Worksheet 13 (March 3)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- coordinate mapping;
- matrix of linear transformation relative to bases on domain and codomain;

METHODS AND IDEAS

Theorem 1. Any two vector spaces of the same dimension are isomorphic, since any vector space of dimension n is isomorphic to \mathbb{R}^n under the coordinate mapping under a basis.

Note that vector spaces of different dimensions can never be isomorphic. This is because isomorphism preserves linear independence and spanning property, and thus always sends a basis to a basis. But bases of vector spaces of different dimensions contain different number of vectors.

2 Problems

Example 1. True or false. In the last three statements, S denotes the vector space of all smooth (infinitely differentiable) functions over [0,1]. In other words, you do not need to worry about differentiability of elements of S

- () There exists a basis \mathcal{B} of \mathbb{P}_2 such that 1 + x has coordinate $(1, 1, 1)^T$ while $x + x^2$ has coordinates (-3, -3, -3).
- () Let V be a 5-dimensional vector space and $\mathbf{v}_1, \mathbf{v}_2$ be two linearly independent vectors in V, then there exists three other vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ in V such that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a basis of V.
- Let W be a 2-dimensional vector space and v₁, v₂, v₃, v₄, v₅ be five vectors in W, then we can take two of these vectors to form a basis of W.

() Let \mathcal{A}, \mathcal{B} be two bases of the vector space V, then for any vector $\mathbf{v} \in V$,

$$[\mathbf{v}]_{\mathcal{A}} = [\mathcal{B}]_{\mathcal{A}} \cdot [\mathbf{v}]_{\mathcal{B}},$$

where $[\mathcal{B}]_{\mathcal{A}}$ is the square matrix whose columns are \mathcal{A} -coordinate vectors of the vectors of \mathcal{B} .

- () There is no isomorphism $T: \mathbb{P}_2 \to \mathbb{R}^2$.
- () Let $T: S \to S$ be the linear transformation T(f(x)) = f'(x), then T is surjective.
- () Let $T: S \to S$ be the linear transformation $T(f(x)) = \int_0^x f(s) ds$, then T is surjective.
- () Let $T: S \to S$ be the linear transformation T(f(x)) = f''(x), then T has a two-dimensional kernel.

Example 2. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be two different bases of \mathbb{R}^2 where

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0\\1 \end{pmatrix}, \mathbf{b}_1 = \begin{pmatrix} 2\\5 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 1\\3 \end{pmatrix}.$$

(a) Let $\mathbf{x} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$. Write \mathbf{x} as a linear combination of \mathbf{b}_1 and \mathbf{b}_2 .

(b) Compute $[\mathbf{x}]_{\mathcal{E}}$ and $[\mathbf{x}]_{\mathcal{B}}$.

(c) Let $B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$. Check that $[\mathbf{x}]_{\mathcal{E}} = A[\mathbf{x}]_{\mathcal{B}}$. Can you explain the reason behind this?

(d) Now let's generalize this result. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$ be yet another basis of \mathbb{R}^2 . Given that . .

$$[\mathbf{b}_1]_{\mathcal{A}} = \begin{pmatrix} 23\\ 45 \end{pmatrix}, \qquad [\mathbf{b}_2]_{\mathcal{A}} = \begin{pmatrix} 89\\ 67 \end{pmatrix},$$

find $[\mathbf{x}]_{\mathcal{A}}$.

Example 3. One more question about base change. Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{B} = {\mathbf{b}_1.\mathbf{b}_2,\mathbf{b}_3}$ be two different bases of \mathbb{R}^3 , where

$$\mathbf{a}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \mathbf{a}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{b}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \mathbf{b}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

(a) Find $[\mathbf{a}_i]_{\mathcal{B}}$ for i = 1, 2, 3. (b) If $[\mathbf{x}]_{\mathcal{A}} = (1, 1, 1)^T$, find $[\mathbf{x}]_{\mathcal{B}}$. (c) If $[\mathbf{y}]_{\mathcal{A}} = [\mathbf{y}]_{\mathcal{B}}$, find \mathbf{y} .

Example 4. Consider the linear transformation $T : \mathbb{P}_2 \to M_{2 \times 2}(\mathbb{R})$ defined as

$$T(a+bx+cx^{2}) = \begin{pmatrix} 3a+b & b+c \\ -2b & a+b+c \end{pmatrix}.$$

(a) Consider the basis $\mathcal{B} = \{1+x, x, x^2-x\}$ of \mathbb{P}_2 and the basis $\mathcal{E} = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ of $M_{2\times 2}(\mathbb{R})$. Compute $_{\mathcal{B}}[T]_{\mathcal{E}}$.

(b) Consider instead the basis $\mathcal{C} = \{C_1, C_2, C_3, C_4\}$ of $M_{2 \times 2}(\mathbb{R})$, where

$$C_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, C_2 = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix}, C_3 = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}, C_4 = \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix}.$$

Compute $_{\mathcal{B}}[T]_{\mathcal{C}}$. (c) Is T one-to-one? Onto?