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Our goal is to prove the following theorem that was stated on page 286 of Rational
Numbers to Linear Equations (RNLE). Recall that a similarity is by definition the
composition of a finite number of dilations and congruences (page 284 of RNLE).

Main Theorem. For a transformation 𝐹 of the plane, the following three conditions
are equivalent:

(𝑖) 𝐹 is the composition of a finite number of dilations and congruences.

(𝑖𝑖) 𝐹 is equal to the composition of a dilation followed by a congruence.

(𝑖𝑖𝑖) 𝐹 is equal to the composition of a congruence followed by a dilation.

We have to first clarify the linguistic ambiguities. By "the composition of a di-
lation followed by a congruence" in (𝑖𝑖), we mean 𝜙 ∘ 𝐷, where 𝜙 is a congruence
and 𝐷 is a dilation (so the dilation 𝐷 moves a point first before the congruence 𝜙).
Similarly, by "the composition of a congruence followed by a dilation" (as in (𝑖𝑖𝑖)),
we mean 𝐷 ∘ 𝜙, where 𝐷 is a dilation and 𝜙 is a congruence.

Before giving the proof of the main theorem, we should point out the pedagogical
significance of the theorem itself in the context of school mathematics. What this
theorem says is that the concept of similarity can be defined in three different—but
equivalent—ways as in (𝑖)–(𝑖𝑖𝑖) above. Without a doubt, either (𝑖𝑖) or (𝑖𝑖𝑖) is much
more intuitive than (𝑖). For example, if we introduce students to the concept of

*I am indebted to Larry Francis for his usual excellent editorial assistance and for catching a
critical error in time.
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similarity by using (𝑖) as the definition, then it raises the specter that there may
be similar figures that require the use of a composition of at least 50 dilations and
congruences to map one on the other. This would suggest that similarity is a very
complicated concept. However, if one thinks of similarity in terms of (𝑖𝑖), for instance,
then the concept becomes very simple: to check that a figure 𝒮1 is similar to another
figure 𝒮2, just look for a suitable dilation 𝐷 to see if 𝐷(𝒮1) will be congruent to 𝒮2.
For this reason, when students are introduced to similarity as a precise concept for the
first time in middle school, either (𝑖𝑖) or (𝑖𝑖𝑖) would be the preferred definition. This
explains why (𝑖𝑖) is used as the definition of similarity in the author’s text, Teaching
School Mathematics: Pre-Algebra1, for middle school teachers and educators,
because it is more appropriate for the middle school curriculum.

Obviously, we are now obliged to explain why we use (𝑖) of the main theorem
as the definition of similarity in RNLE. This is because when we put emphasis on
proving theorems about similarity, both (𝑖𝑖) and (𝑖𝑖𝑖) are too clumsy for this purpose.
For illustration, suppose we have (𝑖𝑖) as the definition of similarity and we know two
figures 𝒜 and ℬ are each similar to 𝒮. In the usual notation, we are given 𝒜 ∼ 𝒮
and ℬ ∼ 𝒮. Naturally we want to say that 𝒜 is similar to ℬ, i.e., we want 𝒜 ∼ ℬ.
Let us see how we can prove this. By hypothesis, we have dilations 𝐷 and 𝐷′ and
congruences 𝜓 and 𝜓′ so that

𝜓′(𝐷′(𝒜)) = 𝒮 and 𝜓(𝐷(ℬ)) = 𝒮 (1)

To show that 𝒜 ∼ ℬ, we must find a dilation ∆ and a congruence 𝜙 so that

𝜙(∆(𝒜)) = ℬ (2)

