Worksheet 23 (April 2)

DIS 119/120 GSI Xiaohan Yan

1 Review

METHODS AND IDEAS

$\operatorname{dim} \operatorname{Col}(A)$.
Theorem 1. The row rank is equal to the column rank for any matrix. In fact we have
where the former comes from the orthogonality, and the latter comes from the Rank-Nullity theorem.

Remark 1.

$$
\subset \mathbb{R}^{n} \cup \quad \subset^{\mathbb{R}^{m}} \cup \quad \text { connider } A^{\top} \text {. Row }\left(A^{\top}\right)=
$$

rem.

$$
\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}, \underline{\operatorname{Col}(A)=\operatorname{Nul}\left(A^{T}\right)^{\perp}} . \quad \text { for } A_{m \times n} .
$$

idea of $\mathbb{N a n c m a r k}^{200}$ 2. Another way to see the theorem is by row reduction. In fact, both the row rank and the column rank are preserved by row reductions. (Why?) So we may reduce the theorem to the case of RREF. But in RREF both ranks are equal to the number of pivots.
Theorem 2. Otrhgonal matrices preserve the inner product. In other words, given an orthogonal matrix U, we have

$$
U \mathbf{x} \cdot U \mathbf{y}=\mathbf{x} \cdot \mathbf{y}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

$$
u \vec{x} \cdot u \vec{y}=(U \vec{x})^{\top} U \vec{y}
$$

$$
=\vec{x}^{\top} u^{\top} u \vec{y}
$$

Remark 3. In particular, this gives $\| \underline{U \mathbf{x}\|=\| \mathbf{x} \|}$ if we take $\mathbf{x}=\mathbf{y} .=\vec{x}^{\top} \vec{y}=\vec{x} \cdot \vec{y}$

2 Problems

$$
\begin{array}{ll}
{\operatorname{det}(u)^{2}}_{U^{\top} \cdot u}=I_{n} \\
\operatorname{det}\left(u^{\top}\right) \cdot \operatorname{det}(u)=\operatorname{det}\left(u^{\top} u\right)=1 \quad \leadsto & \operatorname{det}(U)= \pm 1 . \\
\text { matrix, } \operatorname{then} \operatorname{det}(U)=1 . & U=\left(\begin{array}{ll}
1 & -1)
\end{array}\right) \operatorname{det}(u)=-1
\end{array}
$$

Example 1. True or false.

Eigenvalues of (T) Let U be an orthogonal matrix and \mathbf{x} a vector such that $U \mathbf{x}$ and \mathbf{x} are
orthogonol matrix linearly dependent, then $U \mathbf{x}= \pm \mathbf{x}$.
orthogonor matax \vec{A} If U is diagonal and orthogonal, then U must be an identity $\xrightarrow{\Delta} \vec{x} \vec{\nabla} \overrightarrow{0} \quad U \vec{x}$ is a multiple of \vec{x}
can orly be (F If U is diagonal and orthogonal, then U must be an identity matrix.
1 or -1 .
Countevexample $U=\left(\begin{array}{ll}1 & \\ & -1\end{array}\right)$
(\vec{x} is an e-vector of u)

$$
\begin{aligned}
& \text { pNot freevar. } \\
& \underline{\operatorname{dim} \operatorname{Row}(A)+\operatorname{dim} \operatorname{Nul}(A)=n} \text { and } \underline{\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} \operatorname{Nul}(A)=n,}
\end{aligned}
$$

(T) The Gram-Schmidt process produces from a linearly independent set $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\}$ an orthogonal set $\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{k}\right\}$ with the property that for each k,

$$
\operatorname{span}\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{i}\right\}=\operatorname{span}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{i}\right\}, \forall i=1,2, \cdots, k .
$$

(T) For any two matrices $A_{m_{m}}$ and $B_{n \times p}$ such that $A B_{m \times p}$ is well-defined,

Example 2. Find an example or disprove existence:
a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that satisfies $T^{2}=T$ but is not an orthogonal projection.
idempotence

$$
T^{2}=T
$$

Example 3. Find the best fitting model in the form $y=a x^{2}+b x+c$ of the data points

$$
\begin{aligned}
& \text { Take basis } \quad B=\left\{\overrightarrow{b_{1}}=\binom{1}{0}, \overrightarrow{b_{2}}=\binom{1}{1}\right\} \text { arbittany } \\
& \text { Then } T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \xrightarrow{P_{1}} \mathbb{R}^{2} \\
& \vec{v} \longmapsto[\vec{v}]_{B} \longmapsto \text { Projx-axis }^{[\vec{v}]_{B}} \\
& \binom{x}{y} \longrightarrow\binom{x}{0} \text {. } \\
& \text { Standard matrix of } T \text { is }\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) . \quad T^{2}=T \text {. }
\end{aligned}
$$

$$
x=-1, y=1
$$

$$
(-1,1),(0,0),(1,1),(2,1)
$$

Find the least square solution of

$$
\begin{aligned}
& \left\{\begin{aligned}
1 & =a-b+c \\
0 & =c \\
1 & =a+b+c \\
1 & =4 a+2 b+c
\end{aligned}\right. \\
& A^{\top} A \vec{x}=A^{\top} \vec{b}
\end{aligned}
$$

Rok This methodworlss even though
the model is not "a linewrmodel". It work as long as the model depends lineally on the coefficients.

Example 4. Find the values of a, b, c, d, e, f, g such that U is an orthogonal matrix:

$$
\left(\begin{array}{ccc}
1 & c & e \\
a & \frac{\sqrt{2}}{2} & f \\
b & d & g
\end{array}\right) .
$$

