Worksheet 2 (Jan. 25)

DIS 119/120 GSI Xiaohan Man
Ex (About free variable).

$$
\left\{\begin{aligned}
x_{1}+x_{2} & =0 \\
x_{3} & =1, \text { constant column }
\end{aligned}\right.
$$

1 Review
 ReVIEW DEFINITIONS $\quad\left[\begin{array}{ccccc}a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\ a_{m 1} & a_{m 2} & \cdots & a_{m n} & \vdots\end{array}\right] \quad\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$

- matrix, augmented matrix $(m \times n+1)$, coefficient matrix $(\underline{m} \times n)$;

$\left\{\begin{array}{cc}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} & n \text { variables, m equations } \\ \vdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} & \text { (1) } \rightarrow(1) \times 2\end{array}\right.$
- three types of row reductions: scaling, interchange, replacement;
$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right] \longrightarrow\left[\begin{array}{lll}2 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 5\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & 5\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]$
coefficient columbus
REF, RREF, pivot column, pivot position;
give rice to thee
variables.

- existence and uniqueness of solutions.

METHODS AND IDEAS

- To solve linear systems, we transform them into simpler systems. This can be done by writing the coefficients and constants of a system into a matrix (called the augmented matrix), and then doing row reductions to transform the matrix into its row Echelon form, or even its row reduced Echelon form. [For the algorithm see P12 of the professor's lecture notes 2.]
\$• (Criterion of existence and uniqueness) Solutions of a linear system exist if and only if the last column (the constant column) of REF) of the augmented matrix is not pivot. The solution uniquely exists if and only if there are no free variables, i.e. all except the last column of REF are pivot.
- Note that we need only REF but not RREF to determine existence and uniqueness.
(2) \rightarrow (2) -(3)

2 Problems

$\left[\begin{array}{cccc}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 1\end{array}\right]$

PREF

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Example 2. True or false.
no Solution
REF

F) A linear system is inconsistent if it has at least two different solutions.
$\{(5,-5,1)\}$
Solution is unique
A linear system with more than 1 solution has infinitely many solutions.

Whenever a linear system has free variables, the solution set contains at least two solutions.
y_{0} or $\geqslant 2$
二

(3) Igeometric]

(F) Two matrices are row equivalent of they have the same number of rows.
\rightarrow Solutions of linear system
\Leftrightarrow pts on intersection of planes.

(F) The row echelon form (REF) of a matrix is unique.

RREF is unique
Example 3. What do we know of the consistency of a linear system
(a) whose augmented matrix is 3×5 with the 5 th column being pivot? inconsistent
(b) whose coefficient matrix is 3×5 with 2 pivot columns? not sure
(c) whose coefficient matrix is 3×5 with 3 pivot columns? Consistent

Example 4. Find all intersection points of the following three planes in \mathbb{R}^{3}

$$
x_{1}+x_{2}+3 x_{3}=3,2 x_{1}+2 x_{2}-x_{3}=-1, x_{1}+3 x_{2}+5 x_{3}=-5
$$

Hint: Recall Example 1.
Remark 1. What else can the intersection of three planes in \mathbb{R}^{3} look like? If this is too hard, what can the intersection of two lines in \mathbb{R}^{2} look like?

