Worksheet 21 (March 29)

DIS 119/120 GSI Xiaohan Van

$A_{m \times n}$
then $\operatorname{Row}(A) \subset \mathbb{R}^{n} \quad 1$ Problems
$\operatorname{Nul}(A) \subset \mathbb{R}^{n} \quad$ Example 1. True or false.

$$
\begin{aligned}
\text { wIS } \vec{x} \cdot \vec{w} & =0, \forall \vec{w} \in W . \\
\text { In fact, } \vec{w} & =c_{1} \overrightarrow{a_{1}}+c_{2} \overrightarrow{a_{2}}+\cdots+c_{\vec{k}} \overrightarrow{a_{k}} . \\
\vec{x} \cdot \vec{w} & =c_{1}\left(\overrightarrow{a_{1}} \cdot \vec{x}\right)+c_{2}\left(\overrightarrow{a_{2}} \cdot \vec{x}\right)+\cdots+c_{k}\left(\overrightarrow{a_{k}} \cdot \vec{x}\right)=0
\end{aligned}
$$

(T) Let $W \subset \mathbb{R}^{n}$ be a subspace and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ spans W. If \mathbf{x} is orthogonal to each $\mathbf{a}_{i}(i=1,2, \ldots, k)$, then $\mathbf{x} \in W^{\perp}$.
$\operatorname{Nul}(A)=\operatorname{Row}(A)^{\perp}$
$\left(\mathbb{1}\right.$ Let $W \subset \mathbb{R}^{n}$ be a subspace, $\mathbf{w} \in W$ and $\mathbf{x} \in \mathbb{R}^{n}$, then $\left(\operatorname{Proj}_{W} \mathbf{x}\right) \cdot \mathbf{w}=\mathbf{x} \cdot \mathbf{w}$. $\subset \subset \mathbb{R}^{m}$ cal complement of $\operatorname{col}(A)$ is the solution set of $A x=\mathbf{b}$.
(F) The orthogonal complement of $\operatorname{col}(A)$ is the solution set of $A x=\mathbf{b}$.

$$
\begin{aligned}
& W=\{x+y+z=0\} \\
& \text { II } \\
& \text { NulA for } A=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Example 2. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three unit vectors in \mathbb{R}^{n} satisfying $\mathbf{u + v}+\mathbf{w}=\mathbf{0}$.

$\vec{x}=P_{r o j}^{w} w \vec{x}_{t W^{2}}^{\vec{z}} 7^{0}$

Example 3. Find the orthogonal complement of the subspace $W \subset \mathbb{R}^{3}$ spanned by

$$
\mathbf{w}_{1}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{l}
-1 \\
-1 \\
-2
\end{array}\right)
$$

Example 4. Let \mathbf{u} and \mathbf{v} be two vectors in \mathbb{R}^{3} whose orthogonal projection
to the subspace W are $(1,1,-1)^{T}$ and $(2,-4,1)^{T}$ respectively.
(a) What is the orthogonal projection of $\mathbf{u}+2 \mathbf{v}$ to W ?
(b) What is the smallest possible value of $\|\mathbf{u}-\mathbf{v}\|$?
(c) What is W ?

