

- matrix-vector product;

DIS 119/120

4 equivalent ways of

$\vec{A}=\vec{b}$, whene $\vec{b} \neq \overrightarrow{0}$.

$$
\begin{aligned}
& A \vec{x}=\overrightarrow{0} \\
& \left(a l l \text { Constants } b_{1}, \cdots, b_{m}=0\right)
\end{aligned}
$$

(4) $x_{1} \vec{\alpha}_{1}+x_{2} \vec{d}_{2} \cdots+x_{n} \vec{d}_{n}=\overrightarrow{0}$, linear independence.

$$
a_{11} x_{1}+\cdots+\operatorname{anc}_{1} x_{n}=0
$$

where $\vec{\alpha}_{1}, \cdots, \vec{\alpha}_{r}$ ave column That $\vec{V}_{1} \cdots v_{k}$ are linearly def (notall zew) s.et. $c_{1} \vec{V}_{1}+\cdots+c_{k} \vec{V}_{k}=\overrightarrow{0}$

METHODS AND IDEAS

- Expanded criterion for uniqueness: provided that solutions of a linear system $A \mathbf{x}=\mathbf{b}$ exist, its solution is unique \Leftrightarrow the homogenized system $A \mathbf{x}=\mathbf{0}$ has unique solution (the trivial solution $\mathbf{0}) \Leftrightarrow$ the column vectors of its coefficient matrix A are linearlyindependent \Leftrightarrow all columns of A have pivot positions (i.e. no free variable) in REF. [See the P12 of the professor's notes for a beautiful chart.]

- Solution sets of $A \mathbf{x}=\mathbf{b}$ and of $A \mathbf{x}=\mathbf{0}$ in \mathbb{R}^{m} are "parallel planes", when both systems are consistent.

Remark 1. In general, if a homogeneous system $A \mathrm{x}=\mathbf{0}$ has only the trivial solution, then an inhomogeneous system $A \mathbf{x}=\mathbf{b}$ with the same coefficient matrix can have 0 or 1 solution.

Remark 2. By the relation between the coefficient matrix and its column vectors, for the set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ in \mathbb{R}^{m}, they cannot be independent if $\underline{n>m}$, and they cannot span the entire \mathbb{R}^{m} if $n<m$. Moreover, if $m=n$, then: \#column's フ\#nows

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n} \text { are linearly independent } \Leftrightarrow \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}=\mathbb{R}^{m} .
$$

2 Problems

Example 1. Consider vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ in \mathbb{R}^{3}
linear dependence \Leftrightarrow atleastone of the vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
-4
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(ر) $\vec{u}_{1}=-\frac{1}{2} \overrightarrow{u_{2}}+0 \cdot \overrightarrow{u_{3}}$
$\overrightarrow{u_{2}}=-2 \overrightarrow{u_{1}}+0 \cdot \vec{u}_{3}$
$\overrightarrow{u_{3}}=? \overrightarrow{u_{1}}+? \overrightarrow{u_{2}}$ uon't exist.
(a) Are they linear independent? (b) $\mathrm{Can} \mathbf{u}_{3}$ be written as a linear combination of the other two?

Example 2. Discuss: about linear dependence. Note that for determining lin- which means ear independence it does not matter whether you are picturing these vectors in $\quad 2 s \cdot \overrightarrow{u_{1}}+s \cdot \overrightarrow{u_{2}}+0 \cdot \overrightarrow{u_{3}}=\overrightarrow{0}$
\mathbb{R}^{3} or \mathbb{R}^{100}, as the extra "directions" are irrelevant here. \mathbb{R}^{3} or \mathbb{R}^{100}, as the extra" directions" are irrelevant here.
(a) If the set of a single vector $\{\mathbf{v}\}$ is linearly dependent, what do we know of (for any $s \in \mathbb{R}$).
$v ? \quad c \cdot \vec{v}=\overrightarrow{0}$, with c nonzero real number. $\rightarrow \quad \vec{v}=\overrightarrow{0}$
(b) If the set of two vectors $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent, what do we know of \mathbf{u}, \mathbf{v} ?

$$
\begin{aligned}
& c_{1} \cdot \vec{u}+C_{2} \cdot \vec{v}=\overrightarrow{0} \text {, with } C_{1}, c_{2} \text { not both zero. WLo } C_{1} \text {, assume } c_{1} \neq 0, \vec{u}=-\frac{c_{2}}{c_{1}} \vec{v} \text {. } \therefore \text { line ally dependent } \\
& \text { set of three vectors }\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} \text { is linearly dependent, what do of the vectors is a multiple of the other } \\
& C_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}=\overrightarrow{0} \quad m \text { geometrically, the three vectors lie on the same plane passing through the orgin. } \\
& \text { (2-dim) }
\end{aligned}
$$

Note We dor lt necessarily have any of them being multiple of one of the otter two.

Example 3. Find possible values of c such that the following three vectors are

linearly dependent

Example $\vec{u}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \vec{v}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \vec{w}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) . \quad(\vec{u}+\vec{v}-\vec{w}=\overrightarrow{0})$

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
5 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
c \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
3 \\
3 \\
c
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
5 & c & 3 \\
3 & 1 & c
\end{array}\right] \stackrel{\text { row }}{\text { redme }} \text { at least one free var. }
$$

$$
\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3} \text { independut } \Leftrightarrow
$$

 area of the base
Prop．$\vec{v}_{k} \ldots, \vec{v}_{k}$ are limearly independurt．\vec{u}, \vec{v} independurt． $\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{k}}, \vec{w}$ ave linealy depentent
then \vec{v} is a linar Combination of $\vec{v}_{1} \cdots \overrightarrow{v_{c}}$ ．

$$
\leadsto \vec{n}=\operatorname{Sen} \sin \vec{n} \vec{v} \vec{v}
$$

Pf．
$\exists c_{1}, c_{2}, \cdots, c_{x}, d \in \mathbb{R}$ ，not all zew

$$
\vec{n}, \vec{v}, \vec{\omega} \text { deperdut }
$$

s．t．$\vec{v}+\vec{k}+\vec{k}+\vec{w}=\overrightarrow{0} \quad-\vec{w}=\left(\begin{array}{l}0 \\ 0\end{array}\right.$

（0）\vec{u}, \vec{v} independet $1,1,-1$
－$\vec{u}, \vec{v}, \vec{u}$, dependut $: \vec{u}+\overrightarrow{\vec{u}} \overrightarrow{-\vec{w}}=0$

$$
\text { so } \vec{w} \in \operatorname{span}\left\{\vec{u}, \cdots, \overrightarrow{u^{2}}\right\} \text { we're dre. }
$$

2 If do．

$\leadsto \overrightarrow{v_{1}}, \cdots, \vec{v}_{\mathrm{F}}$ dependent［contradiction］$⿴ 囗 十$
$\{\vec{u}, \vec{v}, \vec{w}\}$ Ineely depenenut
u）\exists one of $\vec{u}, \vec{x}, \overrightarrow{\mathrm{~m}}$ that can be
writen as Ineer carbich otor of
the readrypuetros．
（1）$\vec{u}=\overrightarrow{0}$
（1）$\vec{r}=k \vec{u}$
（3） $\overrightarrow{n^{2}}=a \vec{u}+\vec{v}$

Method 2．$\vec{z}=a \vec{x}+b \vec{y}$ ．$\leadsto a \vec{x}+b \vec{y}-\vec{z}=\overrightarrow{0}$
\rightarrow by def．deperndent

