Worksheet 5 (Feb. 1)

DIS 119/120 GSI Xiaohan Yan

1 Review

Recall from last time

- matrix-vector product.

$$
\text { [see example below] } A \cdot \vec{v} \text { is a vetor which is a linear combination of columns of } A
$$

Example

$\ell_{1}: \quad\{(-t, t) \mid t \in \mathbb{R}\}$
straight line
Theorem 1. (Solution of inhomogeneous linear system)
Let $\mathbf{x}=\mathbf{x}_{\text {prt }}$ be one particular solution of $A \mathbf{x}=\mathbf{b}$, then any solution of $A \mathbf{x}=\mathbf{b}$

$l_{2}:\left(=l_{1}+\right.$ the vector $\binom{2}{2}$).
for some solution $\mathbf{x}_{h m g}$ of the homogeneous system $A \mathbf{x}=\mathbf{0}$, and vice versa.
$\{(-t+2, t+2) \mid t \in \mathbb{R}\}$

2 Problems

Example 1. True or false.
(T) The columns of any 4×5 matrix are linearly dependent.
(F) The columns of a matrix A are linearly dependent if the equation $A \mathbf{x}=\mathbf{0}$ is consistent.
(T) If A is a 2×5 matrix with two pivot positions, $A \mathbf{x}=\mathbf{b}$ is consistent for any $b \in \mathbb{R}^{2}$.
(T) Two vectors are linearly dependent if and only if geometrically they lie on the same line through the origin.
(T) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent if $\mathbf{v}_{3}=\mathbf{0}$.

$$
\begin{gathered}
\vec{u}, \vec{v} \text { linealy dependut } \\
\downarrow \\
\exists c_{1}, c_{2} \text { not both zew } \\
\text { s.t. } c_{1} \vec{u}+c_{2} \vec{v}=\overrightarrow{0} . \\
\text { Assume } c_{1} \neq 0 \\
\text { then } \vec{u}=-\frac{c_{2}}{c_{1}} \vec{v} . \\
\text { so on the same line }
\end{gathered}
$$

(T) If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent for any \mathbf{v}_{4}.
\rightarrow The choice $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ of \rightarrow By Thm1. as we know solution set of $(a) \quad\{(-2 t,-2 t, 3 t) \mid t \in \mathbb{R}\}$.
the particular solution we can write out solutionset of (b) interns of one particular solution of (b).

> is arbitral. For
example, we can also For example, $\vec{x}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ solves (b), i.e. $\vec{x}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is a purtiulon
take $\vec{x}_{p-t}=\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)(t=-1)$,
then ingeneral, a solution of
$A \vec{x}=\vec{b}$, by Th m $^{\prime}$, is
Example 2. Consider $\binom{1}{0}+\left(\begin{array}{c}-2 t \\ 3 t \\ 3 t\end{array}\right)=\left(\begin{array}{c}-2 t+1 \\ -2 t \\ 3 t\end{array}\right)$, for some $t \in \mathbb{R}$.

$$
\left(\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right)+\left(\begin{array}{c}
-2 t \\
-2 t \\
3 t
\end{array}\right)=\left(\begin{array}{c}
3-2 t \\
2-2 t \\
3 t-3
\end{array}\right)
$$

$$
\begin{aligned}
\vec{x}_{\text {put }} & \vec{x}_{\text {hm }} \\
& A=\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & 2
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right],
\end{aligned}
$$

ie. the solution set of $A \vec{x}=\vec{b}$
and solve the two linear systems
Graph the Solution sets

$$
\text { should be }\{(3-2 t, 2-2 t, 3 t-3) \mid t \in \mathbb{R}\}
$$

(a) $A \mathrm{x}=\mathbf{0}$.
(b) $A \mathbf{x}=\mathbf{b}$.

$$
\downarrow t=s+1
$$

the same set can be written as
$\{(1-2 s,-2 s, 3 s) \mid s \in \mathbb{R}\}$

Example 3. Compute the matrix-vector multiplication

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right) .
$$

Remark 1. With a view toward future lectures: Regarding vector as a $n \times 1$ matrix, then we actually defined the product of an $m \times n$ matrix and an $n \times 1$ matrix as an $m \times 1$ matrix. (In our example above, $m=2$ and $n=3$.) Can we generalize the definition to multiplication of an $m \times n$ matrix with an $n \times p$ matrix? The answer should be $m \times p$.