From (1), we get
𝜓′(𝐷′(𝒜)) = 𝜓(𝐷(ℬ))

so that
(𝐷−1 ∘ 𝜓−1 ∘ 𝜓′ ∘𝐷′)(𝒜) = ℬ

Since 𝜓−1 ∘ 𝜓 is obviously a congruence, let us denote it by 𝜓1. Then we have

(𝐷−1 ∘ 𝜓1 ∘𝐷′)(𝒜) = ℬ (3)
1American Mathematical Society, Providence, RI, 2016. Note that its index, missing from the

book, is available at http://tinyurl.com/zjugvl4.
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For (2) to be true, we must be able to find a dilation ∆ and a congruence 𝜙 so that

𝐷−1 ∘ 𝜓1 ∘𝐷′ = 𝜙 ∘ ∆ (4)

It is not at all clear from (4) what 𝜙 and ∆ should be.
If we are allowed to make use of Lemmas 1 and 2 immediately following, then we

can define 𝜙 and ∆ as follows. By Lemma 2, we know there exists a dilation 𝐷1 so
that 𝐷−1 ∘ 𝜓1 = 𝜓1 ∘𝐷1. Thus the left side of (4) becomes

𝐷−1 ∘ 𝜓1 ∘𝐷′ = 𝜓1 ∘𝐷1 ∘𝐷′ (5)

Now applying Lemma 2 to 𝐷1 ∘ 𝐷′ on the right side of (5), we get a translation 𝑇

and a dilation ∆ so that

𝜓1 ∘𝐷1 ∘𝐷′ = 𝜓1 ∘ 𝑇 ∘ ∆ (6)

Letting 𝜙 be the congruence 𝜓1 ∘ 𝑇 and combining (5) and (6), we get (4), i.e.,

𝐷−1 ∘ 𝜙 ∘𝐷′ = 𝜙 ∘ ∆

Inasmuch as the fact that "𝒜 ∼ 𝒮 and ℬ ∼ 𝒮 imply 𝒜 ∼ ℬ" is something that
should be known to all students at the outset of their introduction to similarity, we
cannot afford to define similarity by making use of (𝑖𝑖) of the main theorem, for at
least two reasons. The first is that, with (𝑖𝑖) as the definition of similarity, the proof
of "𝒜 ∼ 𝒮 and ℬ ∼ 𝒮 imply 𝒜 ∼ ℬ" using Lemmas 1 and 2 is mathematically much
too sophisticated for high school, and the second reason is that the proofs of these two
lemmas—which will occupy us for most of the remainder of this article—are simply
too long for use in the normal high school math classroom. For analogous reasons,
we should not define similarity by making use of (𝑖𝑖𝑖) of the main theorem.

If we define similarity by using (𝑖) of the main theorem, then technically speak-
ing, it is much easier to show that two figures are similar. For example, the proof of
"𝒜 ∼ 𝒮 and ℬ ∼ 𝒮 imply 𝒜 ∼ ℬ" becomes almost trivial (see Lemma 5.3 on page
285 of RNLE). An additional reason for making use of (𝑖) to define similarity in RNLE
is that, since high school students have already been exposed to transformations and
their compositions in middle school, and since they have also been exposed to a more
intuitive version of similarity, they are in a much better position, intellectually, to
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accept (𝑖) as the definition of similarity. But of course we would not have the luxury
of such a pedagogical option if we did not have the assurance that the main theorem
is mathematically valid. As often happens in school mathematics, content dictates
pedagogy.

We can now turn to the proof of the Main Theorem. It needs the following two
technical lemmas, already alluded to above.

Lemma 1. Let 𝐷 be a dilation and 𝜙 a congruence. Then there is a dilation 𝐷′ so
that 𝐷 ∘ 𝜙 = 𝜙 ∘𝐷′, and there is also a dilation 𝐷′′ so that 𝜙 ∘𝐷 = 𝐷′′ ∘ 𝜙.

Lemma 2. Given two dilations 𝐷1 and 𝐷2, there is a translation 𝑇 and a dilation
𝐷 so that 𝐷2 ∘𝐷1 = 𝑇 ∘𝐷, and there is also a translation 𝑇 ′ and a dilation 𝐷′ so
that 𝐷2 ∘𝐷1 = 𝐷′ ∘ 𝑇 ′.

