Worksheet 13 (March 3)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- coordinate mapping;
- matrix of linear transformation relative to bases on domain and codomain;

METHODS AND IDEAS

Theorem 1. Any two vector spaces of the same dimension are isomorphic, since any vector space of dimension n is isomorphic to \mathbb{R}^{n} under the coordinate mapping under a basis.

Note that vector spaces of different dimensions can never be isomorphic. This is because isomorphism preserves linear independence and spanning property, and thus always sends a basis to a basis. But bases of vector spaces of different dimensions contain different number of vectors.

2 Problems

Example 1. True or false. In the last three statements, S denotes the vector space of all smooth (infinitely differentiable) functions over [0, 1]. In other words, you do not need to worry about differentiability of elements of S
() There exists a basis \mathcal{B} of \mathbb{P}_{2} such that $1+x$ has coordinate $(1,1,1)^{T}$ while $x+x^{2}$ has coordinates $(-3,-3,-3)$.
() Let V be a 5 -dimensional vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}$ be two linearly independent vectors in V, then there exists three other vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ in V such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis of V.
() Let W be a 2-dimensional vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ be five vectors in W, then we can take two of these vectors to form a basis of W.
() Let \mathcal{A}, \mathcal{B} be two bases of the vector space V, then for any vector $\mathbf{v} \in V$,

$$
[\mathbf{v}]_{\mathcal{A}}=[\mathcal{B}]_{\mathcal{A}} \cdot[\mathbf{v}]_{\mathcal{B}}
$$

where $[\mathcal{B}]_{\mathcal{A}}$ is the square matrix whose columns are \mathcal{A}-coordinate vectors of the vectors of \mathcal{B}.
() There is no isomorphism $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$.
() Let $T: S \rightarrow S$ be the linear transformation $T(f(x))=f^{\prime}(x)$, then T is surjective.
() Let $T: S \rightarrow S$ be the linear transformation $T(f(x))=\int_{0}^{x} f(s) d s$, then T is surjective.
() Let $T: S \rightarrow S$ be the linear transformation $T(f(x))=f^{\prime \prime}(x)$, then T has a two-dimensional kernel.

Example 2. Let $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1} . \mathbf{b}_{2}\right\}$ be two different bases of \mathbb{R}^{2} where

$$
\mathbf{e}_{1}=\binom{1}{0}, \mathbf{e}_{2}=\binom{0}{1}, \mathbf{b}_{1}=\binom{2}{5}, \mathbf{b}_{2}=\binom{1}{3}
$$

(a) Let $\mathbf{x}=\binom{-1}{-1}$. Write \mathbf{x} as a linear combination of \mathbf{b}_{1} and \mathbf{b}_{2}.
(b) Compute $[\mathbf{x}]_{\mathcal{E}}$ and $[\mathbf{x}]_{\mathcal{B}}$.
(c) Let $B=\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right)$. Check that $[\mathbf{x}]_{\mathcal{E}}=A[\mathbf{x}]_{\mathcal{B}}$. Can you explain the reason behind this?
(d) Now let's generalize this result. Let $\mathcal{A}=\left\{\mathbf{a}_{1} \cdot \mathbf{a}_{2}\right\}$ be yet another basis of \mathbb{R}^{2}. Given that

$$
\left[\mathbf{b}_{1}\right]_{\mathcal{A}}=\binom{23}{45}, \quad\left[\mathbf{b}_{2}\right]_{\mathcal{A}}=\binom{89}{67}
$$

find $[x]_{\mathcal{A}}$.

Example 3. One more question about base change. Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1} \cdot \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be two different bases of \mathbb{R}^{3}, where

$$
\mathbf{a}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \mathbf{a}_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{b}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{b}_{2}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \mathbf{b}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

(a) Find $\left[\mathbf{a}_{i}\right]_{\mathcal{B}}$ for $i=1,2,3$.
(b) If $[\mathbf{x}]_{\mathcal{A}}=(1,1,1)^{T}$, find $[\mathbf{x}]_{\mathcal{B}}$.
(c) If $[\mathbf{y}]_{\mathcal{A}}=[\mathbf{y}]_{\mathcal{B}}$, find \mathbf{y}.

Example 4. Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow M_{2 \times 2}(\mathbb{R})$ defined as

$$
T\left(a+b x+c x^{2}\right)=\left(\begin{array}{cc}
3 a+b & b+c \\
-2 b & a+b+c
\end{array}\right) .
$$

(a) Consider the basis $\mathcal{B}=\left\{1+x, x, x^{2}-x\right\}$ of \mathbb{P}_{2} and the basis $\mathcal{E}=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ of $M_{2 \times 2}(\mathbb{R})$. Compute $\mathcal{B}_{\mathcal{B}}[T]_{\mathcal{E}}$.
(b) Consider instead the basis $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ of $M_{2 \times 2}(\mathbb{R})$, where

$$
C_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), C_{2}=\left(\begin{array}{cc}
4 & 1 \\
-2 & 2
\end{array}\right), C_{3}=\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right), C_{4}=\left(\begin{array}{cc}
-1 & 0 \\
2 & 0
\end{array}\right) .
$$

Compute $\mathcal{B}_{\mathcal{B}}[T]_{\mathcal{C}}$.
(c) Is T one-to-one? Onto?

