Worksheet 20 (March 19)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- metric geometry of \mathbb{R}^{n} : inner product, length, angle;
- orthogonal set, orthonormal set, orthogonal basis;
- orthogonal complement, orthogonal projection.

METHODS AND IDEAS

Theorem 1. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ are orthogonal vectors, then they are linearly independent.

Theorem 2. (Orthogonal Projection)
Let $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ be an orthogonal basis of subspace $W \subset \mathbb{R}^{n}$, then for any vector $\mathbf{y} \in \mathbb{R}^{n}$, its orthogonal projection to W is

$$
\hat{\mathbf{y}}=\operatorname{Proj}_{W} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{w}_{k}}{\mathbf{w}_{k} \cdot \mathbf{w}_{k}} \mathbf{w}_{k} .
$$

Remark 1. The orthogonal projection $\hat{\mathbf{y}}$ is the closest to \mathbf{y} among all vectors in W. Moreover, it is the unique vector in W such that $\mathbf{y}-\hat{\mathbf{y}}$ is orthongonal to W. In other words, the decomposition of any vector \mathbf{y} into the sum of W and W^{\perp} is unique, and it is exactly $\hat{\mathbf{y}}+(\mathbf{y}-\hat{\mathbf{y}})$.

Remark 2. When W in the theorem is the full subspace $\mathbb{R}^{n}, \mathcal{W}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is a basis of \mathbb{R}^{n} and thus the formula gives an easy way to compute the \mathcal{W} coordinate of \mathbf{y}, i.e.

$$
[\mathbf{y}]_{\mathcal{W}}=\left(\begin{array}{c}
\frac{\mathbf{y} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \\
\vdots \\
\frac{\mathbf{y} \cdot \mathbf{w}_{k}}{\mathbf{w}_{1} \cdot \mathbf{w}_{k}}
\end{array}\right) .
$$

2 Problems

Example 1. True or false.
() If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ are orthogonal, $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$.
() $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is a set of orthogonal vectors if and only if any two vectors of it are orthogonal to each other.
() $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is a set of linearly independent vectors if and only if any two vectors of it are linearly independent to each other.
() Let $W \subset \mathbb{R}^{n}$ be a subspace, then its orthogonal complement W^{\perp} is a subspace of \mathbb{R}^{n} of complementary dimension.
() Let $W \subset \mathbb{R}^{n}$ be a subspace, then $\left(W^{\perp}\right)^{\perp}=W$.
() Let $W \subset \mathbb{R}^{n}$ be a subspace and W^{\perp} be its orthogonal complement. If \mathbf{v} is in both W and W^{\perp}, then \mathbf{v} must be the zero vector.

Example 2. Consider the vector

$$
\mathbf{v}=\binom{3}{4} \in \mathbb{R}^{2} .
$$

(a) Compute $\mathbf{v} \cdot \mathbf{e}_{1}$ and $\mathbf{v} \cdot \mathbf{e}_{2}$.
(b) Suppose $\mathbf{u} \in \mathbb{R}^{2}$ is a unit vector satisfying $\mathbf{u} \cdot \mathbf{v}=2$. Find \mathbf{u}.
(c) Find the area of the triangle formed by the origin and the endpoints of \mathbf{u} and \mathbf{v}.

Example 3. Let W be the plane in \mathbb{R}^{3} given by $x+y+z=0$.
(a) Find the orthogonal projection of $\mathbf{x}=(7,-1,3)^{T}$ to W.
(b) Find all \mathbf{y} whose orthogonal projection to W is $(2,2,-4)^{T}$.

