Worksheet 8 (Feb. 8)

DIS 119/120 GSI Xiaohan Yan

1 Review

$$
\mathbb{R}^{n} \xrightarrow{S} \mathbb{R}^{m} \xrightarrow{T} \mathbb{R}^{p}
$$

DEFINITIONS

```
Rmk. \(B \cdot A\) is only
    defined for \(B\) and \(A\)
    Satistying
```

- composition of linear transformation, matrix product;
 $\vec{x} \longmapsto S(\vec{x}) \longmapsto T(S(\vec{x})$

- Inverse of linear transformation, inverse of matrix;
\# Columns of $B=\#$ rows of A.
Remark 1. Let A be the matrix of S and B be of T. The matrix of the composition $T \circ S$ is then just $B A$. In this sense, not any two matrices A and B can be composed, as not any two linear transformations can be composed. They only can when the number of columns of the former is equal to the number of rows of the latter.

$$
\begin{aligned}
& S(\vec{x})=A_{m \times n} \vec{x} \\
& T(\vec{y})=B_{p m m} \vec{y}
\end{aligned}
$$

2 Problems

Example 1. Determine the injectivity and surjectivity of the composition $T \circ S$ (note that this means to first apply S and then apply $T!!!$) of linear transformations T and S, where
(1) $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the rotation counterclockwise by $\pi / 4$, and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the projection to y-axis;
(2) $S: \mathbb{R} \rightarrow \mathbb{R}^{2}$ satisfies $S(1)=(2,0)$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the projection to x-axis;
(3) the matrices of S and T are

$$
S=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2
\end{array}\right), T=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) .
$$

$$
\begin{array}{ll}
\text { Where injectivity of Trails } & \text { Correct version If To S is injective, } \\
\text { is not in } I_{m} S \text {, so it's not seen by the composition. } & \\
\text { s to the following statements. } & \\
\text { then } S \text { is injective, } \\
\text { but not necessarily } T .
\end{array}
$$

Example 2. Find counterexamples to the following by the composition.
(1) The composition $T \circ S$ of two linear transformations is injective, then both T and S are injective.

$$
\begin{aligned}
& \mathbb{R} \longrightarrow \mathbb{R}^{2} \longrightarrow \mathbb{T} \quad \text { In matrix, } \quad S=\binom{1}{0} \quad T \cdot S=(1) \\
& e_{1} \longrightarrow e_{1} \longrightarrow \begin{array}{ll}
e_{1} \\
e_{2}
\end{array} \quad \text { surfective } \\
& T=(1)
\end{aligned} \quad \text { "identity map" }
$$

(2) The composition $T \circ S$ of two linear transformations is infective, then both
T and S are infective.
subjective
(3) If $n \times n$ matrices satisfy $A B=A C$, then $B=C$.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad C=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Example 3. Compute the matrix product

Example 4. This one looks like a proof problem but it is actually about computation. Let A and B be two 2×2 matrices and let

$$
C=A B-B A
$$

Show that the sum of the two diagonal entries of C, i.e. $C_{11}+C_{22}$, is zero.

