Worksheet 11 (Feb. 24)

GSI Xiaohan Yan DIS 119/120

DEFINITIONS

Explain the following definitions without referring to "matrix", "pivot", "column", "linear system", "free variable" or "solution".

• vector space, addition, scalar multiplication;

Set + addition + Scalow multiplication + 9 axioms

- linear combination, span, linear dependence;
- Rmk Any (finite dimensional) vector space • (linear) subspace, basis of vector space; is isomorphic to a Euclidean space,
 - after choosing a basis.
- linear transformation, domain, codomain, one-to-one, onto. defined

Problems 1

Example 1. Determine which ones of following sets are vector spaces under the given operations. For the vector spaces, find their dimensions. For those that are not vector spaces, explain why. $\left\{ \begin{pmatrix} \chi \\ \varrho \end{pmatrix} \middle| \chi_{\ell^2} \in \mathbb{R}^3 \right\}$ (a) The subspace of \mathbb{R}^3 spanned by \mathbf{e}_1 and \mathbf{e}_3 , under the addition and scalar

multiplication inherited from \mathbb{R}^3 . (b) The set of a single element $\{\bullet\}$, with addition defined as $\bullet + \bullet = \bullet$ and scalar multiplication defined as $c \bullet = \bullet, \forall c \in \mathbb{R}$. **R**° (dim=0) • = 0

(iv) The set $\mathbb{R}^{\geq 0}$ of all non-negative real numbers, with usual addition of real numbers as addition, and scalar multiplication $c\mathbf{v}$ defined (for real number cand element $\mathbf{v} \in \mathbb{R}^{\geq 0}$) as the multiplication of |c| and \mathbf{v} as real numbers. Violates the distribution law: $1.\vec{v} + (-1).\vec{v} \neq (1+(-1)).\vec{v}$

(d) The set \mathbb{C} of complex numbers, with usual addition of complex numbers as addition, and usual multiplication by real number as scalar multiplication by

$$\dim^{=2} \text{ bacis } 1, i \qquad a+bi = a \cdot 1 + b \cdot v \iff \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\begin{aligned} basis & \text{of } M_{2\times 2}(IR) : E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \end{aligned}$$

$$D \text{ span } E_{11}, E_{12}, E_{21}, E_{21} = M_{2\times 2}(IR) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \end{aligned}$$

$$D \text{ E}_{11}, E_{12}, E_{21}, E_{22} \text{ ave linearly independent} : If C_{11}E_{11}+C_{12}E_{12}+C_{22}E_{12}+C_{22}E_{22} = \vec{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \\ \text{ then } LHS = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = RHS. \text{ so } C_{11} = C_{12} = C_{21} = C_{22} = 0. \end{aligned}$$

real number.

(e) The set $M_{2\times 2}(\mathbb{R})$ of all 2×2 matrices with real entries, under usual addition of matrices and usual scalar multiplication of matrix by real number.

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ate & btf \\ ctg & dth \end{pmatrix}, \quad \chi \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \chi a & \chi b \\ \pi c & \chi d \end{pmatrix}$ **Example 2.** Consider the vector space \mathbb{C} of complex numbers. (a) Find the zero vector. (b) Prove that 1 and i are linearly independent vectors. (c) Prove that the conjugation map $T: \mathbb{C} \to \mathbb{C}$ defined as T(a+bi) = a - CR is a linear transformation. Is T one-to-one? Onto? $\vec{v} + \vec{v} = \vec{v}$, $\forall \vec{v} \in V$. $\vec{v} = \vec{v} + \vec{v} \in V$. $\vec{v} = \vec{v} + \vec{v} = \vec{v} + \vec{v} = \vec{v} = 0$ $\vec{v} = \vec{v} + \vec{v} + \vec{v} = 0$ $bi, \forall a, b \in \mathbb{R}$ is a linear transformation. Is <u>T_one-to-one</u>?/Onto?/ 0- (a+bi)=0a+0.bi (a) (b) This is because a. 1+b. i= a+bi=0 => a=b=0 Prove 1+i and 1-i are linearly independent. Wis if all+i)+b(s-i) = 0 then a=b=0 (c) $WTS = T(x\vec{u} + y\vec{v}) = xT(\vec{u}) + yT(\vec{v})$. Reason, suppose $\vec{u} = a + b\hat{v}$ then $T(x\vec{u} + y\vec{v})$ $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, S. f. T(\vec{v}) = \vec{v}^{2} \qquad = \chi(a-bi) + y(c-bi)$ of $M_{2\times 2}(\mathbb{R})$. $T(a-bi) = A^{-}(-b)i = a+bi \qquad = \chi(T(\vec{v}) + y(T(\vec{v})) + y(T(\vec{v}))$ (b) Compute A + 2B - C and $2 \cdot A$ for (c) Find a basis of $M_{2\times 2}(\mathbb{R})$. (d) Consider the symmetrization map $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined as so we can just take $\overline{n}^2 = a-b_1^2$. $T(A) = A + A^T$. injective (one-to-one): Coldi (oct's thim dim Dom= dim Radom then one-to-one (=> onto. Prove that T is a linear transformation. Is T injective? Surjective?

Example 4. Consider the vector space V of all continuous functions over [0, 2], with addition and scalar multiplication defined as

$$(f+g)(x) = f(x) + g(x), \qquad \forall f(x), g(x) \in V;$$
$$(c \cdot f)(x) = c \cdot f(x), \qquad \forall c \in \mathbb{R}, f(x) \in S.$$

(a) Prove that $\cos^2 x, \sin^2 x, \cos(2x)$ are linearly dependent.

(b) If a linear transformation $T: V \to \mathbb{R}$ satisfies T(1) = 2 and $T(\sin^2 x) = 1$, find $T(\cos(2x))$. Note that the 1 T(1) refers the constant function $f(x) \equiv 1$ on [0, 2].

Example 5. Consider the vector space \mathbb{P}_2 of polynomials of degree ≤ 2 .

(a) Prove that the subset $W = \{f(x) \in \mathbb{P}_2 | f(1) = 0\}$ is a subspace.

(b) Prove that the subset $S = \{f(x) \in \mathbb{P}_2 | f'(x) = 1\}$ is not a subspace. (c) Prove that x and $x^2 + x$ are linearly independent.

- (d) Consider the linear transformation $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined as

$$T(f(x)) = f'(x) + x^2.$$

Find element p(x) such that T(p(x)) = p(x).