Worksheet 14 (March 5)

DIS 119/120 GSI Xiaohan Yan

1 Review

METHODS AND IDEAS

Theorem 1. (rank-nullity)
Let $T: V \longrightarrow W$ be a linear transformation, we will always have

$$
\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{Im}(T)=\operatorname{dim} V
$$

Theorem 2. (coordinates under base change)
Let \mathcal{B} and \mathcal{C} be two bases of vector space V, then the coordinates of the same vector $\mathrm{x} \in V$ under \mathcal{B} and \mathcal{C} are related by

$$
[\mathbf{x}]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}},
$$

where the base change matrix is given by

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left(\begin{array}{lll}
{\left[\mathbf{b}_{1}\right]_{\mathcal{C}}} & \cdots & {\left[\mathbf{b}_{n}\right]_{\mathcal{C}}}
\end{array}\right) .
$$

Theorem 3. (linear transformation under base change)
Let \mathcal{A} and \mathcal{B} be two bases of vector space V, \mathcal{C} and \mathcal{D} be two bases of vector space W, and $T: V \longrightarrow W$ a linear transformation. Then the matrices of the same linear transformation T under different bases are related by

$$
{ }_{\mathcal{D}}[T]_{\mathcal{B}}=P_{\mathcal{D} \leftarrow \mathcal{C}} \mathcal{C}[T]_{\mathcal{A}} \cdot P_{\mathcal{A} \leftarrow \mathcal{B}} .
$$

In particular, if $V=W$ and \mathcal{A} and \mathcal{B} are two bases of V,

$$
\mathcal{B}[T]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{A}} \mathcal{A}[T]_{\mathcal{A}} \cdot P_{\mathcal{A} \leftarrow \mathcal{B}} .
$$

2 Problems

Example 1. True or false.
() Base change matrices $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are always invertible.
() If \mathcal{A}, \mathcal{B} and \mathcal{C} be three bases of the vector space V, then

$$
P_{\mathcal{C} \leftarrow \mathcal{A}}=P_{\mathcal{C} \leftarrow \mathcal{B}} \cdot P_{\mathcal{B} \leftarrow \mathcal{A}} .
$$

() If M and N are two matrices of a linear transformation $T: V \longrightarrow W$ (relative to different bases), then $\operatorname{rank} M=\operatorname{rank} N$.

Example 2. Example 3 from the previous worksheet. Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1} \cdot \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be two different bases of \mathbb{R}^{3}, where

$$
\mathbf{a}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \mathbf{a}_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{b}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{b}_{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \mathbf{b}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

(a) Find $\left[\mathbf{a}_{i}\right]_{\mathcal{B}}$ for $i=1,2,3$.
(b) If $[\mathbf{x}]_{\mathcal{A}}=(1,1,1)^{T}$, find $[\mathbf{x}]_{\mathcal{B}}$.
(c) If $[\mathbf{y}]_{\mathcal{A}}=[\mathbf{y}]_{\mathcal{B}}$, find \mathbf{y}.

Example 3. Example 4 from the previous worksheet. Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow M_{2 \times 2}(\mathbb{R})$ defined as

$$
T\left(a+b x+c x^{2}\right)=\left(\begin{array}{cc}
3 a+b & b+c \\
-2 b & a+b+c
\end{array}\right)
$$

(a) Consider the basis $\mathcal{B}=\left\{1+x, x, x^{2}-x\right\}$ of \mathbb{P}_{2} and the basis $\mathcal{E}=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ of $M_{2 \times 2}(\mathbb{R})$. Compute $\mathcal{B}[T]_{\mathcal{E}}$.
(b) Consider instead the basis $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ of $M_{2 \times 2}(\mathbb{R})$, where

$$
C_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), C_{2}=\left(\begin{array}{cc}
4 & 1 \\
-2 & 2
\end{array}\right), C_{3}=\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right), C_{4}=\left(\begin{array}{cc}
-1 & 0 \\
2 & 0
\end{array}\right)
$$

Compute $\mathcal{B}_{\mathcal{B}}[T]_{\mathcal{C}}$.
(c) Is T one-to-one? Onto?

