Worksheet 20 (March 19)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- metric geometry of \mathbb{R}^n : inner product, length, angle;
- orthogonal set, orthonormal set, orthogonal basis;
- orthogonal complement, orthogonal projection.

METHODS AND IDEAS

Theorem 1. If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in \mathbb{R}^n$ are orthogonal vectors, then they are linearly independent.

Theorem 2. (Orthogonal Projection)

Let $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ be an **orthogonal** basis of subspace $W \subset \mathbb{R}^n$, then for any vector $\mathbf{y} \in \mathbb{R}^n$, its orthogonal projection to W is

$$\hat{\mathbf{y}} = \operatorname{Proj}_W \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{w}_k}{\mathbf{w}_k \cdot \mathbf{w}_k} \mathbf{w}_k.$$

Remark 1. The orthogonal projection $\hat{\mathbf{y}}$ is the closest to \mathbf{y} among all vectors in W. Moreover, it is the unique vector in W such that $\mathbf{y} - \hat{\mathbf{y}}$ is orthongonal to W. In other words, the decomposition of any vector \mathbf{y} into the sum of W and W^{\perp} is unique, and it is exactly $\hat{\mathbf{y}} + (\mathbf{y} - \hat{\mathbf{y}})$.

Remark 2. When W in the theorem is the full subspace \mathbb{R}^n , $\mathcal{W} = \{\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k\}$ is a basis of \mathbb{R}^n and thus the formula gives an easy way to compute the \mathcal{W} -coordinate of \mathbf{y} , i.e.

$$[\mathbf{y}]_{\mathcal{W}} = egin{pmatrix} rac{\mathbf{y}\cdot\mathbf{w}_1}{\mathbf{w}_1\cdot\mathbf{w}_1} \ dots \ rac{\mathbf{y}\cdot\mathbf{w}_k}{\mathbf{w}_1\cdot\mathbf{w}_k} \end{pmatrix}.$$

2 Problems

Example 1. True or false.

- () If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal, $\|\mathbf{u} \mathbf{v}\| = \|\mathbf{u} + \mathbf{v}\|$.
- {u₁, u₂, ..., u_k} is a set of orthogonal vectors if and only if any two vectors of it are orthogonal to each other.
- {u₁, u₂,..., u_k} is a set of linearly independent vectors if and only if any two vectors of it are linearly independent to each other.
- () Let $W \subset \mathbb{R}^n$ be a subspace, then its orthogonal complement W^{\perp} is a subspace of \mathbb{R}^n of complementary dimension.
- () Let $W \subset \mathbb{R}^n$ be a subspace, then $(W^{\perp})^{\perp} = W$.
- () Let $W \subset \mathbb{R}^n$ be a subspace and W^{\perp} be its orthogonal complement. If **v** is in both W and W^{\perp} , then **v** must be the zero vector.

Example 2. Consider the vector

$$\mathbf{v} = \begin{pmatrix} 3\\ 4 \end{pmatrix} \in \mathbb{R}^2.$$

- (a) Compute $\mathbf{v} \cdot \mathbf{e}_1$ and $\mathbf{v} \cdot \mathbf{e}_2$.
- (b) Suppose $\mathbf{u} \in \mathbb{R}^2$ is a unit vector satisfying $\mathbf{u} \cdot \mathbf{v} = 2$. Find \mathbf{u} .

(c) Find the area of the triangle formed by the origin and the endpoints of \mathbf{u} and \mathbf{v} .

Example 3. Let W be the plane in \mathbb{R}^3 given by x + y + z = 0.

- (a) Find the orthogonal projection of $\mathbf{x} = (7, -1, 3)^T$ to W.
- (b) Find all **y** whose orthogonal projection to W is $(2, 2, -4)^T$.