \mathbf{w}_{i+1}=\mathbf{u}_{i+1}-\left(\frac{\mathbf{u}_{i+1} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}+\cdots+\frac{\mathbf{u}_{i+1} \cdot \mathbf{w}_{i}}{\mathbf{w}_{i} \cdot \mathbf{w}_{i}} \mathbf{w}_{i}\right)
$$

In other words, we remove from u_{i+1} its "orthogonal projection to the previous vectors" to obtain w_{i+1}.
Remark 3. If you want an orthonormal basis, divide the orthogonal basis vectors by their norms.

2 Problems

Example 1. True or false.
() The dot product $\mathbf{x} \cdot \mathbf{y}$ is the only entry of the 1×1 matrix $\mathbf{x}^{T} \mathbf{y}$.
() The standard matrix of an orthogonal projection is always diagonalizable.
() If the linear system $A \mathbf{x}=\mathbf{b}$ is consistent, the set of its least square solutions is exactly its solution set.

Example 2. Consider

$$
A=\left(\begin{array}{cc}
1 & 1 \\
2 & -1 \\
3 & 1 \\
4 & -1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

(a) Find the least square solutions of $A \mathbf{x}=\mathbf{b}$.
(b) Find the best approximation (orthogonal projection) of \mathbf{b} to $\operatorname{Col}(A)$.

Example 3. Find an orthonormal basis of the subspace $W=\{(x, y, z, w) \mid x+$ $y+z+w=0\}$ of \mathbb{R}^{4}.

