Worksheet 18 (March 15)

$$
\begin{aligned}
& \text { Example } e \text {-values of } A: \\
& 5(\text { alg. mult }=2), 3,4 . \\
& \text { then } \operatorname{det} A=5^{2} \cdot 3 \cdot 4 . \\
& \operatorname{det}(A)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(B) \log (P)
\end{aligned}
$$

DIS 119/120 GSI Xiaohan Yan

1 Problems

Rmk. Corollany:
know $A=P^{-1} \cdot B \cdot P$ for P invertible.

Example 1. True or false.
$\rightarrow \operatorname{det} A=\operatorname{det} B$.
$x_{A}(\lambda)=\operatorname{det}(A-\lambda I)$ if A \& ave similaw. $\quad X_{B}(\lambda)=\operatorname{det}(B-\lambda I)$.
(T) If A and B are similar, $\overrightarrow{\chi_{A}}$ det $A=$ produtt of ofle e-values $A-\lambda I=P_{B}^{-1} B P-P^{-1} \cdot \lambda I \cdot P$
($\mathbb{\square}$ If A and B are similar, then an eigenvector of A also an eigenvector of B.
$\operatorname{det}(A-\lambda I)=\operatorname{det}(-1) \operatorname{det}(B-\lambda I) \cdot \operatorname{det}(P) \sim$
(\mathbb{T} If A is a 6×6 matrix which has 3 distinct eigenvalues with geometric multiplicities 6) (2) and (1), then A is diagonalizable. $\Leftrightarrow \Sigma$ geo. mult. $=n=6$
() If square matrices A, P and D satisfies $A P=P D$ and D is diagonal, then nonzero columns of P are eigenvectors of A.

Example 2. Compute

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n} .
$$

The result may be used to compute the general formula of the Fibonacci sequence F_{n}, defined by $F_{n}=F_{n-1}+F_{n-2}$ and $F_{1}=F_{2}=1$, but we will not discuss this application here.

Example 3. Let A and B be two $n \times n$ matrices such that $A B=B A$ and A has n distinct eigenvalues. Let $\mathbf{v} \in \mathbb{R}^{n}$ be an eigenvector of A. Prove that \mathbf{v} is also an eigenvector of B.

