Worksheet 19 (March 17)

DIS 119/120 GSI Xiaohan Yan

1 Review
 DEFINITIONS

- eigenvalue and eigenvector of linear transformation;
- complex number, conjugate, absolute value;
- complex eigenvalue, complex eigenvector.

2 Problems

Example 1. Find the complex eigenvalues of the matrix

$$
A=\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)
$$

Then find a basis of \mathbb{R}^{2} under which the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a scaling followed by rotation.

Example 2. Find an example or disprove existence:
(a) a real 3×3 matrix A whose only real eigenvalue is 1 with algebraic multiplicity 2 .
(b) a real 3×3 invertible matrix B with 2 and 3 being two of its eigenvalues, and 4 being an eigenvalue of its inverse.
(c) a non-diagonal 2×2 matrix C with eigenvalues 2 and 4 , and determinant 6 .
(d) a 3×3 matrix F with eigenvalues 2 and 3 such that F^{2} is not diagonalizable.

Example 3. Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ given by $T(f(x))=$ $f^{\prime}(x)+f(x)$. Find all eigenvalues and eigenvectors of T.

