Worksheet 16 (March 10)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- eigenvector, eigenvalue;
- characteristic polynomial;
- eigenspace, algebraic multiplicity, geometric multiplicity.

METHODS AND IDEAS

Theorem 1. (Fundamental Theorem of Algebra)
A polynomial of degree n has exactly n complex roots, and thus at most n real roots.

Remark 1. An $n \times n$ matrix has at most n real eigenvalues (and exactly n complex eigenvalues), counted with algebraic multiplicity.

Theorem 2. Eigenvectors of different eigenvalues are linearly independent.
Remark 2. As a corollary, one can find n linearly independent eigenvectors for an $n \times n$ matrix A in the following two cases:

- A has n distinct eigenvalues;
- A has less than n eigenvalues $\lambda_{1}, \ldots, \lambda_{k}(k<n)$, but all of the eigenvalues have full geometric multiplicities, i.e.

$$
\operatorname{dim} E_{\lambda_{1}}+\operatorname{dim} E_{\lambda_{2}}+\cdots+\operatorname{dim} E_{\lambda_{k}}=n .
$$

Note that in general, the geometric multiplicity is smaller than or equal to the algebraic multiplicity, so the sum above might be strictly smaller than n.

2 Problems

Example 1. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)
$$

(a) Find all eigenvalues of A, and determine their algebraic multiplicities.
(b) For each eigenvalue, find a basis for its eigenspace, and determine its geometric multiplicity.
(c) Note that A is 3×3. Are there 3 linear independent eigenvectors of A ?

Example 2. Find the values of c and d such that $(1,1,1)^{T}$ is an eigenvector of of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & c \\
-2 & 4 & -2 \\
0 & b & 7
\end{array}\right)
$$

Example 3. Find all real eigenvalues and an eigenvector for each real eigenvalue of the following linear transformations of \mathbb{R}^{2}.
(a) Scale the x-direction by 2. (b) Rotation counterclockwise by $\pi / 2$. (c) Reflection across $y=x$. (b) Sheer transformation sending \mathbf{e}_{1} to \mathbf{e}_{1} but \mathbf{e}_{2} to $\mathbf{e}_{1}+\mathbf{e}_{2}$.

Example 4. Let M be a 2×2 matrix with two distinct eigenvalues 2 and 4 . Find $\operatorname{det}(M)$.

