Worksheet 14 (March 5)

DIS 119/120 GSI Xiaohan Yan

1 Review

METHODS AND IDEAS

Theorem 1. (rank-nullity)

Let $T: V \longrightarrow W$ be a linear transformation, we will always have

$$\dim \ker(T) + \dim \operatorname{Im}(T) = \dim V.$$

Theorem 2. (coordinates under base change) Let \mathcal{B} and \mathcal{C} be two bases of vector space V, then the coordinates of the same vector $\mathbf{x} \in V$ under \mathcal{B} and \mathcal{C} are related by

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}},$$

where the base change matrix is given by

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = ([\mathbf{b}_1]_{\mathcal{C}} \cdots [\mathbf{b}_n]_{\mathcal{C}}).$$

Theorem 3. (linear transformation under base change) Let \mathcal{A} and \mathcal{B} be two bases of vector space V, \mathcal{C} and \mathcal{D} be two bases of vector space W, and $T: V \longrightarrow W$ a linear transformation. Then the matrices of the

same linear transformation T under different bases are related by

$$\mathcal{D}[T]_{\mathcal{B}} = P_{\mathcal{D}\leftarrow\mathcal{C}} \mathcal{C}[T]_{\mathcal{A}} \cdot P_{\mathcal{A}\leftarrow\mathcal{B}}.$$

In particular, if V = W and A and B are two bases of V,

$${}_{\mathcal{B}}[T]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{A}} {}_{\mathcal{A}}[T]_{\mathcal{A}} \cdot P_{\mathcal{A}\leftarrow\mathcal{B}}.$$

2 Problems

Example 1. True or false.

- () Base change matrices $P_{\mathcal{C}\leftarrow\mathcal{B}}$ are always invertible.
- () If \mathcal{A}, \mathcal{B} and \mathcal{C} be three bases of the vector space V, then

$$P_{\mathcal{C}\leftarrow\mathcal{A}} = P_{\mathcal{C}\leftarrow\mathcal{B}} \cdot P_{\mathcal{B}\leftarrow\mathcal{A}}.$$

() If M and N are two matrices of a linear transformation $T: V \longrightarrow W$ (relative to different bases), then rank $M = \operatorname{rank} N$.

Example 2. Example 3 from the previous worksheet. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{B} = \{\mathbf{b}_1.\mathbf{b}_2, \mathbf{b}_3\}$ be two different bases of \mathbb{R}^3 , where

$$\mathbf{a}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \mathbf{a}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{b}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \mathbf{b}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

- (a) Find $[a_i]_{\mathcal{B}}$ for i = 1, 2, 3.
- (b) If $[\mathbf{x}]_{\mathcal{A}} = (1, 1, 1)^T$, find $[\mathbf{x}]_{\mathcal{B}}$.
- (c) If $[\mathbf{y}]_{\mathcal{A}} = [\mathbf{y}]_{\mathcal{B}}$, find \mathbf{y} .

Example 3. Example 4 from the previous worksheet. Consider the linear transformation $T : \mathbb{P}_2 \to M_{2 \times 2}(\mathbb{R})$ defined as

$$T(a+bx+cx^{2}) = \begin{pmatrix} 3a+b & b+c \\ -2b & a+b+c \end{pmatrix}.$$

(a) Consider the basis $\mathcal{B} = \{1+x, x, x^2-x\}$ of \mathbb{P}_2 and the basis $\mathcal{E} = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ of $M_{2\times 2}(\mathbb{R})$. Compute $_{\mathcal{B}}[T]_{\mathcal{E}}$. (b) Consider instead the basis $\mathcal{C} = \{C_1, C_2, C_3, C_4\}$ of $M_{2\times 2}(\mathbb{R})$, where

$$C_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, C_2 = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix}, C_3 = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}, C_4 = \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix}.$$

Compute $_{\mathcal{B}}[T]_{\mathcal{C}}$.

(c) Is T one-to-one? Onto?