Proof of Lemma 1

We preface the proof with a few remarks. The lemma is almost the statement that
𝐷 and 𝜙 commute, but 𝐷′ and 𝐷′′ are not going to be equal to 𝐷 in general. In this
case, arriving at the correct statement of the lemma is probably more difficult than
proving it2 because, once the statement of Lemma 1 is known, there is no mystery as
to what the dilations 𝐷′ and 𝐷′′ would have to be: if 𝐷∘𝜙 = 𝜙∘𝐷′, then necessarily
𝐷′ = 𝜙−1 ∘𝐷 ∘ 𝜙; and if 𝜙 ∘𝐷 = 𝐷′′ ∘ 𝜙, then necessarily 𝐷′′ = 𝜙 ∘𝐷 ∘ 𝜙−1. This
reasoning also tells us how to prove the lemma: define 𝐷′ and 𝐷′′ as above and then
prove that 𝐷′ and 𝐷′′ so defined must be dilations.

Here is the proof of the first part of Lemma 1. Let the given dilation 𝐷 have center
𝑂 and scale factor 𝑟, and let 𝜙 be a congruence. We claim: the transformation 𝐷′

defined by 𝐷′ = 𝜙−1 ∘𝐷 ∘ 𝜙 is a dilation.
Since the congruence 𝜙 is a bijection, there is a point 𝑂′ in the plane so that

𝜙(𝑂′) = 𝑂. We will prove that 𝐷′ is a dilation with center 𝑂′ and scale factor 𝑟.
We first show that 𝐷′(𝑂′) = 𝑂′. This is because 𝐷(𝑂) = 𝑂 (by the definition of the

2This should remind you of a similar situation regarding the Pythagorean theorem.
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center of a dilation) and 𝜙−1(𝑂) = 𝑂′ (by the definition of 𝑂′). Therefore,

𝐷′(𝑂′) = 𝜙−1(𝐷(𝜙(𝑂′))) = 𝜙−1(𝐷(𝑂)) = 𝜙−1(𝑂) = 𝑂′

Next, we show that for a point 𝑃 ′ ̸= 𝑂′, the point 𝐷′(𝑃 ′) lies on the ray ℛ = 𝑅𝑂′𝑃 ′ .

A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�

-

�

𝑂′ 𝑂

q q
q q𝑄′ 𝑄 = 𝐷(𝑃 )

𝑃 ′ 𝑃

ℛ 𝜙(ℛ)

𝜙

𝜙−1

Since congruences and dilations map rays to rays, 𝜙(ℛ) is the ray containing 𝜙(𝑂′) =

𝑂 and the point 𝜙(𝑃 ′), to be denoted by 𝑃 . Let 𝑄 = 𝐷(𝑃 )). Since 𝐷 is a dilation
centered at 𝑂, we have 𝑄 ∈ 𝜙(ℛ). Finally, let 𝑄′ = 𝜙−1(𝑄), then 𝑄′ lies in the ray
ℛ, and, furthermore,

𝑄′ = 𝜙−1(𝑄) = 𝜙−1(𝐷(𝑃 )) = 𝜙−1(𝐷(𝜙(𝑃 ′))) = 𝐷′(𝑃 ′)

We have now proved that for any point 𝑃 ′ ̸= 𝑂′, 𝐷′(𝑃 ′) (= 𝑄′) lies on the ray
ℛ = 𝑅𝑂′𝑃 ′ .

