Example e-values of A: J (alg. mult .= 2), 3, 4. then det A = J2 3.4

DIS 119/120 GSI Xiaohan Yan det(A) = det(P) det(B) de(P)

-D det A = det B.
$$\chi_A(\lambda) = \det(A - \lambda I)$$

if A & one smilar.

- Problems

 Described to the second se

 - (F) If A and B are similar, then an eigenvector of A also an eigenvector of B.

 (T) If A is a 6×6 matrix which has 3 distinct eigenvalues with geometric multiplicities 3 2 and 1, then A is diagonalizable. $\leq \sum geo. mult. = n = 6$
 - () If square matrices A, P and D satisfies AP = PD and D is diagonal, then nonzero columns of P are eigenvectors of A.

Example 2. Compute

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$
.

The result may be used to compute the general formula of the Fibonacci sequence F_n , defined by $F_n = F_{n-1} + F_{n-2}$ and $F_1 = F_2 = 1$, but we will not discuss this application here.

Example 3. Let A and B be two $n \times n$ matrices such that AB = BA and A has n distinct eigenvalues. Let $\mathbf{v} \in \mathbb{R}^n$ be an eigenvector of A. Prove that \mathbf{v} is also an eigenvector of B.