Worksheet 10 (Feb. 12)

DIS 119/120 GSI Xiaohan Yan

Note: There is no discussion session next Monday.

DEFINITIONS

- Subspace, span as an example of subspace;
- null space, column space;
- basis of a subspace, dimension of a subspace.

METHODS AND IDEAS

Remark 1. An important property of determinant:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B) .
$$

Theorem 1. Below is the algorithm for finding the bases of the null and column space of a matrix A :

- row reduce A to REF or RREF;
- identify the pivot positions, go back to A, then the columns vectors of A where these pivots reside form a basis of $\operatorname{Col}(A)$;
- write out the solution set of $A \mathbf{x}=\mathbf{0}$;
- separate the free variables in the solution set, then the "vector coefficients" of these free variables form a basis of $\operatorname{Nul}(A)$.

Remark 2. Since the dimension of a space is the number of vectors in any basis of it,

$$
\operatorname{dim} \operatorname{Col}(A)=\sharp \text { pivots in } A, \quad \operatorname{dim} \operatorname{Nul}(A)=\sharp \text { free variables in } A .
$$

1 Problems

Example 1. Which ones of the following subsets of \mathbb{R}^{n} are subspaces?
(a) $\left\{\left.\binom{x}{y} \right\rvert\, x=y\right\} \subset \mathbb{R}^{2}$
(b) $\left\{\left.\binom{x}{y} \right\rvert\, x, y>0\right\} \subset \mathbb{R}^{2}$
(c) $\left\{\left.\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \right\rvert\, x+y+z=1\right\} \subset \mathbb{R}^{3}$
(d) $\mathbb{R}^{3} \subset \mathbb{R}^{3}$
(e) $\left\{\left.\binom{x}{y} \right\rvert\, x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{2}$
(f) $\{\mathbf{0}\} \subset \mathbb{R}^{5}$.

Example 2. Consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right)
$$

(a) Find a basis and the dimension for $\operatorname{Nul}(A)$. (b) Find a basis and the dimension for $\operatorname{Col}(A)$.

Example 3. Let $P \subset \mathbb{R}^{3}$ be the plane $x-2 y+3 z=0$ passing through the origin.
(a) Show that P is a subspace of \mathbb{R}^{3}. (Hint: You may use any theorem from the text.)
(b) Find a basis of P.

Example 4. True or false.
() $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
() $\operatorname{det}\left(A^{-1}\right)=-\operatorname{det}(A)$.
() $\operatorname{det}(3 A)=3 \operatorname{det}(A)$
() If two rows of A are identical, then $\operatorname{det}(A)=0$.
() If two columns of A are identical, then $\operatorname{det}(A)=0$.
() $\operatorname{det}(A)$ is the product of diagonal entries of A.

