

2 Problems

Example 1. We will do this together. Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, where

$$
\begin{aligned}
& \mathbf{b}=\left[\begin{array}{c}
9 \\
1 \\
10
\end{array}\right],,_{1}= {\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right], \underline{a_{2}}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right] . } \\
&\left\{\begin{array}{l}
2+1=3 \\
4+1=5
\end{array}\right. \\
& 1 \begin{array}{l}
x+y-z=0
\end{array} \\
& x_{1} \overrightarrow{a_{1}}+x_{2} \overrightarrow{a_{2}}=\vec{b}
\end{aligned}
$$

By the expanded Criterion above, it is equivalent to determine if the system below is consistent

$\left[\begin{array}{cc:c}2 & 4 & 9 \\ 1 & 1 & 1 \\ 3 & 5 & 10\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & 9 \\ 3 & 5 & 10\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 7 \\ 0 & 2 & 7\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 7 / 2 \\ 0 & 0 & 0\end{array}\right]$ this is not pivot position.
\therefore the system is consistent. $\quad \vec{b}=\frac{-5}{2} \overrightarrow{a_{1}}+\frac{7}{2} \overrightarrow{a_{2}}$
$\left\{\begin{array}{l}x_{1}=1-7 / 2=-5 / 2 \\ x_{2}=7 / 2\end{array}\right.$
Solutions of the system
After you have solved this, think: what does it mean geometrically? Are there
Unique Solution

$$
\begin{aligned}
& \vec{b} \text { is on } P \text { ? } \\
& P: x+y-z=0 \\
& \text { It is easy to check that } \vec{b} \text { is on } P \text {. }
\end{aligned}
$$

Example 2. True or false.
(T) The 3-dimensional zero vector $\mathbf{0}$ is a linear combination of the vectors \mathbf{a}_{1}

$$
\begin{aligned}
& \text { Coefficient } \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]} \\
& m=2, n=3
\end{aligned}
$$

(F) The columns of an $m \times n$ matrix A span the entire \mathbb{R}^{m} if and only if $m=n . \quad$ Rink $\mid \Leftrightarrow x_{1} \overrightarrow{a_{1}}+\cdots+x_{n} \overrightarrow{a_{n}}=\vec{b}$ consistent for ally \vec{b}.
$(F) \mathbf{b} \in \operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\right\}$ if and only if the augmented matrix $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{n} \\ \mathbf{b}\end{array}\right]$ has the last column as one of its pivot columns. exartly the opposite.
Example 3. Find the values of h such that $\mathbf{v} \in \operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, where

$$
\begin{gathered}
\mathbf{v}=\left[\begin{array}{c}
h \\
-\frac{5}{-3}
\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
-3 \\
1 \\
8
\end{array}\right] . \\
\text { Method (1) Wont }\left[\begin{array}{ccc}
1 & -3 & h \\
0 & 1 & -5 \\
-2 & 8 & -3
\end{array}\right] \text { to be consistent }
\end{gathered}
$$

Do row reductions

$$
\text { Method (2) } \quad x_{1} \overrightarrow{u_{1}}+x_{2} \overrightarrow{u_{2}}=\vec{v} \quad\left\{\begin{array}{l}
x_{1} \cdot 0+x_{2} \cdot 1=-5 \\
x_{1} \cdot(-2)+x_{2} \cdot 8=-3
\end{array} \quad x_{1}+x_{2} \cdot(-3)=\hbar\right.
$$

Example 4. With a view toward future lectures. Graph the following spans in \mathbb{R}^{2} :

$$
\begin{array}{cc}
\text { (1) } \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} ; & \text { (2) span }\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} \\
\text { (3) } \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} ; & \text { (4) } \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right\} .
\end{array}
$$

How is the th case different, and why?

