Worksheet 2 (Jan. 25)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- matrix, augmented matrix ($_$- \times_ $)$, coefficient matrix (\quad. $\times \ldots$ _);
- three types of row reductions: scaling, interchange, replacement;
- REF, RREF, pivot column, pivot position;
- existence and uniqueness of solutions.

METHODS AND IDEAS

- To solve linear systems, we transform them into simpler systems. This can be done by writing the coefficients and constants of a system into a matrix (called the augmented matrix), and then doing row reductions to transform the matrix into its row Echelon form, or even its row reduced Echelon form. [For the algorithm see P12 of the professor's lecture notes 2.]
- (Criterion of existence and uniqueness) Solutions of a linear system exist if and only if the last column (the constant column) of REF of the augmented matrix is not pivot. The solution uniquely exists if and only if there are no free variables, i.e. all except the last column of REF are pivot.
- Note that we need only REF but not RREF to determine existence and uniqueness.

2 Problems

Example 1. We will do this together. Solve the linear systems below, by writing out the augmented matrix and applying appropriate row reductions.
(a) $\left\{\begin{aligned} x_{1}+x_{2}+3 x_{3} & =3 \\ 2 x_{1}+2 x_{2}-x_{3} & =-1, \\ x_{1}+3 x_{2}+5 x_{3} & =-5\end{aligned}\right.$
(b) $\left\{\begin{aligned} x_{1}+x_{2}+3 x_{3} & =3 \\ 2 x_{1}+2 x_{2}-x_{3} & =-1\end{aligned}\right.$.

Example 2. True or false.
() A linear system is inconsistent if it has at least two different solutions.
() A linear system with more than 1 solution has infinitely many solutions.
() Whenever a linear system has free variables, the solution set contains at least two solutions.
() Every elementary row operation is reversible.
() Two matrices are row equivalent if they have the same number of rows.
() The row echelon form (REF) of a matrix is unique.

Example 3. What do we know of the consistency of a linear system
(a) whose augmented matrix is 3×5 with the 5 th column being pivot?
(b) whose coefficient matrix is 3×5 with 2 pivot columns?
(c) whose coefficient matrix is 3×5 with 3 pivot columns?

Example 4. Find all intersection points of the following three planes in \mathbb{R}^{3}

$$
x_{1}+x_{2}+3 x_{3}=3,2 x_{1}+2 x_{2}-x_{3}=-1, x_{1}+3 x_{2}+5 x_{3}=-5 .
$$

Hint: Recall Example 1.
Remark 1. What else can the intersection of three planes in \mathbb{R}^{3} look like? If this is too hard, what can the intersection of two lines in \mathbb{R}^{2} look like?

