Worksheet 21 (March 29)

DIS 119/120 GSI Xiaohan Yan

Problems 1

Example 1. True or false.

- () Let $W \subset \mathbb{R}^n$ be a subspace and $\mathbf{a}_1, \ldots, \mathbf{a}_k$ spans W. If \mathbf{x} is orthogonal to each $\mathbf{a}_i (i = 1, 2, \dots, k)$, then $\mathbf{x} \in W^{\perp}$.
- () Let $W \subset \mathbb{R}^n$ be a subspace, $\mathbf{w} \in W$ and $\mathbf{x} \in \mathbb{R}^n$, then $(\operatorname{Proj}_W \mathbf{x}) \cdot \mathbf{w} = \mathbf{x} \cdot \mathbf{w}$.
- () The orthogonal complement of Col(A) is the solution set of $A\mathbf{x} = \mathbf{b}$.

Example 2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three unit vectors in \mathbb{R}^n satisfying $\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0}$. Prove that $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} = -1/2$.

Example 3. Find the orthogonal complement of the subspace $W \subset \mathbb{R}^3$ spanned by $\langle \alpha \rangle$,

$$\mathbf{w}_1 = \begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix}, \mathbf{w}_2 = \begin{pmatrix} -1\\ -1\\ -2 \end{pmatrix}.$$

Example 4. Let **u** and **v** be two vectors in \mathbb{R}^3 whose orthongonal projection to the subspace W are $(1, 1, -1)^T$ and $(2, -4, 1)^T$ respectively. (a) What is the orthogonal projection of $\mathbf{u} + 2\mathbf{v}$ to \vec{W} ?

- (b) What is the smallest possible value of $\|\mathbf{u} \mathbf{v}\|$?
- (c) What is W?