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Remark 1. One implication of the expanded criterion above is that, if the co-
efficient matrix has pivot in each row already, which means the column vectors
ai,as, - ,a, span the entire R™, the associated linear system is always consis-
tent, no matter what the constant vector b is. In particular, this is impossible
when n < m.

2 Problems

Example 1. We will do this together. Determine if b is a linear combination
of ay, as, where
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Example 2. True or false. l_ T 1 o
(T) The 3-dimensional zero vector 0 is a linear combination of the vectors a; m=2,n=3
and ag as in Example 1. T s fa any Spea.
(F) The columns of an m x n matrix A span the entire R™ if and only if
m=n. Rkl & @y +%nln = b Ganstskent fov atvy b -
A~
( F) b € span{ay,aq, - ,a,} if and only if the augmented matrix [al as a, b]

has the last column as one of its pivot columns. exaukly the opputte .

Example 3. Find the values of h such that v € span{u;, us}, where
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Example 4. With a view toward future lectures. Graph the following spans in
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How is the 4th case different, and why?



