Worksheet 22 (March 31)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- orthogonal matrix;
- least square solution of a linear system, existence and uniqueness?

METHODS AND IDEAS

Theorem 1. (Orthogonal Projection)

Let $\{\mathbf{u}_1, \cdots, \mathbf{u}_k\}$ be an orthonormal basis of the subspace $W \subset \mathbb{R}^n$. Then the orthogonal projection $\operatorname{Proj}_W \mathbf{v}$ of a vector $\mathbf{v} \in \mathbb{R}^n$ is

$$\operatorname{Proj}_W \mathbf{v} = UU^T \mathbf{v},$$

where U is the matrix whose columns are $\mathbf{u}_1, \cdots, \mathbf{u}_n$. In other words, the standard matrix (i.e. the matrix under the standard basis) of the linear transformation Proj_W is UU^T .

Remark 1. The kernel and image of Proj_W are W^{\perp} and W respectively.

Remark 2. Proj_W can only have two eigenvalues 0 and 1. Moreover, $E_1 = W$ and $E_0 = W^{\perp}$

Method 1. (Gram-Schmidt Process)

Given a (not necessarily orthogonal) basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_k\}$ of $W \subset \mathbb{R}^n$, we construct inductively an orthogonal basis $\{\mathbf{w}_1, \cdots, \mathbf{w}_k\}$ of W out of $\{\mathbf{u}_1, \cdots, \mathbf{u}_k\}$, by taking

$$\mathbf{w}_1 = \mathbf{u}_1, \mathbf{w}_{i+1} = \mathbf{u}_{i+1} - \left(\frac{\mathbf{u}_{i+1} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \dots + \frac{\mathbf{u}_{i+1} \cdot \mathbf{w}_i}{\mathbf{w}_i \cdot \mathbf{w}_i} \mathbf{w}_i\right).$$

In other words, we remove from u_{i+1} its "orthogonal projection to the previous vectors" to obtain w_{i+1} .

Remark 3. If you want an orthonormal basis, divide the orthogonal basis vectors by their norms.

2 Problems

Example 1. True or false.

- () The dot product $\mathbf{x} \cdot \mathbf{y}$ is the only entry of the 1×1 matrix $\mathbf{x}^T \mathbf{y}$.
- () The standard matrix of an orthogonal projection is always diagonalizable.
- () If the linear system $A\mathbf{x} = \mathbf{b}$ is consistent, the set of its least square solutions is exactly its solution set.

Example 2. Consider

$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 3 & 1 \\ 4 & -1 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

(a) Find the least square solutions of $A\mathbf{x} = \mathbf{b}$.

(b) Find the best approximation (orthogonal projection) of \mathbf{b} to $\operatorname{Col}(A)$.

Example 3. Find an orthonormal basis of the subspace $W = \{(x, y, z, w) | x + y + z + w = 0\}$ of \mathbb{R}^4 .