Worksheet 20 (March 19)

DIS 119/120 GSI Xiaohan Yan

```
inner prod.vector space. & length, angle, orthogonality. ...
```


1 Review

 \(\uparrow\) def. inner produt
 $1 R^{n} \quad \uparrow$ def. inner produt
vector space. \leftarrow L.I., span, subspares, ‥
\uparrow def. addition \& scalcu multiple

DEFINITIONS

$$
\text { Set } \quad\|\vec{x}\|=\sqrt{\vec{x} \cdot \vec{x}}
$$

\bullet metric geometry of \mathbb{R}^{n} : inner product, length, $\underline{=}$, ngle; $;\langle\vec{x}, \vec{y}\rangle=\arccos \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \cdot\left\|\vec{y}^{n}\right\|}$. Properties (1) Symmetric $\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x} \cdot \vec{x} \cdot \vec{y}={ }^{t} x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$.
(2) Bilinear $(a \vec{u}+b \vec{v}) \cdot \vec{y}=a(\vec{u} \cdot \vec{y})+d(\vec{v} \cdot \vec{y}), \quad \vec{x} \cdot(c \vec{u}+d \vec{v})=c(\vec{x} \cdot \vec{u})+d(\vec{x} \cdot \vec{v})$

- orthogonal set, orthonormal set, orthogonal basis;

- orthogonal complement, orthogonal projection. of subspace $W \subset \mathbb{R}^{n}$: of a vector $\vec{y} \in \mathbb{R}^{n}$ to subspace $W \subset \mathbb{R}^{n}$:

$$
w^{\perp}=\{\vec{v} \mid \vec{v} \perp \vec{w}, \forall \vec{w} b w\} \text {. }
$$

$\operatorname{Proj}_{w} \vec{y}$ "best approx. of \vec{y} in $w^{\prime \prime}$

METHODS AND IDEAS

Theorem 1. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ are orthogonal vectors, then they are linearly independent.

Theorem 2. (Orthogonal Projection)
Let $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ be an orthogonal basis of subspace $W \subset \mathbb{R}^{n}$, then for any vector $\mathbf{y} \in \mathbb{R}^{n}$, its orthogonal projection to W is

$$
\hat{\mathbf{y}}=\operatorname{Proj}_{W} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}} \mathbf{w}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{w}_{k}}{\mathbf{w}_{k} \cdot \mathbf{w}_{k}} \mathbf{w}_{k}
$$

Remark 1. The orthogonal projection $\hat{\mathbf{y}}$ is the closest to \mathbf{y} among all vectors in W. Moreover, it is the unique vector in W such that $\mathbf{y}-\hat{\mathbf{y}}$ is orthongonal to \underline{W}. In other words, the decomposition of any vector \mathbf{y} into the sum of W and W^{\perp} is unique, and it is exactly $\hat{\mathbf{y}}+(\mathbf{y}-\hat{\mathbf{y}})$.

Remark 2. When W in the theorem is the full subspace $\mathbb{R}^{n}, \mathcal{W}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is a basis of \mathbb{R}^{n} and thus the formula gives an easy way to compute the \mathcal{W} coordinate of \mathbf{y}, i.e.

$$
[\mathbf{y}]_{\mathcal{W}}=\left(\begin{array}{c}
\frac{\mathrm{y} \cdot \mathbf{w}_{1}}{\mathrm{w}_{1} \cdot \mathbf{w}_{1}} \\
\vdots \\
\frac{\mathrm{y} \cdot \mathbf{w}_{k}}{\mathrm{w}_{1} \cdot \mathbf{w}_{k}}
\end{array}\right)
$$

$$
\begin{gathered}
\vec{u} \cdot \vec{v}=0 \\
\hat{v} \\
-2 \vec{u} \cdot \vec{v}=2 \vec{u} \cdot \vec{v} \\
\hat{u} \\
(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v})=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})
\end{gathered}
$$

2 Problems

Example 1. True or false.

$$
\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2}
$$

(T) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ are orthogonal, $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$.

different
$(T)(F)\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is a set of orthogonal vectors if and only if any two vectors of it are orthogonal to each other.
(F) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is a set of linearly independent vectors if and only if any two, vectors of it are linearly independent to each other. different
(T) Let $W \subset \mathbb{R}^{n}$ be a subspace, then its orthogonal complement W^{\perp} is a
$\operatorname{Din} \mathbb{R}^{3}$, then W^{L} is a (Then W^{2} is a subspace of \mathbb{R}^{n} of complementary dimension. $\quad \operatorname{dim}_{\mathbb{R}} W+\operatorname{dim}_{\mathbb{R}} w^{L}=n$.
($)$ in \mathbb{R}^{4}, then (T (Lecouse $W \subset \mathbb{R}^{n}$ be a subspace, then $\left(W^{\perp}\right)^{\perp}=W$. © $W \subset\left(W^{\perp}\right)^{\perp} \quad\left(\operatorname{dim} m_{\mathbb{C}} W=\operatorname{dim}_{G}\left(W^{\perp}\right)^{\perp}\right.$.
($\overline{1}$ Let $W \subset \mathbb{R}^{n}$ be a subspace and W^{\perp} be its orthogonal complement. If \mathbf{v} is in both W and W^{\perp}, then \mathbf{v} must be the zero vector.
$\Downarrow \vec{v} \perp \vec{v}, \ldots . \cdot \cdot \vec{v} \cdot \vec{v}=0 \pi$

Example 2. Consider the vector

$$
\mathbf{v}=\binom{3}{4} \in \mathbb{R}^{2}
$$

(a) Compute $\stackrel{3}{\mathbf{v} \cdot \mathbf{e}_{1}}$ and $\mathbf{v} \cdot \stackrel{4}{e}_{2}$.
(b) Suppose $\mathbf{u} \in \mathbb{R}^{2}$ is a unit vector satisfying $\mathbf{u} \cdot \mathbf{v}=2$. Find \mathbf{u}.
(c) Find the area of the triangle formed by the origin and the endpoints of \mathbf{u} and \mathbf{v}.

$$
\left.\begin{array}{l}
\text { and } \mathbf{v} . \\
\text { (b) } \vec{u}=\binom{a}{b} . \\
\left\{\begin{array}{l}
a^{2}+b^{2}=1, ~ \\
3 a+4 b=2 .
\end{array} \quad a=\frac{8 \pm 3 \sqrt{21}}{25}\right.
\end{array}\right\}
$$

$$
\begin{aligned}
\begin{array}{l}
S_{\Delta}=\frac{1}{2}\|\vec{u}\| \cdot\|\vec{v}\| \cdot \sin \theta \\
\text { but } \cos \theta
\end{array} & =\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot\left\|\overrightarrow{u^{2}}\right\|} \cdot \\
& =\frac{2}{5} \\
\text { So } \sin \theta & =\frac{\sqrt{21}}{5} \\
\text { So } S_{\Delta} & =\frac{1}{2} \cdot 1 \cdot 5 \cdot \frac{\sqrt{21}}{5} \\
& =\sqrt{21} / 2
\end{aligned}
$$

Example 3. Let W be the plane in \mathbb{R}^{3} given by $x+y+z=0$.
(a) Find the orthogonal projection of $\mathbf{x}=(7,-1,3)^{T}$ to W.
(b) Find all \mathbf{y} whose orthogonal projection to W is $(2,2,-4)^{T}$.

