

Erratum: In Example 5(d) of Worksheet 11, the map $T$ is not actually linear transformation, so please disregard part (d). You may want to think about why it is not linear.

## $\underset{\subset V}{\operatorname{DEFINITIONS}} \subset W, \quad \operatorname{Ker} T=\{0\} \quad \operatorname{Im} T=W$

- kernel, image, injectivity, surjectivity;

$$
\text { for } T: V \rightarrow W \text { line aw transformation. }
$$

- isomorphism of vector spaces;

Rok $\exists$ isomorphism between Vaud

## $\exists$ inverse

 Fixing a basis, we "'isomorphism"get an "sm" get an "isomorphism"
$V \sim \mathbb{R}^{n}$ $\vec{v} \longmapsto[\vec{v})_{B}$


 $W_{1}$ it means they Can be regarded


$$
T: V \xrightarrow{\simeq} W
$$


$\qquad$

 clidean space of the same dimension.

Remark 1. After choosing a basis for $V$, any linear property of vectors (e.g. linear combination, linear independence) in the abstract vector space $V$ can be checked through the coordinates under the basis.

Similarly, after choosing bases for both $V$ and $W$, any linear property of linear transformation $T: V \rightarrow W$ (e.g. injectivity, surjectivity, isomorphism, linear transformation $T: V \rightarrow W$ (e.g. injectivity, surjectivity, isomorphism
kernel, image) can be checked through the standard matrix under the bases.

## 1 Problems

Example 1. Consider the linear transformation
(d)

Method 2


(1) Observation: $T$ is subjective

2
Apply nullity-rank the.

(a) $T\left(x^{2}\right)=\left.x^{2}\right|_{x=1}-\left.x^{2}\right|_{x=2}=1-4=-3 . T(x)=\left.x\right|_{x=1}-\left.x\right|_{x=2}=-1 . T(3)=\left.3\right|_{x=1}-\left.3\right|_{x=2}=0$.
(b). $T(f(x))=f(1)-f(2)=(a+b+c)-(a+2 b+4 c)=-b-3 c=0 . \quad b+3 c=0$, a arbitrauy.
(C). Method 1 Take a basis $B=\left\{1, x, x^{2}\right\}$. This gives isomorphism $\xrightarrow{\mathbb{P}_{2} \xrightarrow{\simeq} \mathbb{R}^{3}}$

$$
a+b x+c x^{2} \longrightarrow\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text {. }
$$

$\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{Im} T=\operatorname{dim}$ Domain $T \quad T: \mathbb{P}_{2} \rightarrow \mathbb{R}$ becomes $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$. So matrix of $T$ is $A=(O-1-3)$.

2
Need 2 linearly independut "vector"
$\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \longmapsto-b-3 c$
$\left[a+b x+c x^{2}\right]$
in the kennel
$f(x)=a+b x+c x^{2} \in \operatorname{ker} T \Leftrightarrow$
(a) Compute $T\left(x^{2}\right), T(x), T(3)$.
$f_{1}(x)=1,(a=1, b=c=0) \quad$ (b) Let $f(x)=a+b x+c x^{2}$ and $T(f(x))=0$, then what do we know about
$f_{2}(x)=x^{2}-3 x . \quad(a=0, b=-3,(f c)$ Find a basis of the kernel of $T$.
(d) Is $T$ injective? Surjective?

Example 2. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be a basis of the vector space $V$.
(a) Determine $\operatorname{dim} V=3$
(b) Consider the three vectors

$$
\mathbf{v}_{1}=\mathbf{b}_{1}+2 \mathbf{b}_{2}+2 \mathbf{b}_{3}, \mathbf{v}_{2}=2 \mathbf{b}_{1}+\mathbf{b}_{2}+2 \mathbf{b}_{3}, \mathbf{v}_{3}=2 \mathbf{b}_{1}+2 \mathbf{b}_{2}+\mathbf{b}_{3}
$$

Are they linearly dependent? Do they span $V$ ?
(c) Let $T: V \rightarrow V$ be the linear transformation defined by $T\left(\mathbf{b}_{1}\right)=\mathbf{b}_{2}, T\left(\mathbf{b}_{2}\right)=$ $\mathbf{b}_{1}, T\left(\mathbf{b}_{3}\right)=T\left(\mathbf{b}_{3}\right)$. Find all $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{v}$. Do they form a subspace of $V$ ?
(b) Take the basis $\beta$ and consider coordinates.

$$
\begin{aligned}
& \text { (c) } T: V \rightarrow V \text { becomes } T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

$$
\text { isomorphism } \begin{aligned}
& V \simeq \mathbb{R}^{3} \\
& \longrightarrow[\vec{v}]_{B} .
\end{aligned}
$$

$$
\left[\vec{v}_{1}\right]_{B}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad\left[\overrightarrow{v_{2}}\right]_{B}=\left(\begin{array}{c}
2 \\
1 \\
2
\end{array}\right), \quad\left[\overrightarrow{v_{3}}\right]_{B}=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) .
$$

$$
\text { matrix } A \text { of } T \text { is }\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) . \quad A \cdot \vec{v}=\vec{v}=I \cdot \vec{v} \text {. }
$$

$$
M=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right) \text { if there're } 3 \text { pivots then } \vec{V}_{1}^{\prime} \sim \overrightarrow{V_{3}} \text { L.I. } \sqrt{ }
$$

$$
\text { War } T(\vec{v})=\vec{v} . \leadsto A \vec{v}=\vec{v} \Leftrightarrow A \vec{v}-I \vec{v}=\overrightarrow{0}
$$

$$
\begin{array}{r}
\vec{v} \cdot \leadsto A \vec{v}=\vec{v} \\
\quad(A-I) \cdot \vec{v}=\overrightarrow{0} \Leftrightarrow(A-I) \cdot \vec{v}=\overrightarrow{0} \\
n
\end{array}
$$

Example 3. Consider the following three polynomials in $\mathbb{P}$

$$
\mathbf{b}_{1}=3+4 x+5 x^{2}, \quad \mathbf{b}_{2}=2+c x+4 x^{2}, \quad \mathbf{b}_{3}=1+2 x+c x^{2}
$$

(a) Find their coordinate vectors under the basis $\left\{1, x, x^{2}\right\}$. Your answer may depend on $c$.
(b) For what values of $c$ is $\mathbb{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ a basis of $\mathbb{P}^{2}$ ?

It is indeed a subspace
(c) Suppose that $\mathcal{B}$ is indeed a basis, and that the polynomial $7 x$ has coordinate
became the set it corvespuns $(1,-2,1)^{T}$ relative to it. Find $c$.

