
Worksheet 20 (March 19)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

• metric geometry of Rn
: inner product, length, angle;

• orthogonal set, orthonormal set, orthogonal basis;

• orthogonal complement, orthogonal projection.

METHODS AND IDEAS

Theorem 1. If v1,v2, . . . ,vk P Rn are orthogonal vectors, then they are linearly
independent.

Theorem 2. (Orthogonal Projection)

Let tw1,w2, . . . ,wku be an orthogonal basis of subspace W Ä Rn, then for any
vector y P Rn, its orthogonal projection to W is

ŷ “ ProjW y “ y ¨ w1

w1 ¨ w1
w1 ` ¨ ¨ ¨ ` y ¨ wk

wk ¨ wk
wk.

Remark 1. The orthogonal projection ŷ is the closest to y among all vectors

in W . Moreover, it is the unique vector in W such that y ´ ŷ is orthongonal to

W . In other words, the decomposition of any vector y into the sum of W and

WK
is unique, and it is exactly ŷ ` py ´ ŷq.

Remark 2. WhenW in the theorem is the full subspace Rn
,W “ tw1,w2, . . . ,wku

is a basis of Rn
and thus the formula gives an easy way to compute the W-

coordinate of y, i.e.

rysW “

¨

˚̋
y¨w1

w1¨w1

.

.

.
y¨wk

w1¨wk

˛

‹‚.
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2 Problems

Example 1. True or false.

( ) If u,v P Rn
are orthogonal, ku ´ vk “ ku ` vk.

( ) tu1,u2, . . . ,uku is a set of orthogonal vectors if and only if any two vectors

of it are orthogonal to each other.

( ) tu1,u2, . . . ,uku is a set of linearly independent vectors if and only if any

two vectors of it are linearly independent to each other.

( ) Let W Ä Rn
be a subspace, then its orthogonal complement WK

is a

subspace of Rn
of complementary dimension.

( ) Let W Ä Rn
be a subspace, then pWKqK “ W .

( ) Let W Ä Rn
be a subspace and WK

be its orthogonal complement. If v
is in both W and WK

, then v must be the zero vector.

Example 2. Consider the vector

v “
ˆ
3

4

˙
P R2.

(a) Compute v ¨ e1 and v ¨ e2.
(b) Suppose u P R2

is a unit vector satisfying u ¨ v “ 2. Find u.
(c) Find the area of the triangle formed by the origin and the endpoints of u
and v.

Example 3. Let W be the plane in R3
given by x ` y ` z “ 0.

(a) Find the orthogonal projection of x “ p7,´1, 3qT to W .

(b) Find all y whose orthogonal projection to W is p2, 2,´4qT .
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