To show that 𝐷′ is a dilation with scale factor 𝑟, it remains to verify that

|𝑂′𝑄′| = 𝑟 |𝑂′𝑃 ′| (7)

Since 𝜙(𝑂′) = 𝑂 and 𝜙(𝑄′) = 𝑄, and 𝜙 is a congruence, we see that

|𝑂′𝑄′| = |𝑂𝑄|

But by the definition of 𝑄, 𝑄 = 𝐷(𝑃 ), and since 𝐷 is a dilation with center 𝑂 and
scale factor 𝑟, we have

|𝑂𝑄| = 𝑟 |𝑂𝑃 |

But 𝜙 is a congruence and 𝜙(𝑂′𝑃 ′) = 𝑂𝑃 , therefore

|𝑂𝑃 | = |𝑂′𝑃 ′|
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Putting these three facts together, we get |𝑂′𝑄′| = 𝑟 |𝑂′𝑃 ′|, which is (7). This proves
that 𝐷′ is a dilation centered at 𝑂′ with scale factor 𝑟. Since 𝐷′ = 𝜙−1 ∘ 𝐷 ∘ 𝜙 by
definition, clearly 𝐷 ∘ 𝜙 = 𝜙 ∘𝐷′. The first part of Lemma 1 is proved.

The proof of the second part is similar. Given a congruence 𝜙 and a dilation𝐷 with
center 𝑂 and scale factor 𝑟 as before. Define a transformation 𝐷′′ by 𝐷′′ = 𝜙∘𝐷∘𝜙−1.
Then the preceding claim shows that𝐷′′ is a dilation with center 𝜙(𝑂) and scale factor
𝑟. To see this, we rephrase the preceding claim as follows:

If 𝐷 is a dilation and 𝜓 is a congruence, then the transformation 𝐹 defined
by 𝐹 = 𝜓−1 ∘𝐷 ∘ 𝜓 is a dilation.

Now letting 𝜓 = 𝜙−1 and observing that 𝜓−1 = (𝜙−1)−1 = 𝜙 (see Exercise 1), we see
that 𝐷′′ is a dilation. From the definition of 𝐷′′ = 𝜙 ∘𝐷 ∘ 𝜙−1, we see immediately
that 𝜙 ∘𝐷 = 𝐷′′ ∘ 𝜙. The proof of Lemma 1 is complete.

Proof of Lemma 2

Let 𝑂1 and 𝑂2 be the centers of the dilations 𝐷1 and 𝐷2, respectively. Let the
scale factors of 𝐷1 and 𝐷2 be 𝑟1 and 𝑟2, respectively. The proof breaks up into two
cases.

Case I. Suppose 𝑟1𝑟2 = 1. Then 𝐷2 ∘𝐷1 is a translation.
This means that if 𝑟1𝑟2 = 1, then Lemma 2 is true in a stronger form: we can

take the dilations 𝐷 and 𝐷′ in the lemma to be the identity map of the plane.
Case II. Suppose 𝑟1𝑟2 ̸= 1. Then there is a translation 𝑇 and a dilation 𝐷 so

that 𝐷2 ∘ 𝐷1 = 𝑇 ∘ 𝐷, and there is also a translation 𝑇 ′ and a dilation 𝐷′ so that
𝐷2 ∘𝐷1 = 𝐷′ ∘ 𝑇 ′.

We first prove Case I. Thus, 𝑟1𝑟2 = 1. We can ignore the trivial case where
𝑟1 = 𝑟2 = 1 because then 𝐷1 = 𝐷2 = the identity transformation of the plane, and
we can also ignore the other trivial case where 𝑂1 = 𝑂2 because then 𝐷2 ∘ 𝐷1 is
obviously a dilation with the same center 𝑂1. Thus, for the rest of the proof of Case
I, we assume 𝑟1 ̸= 1, 𝑟2 ̸= 1, and 𝑂1 ̸= 𝑂2.

Let us first take up the case of 𝑟1 > 1 (so that 𝑟2 < 1). We claim that in this case,
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𝐷2 ∘𝐷1 is the translation along a vector pointing in the same direction3 as
−−−→
𝑂1𝑂2 with

length equal to (1 − 𝑟2) |𝑂1𝑂2|.
For the proof of the claim, let 𝑃1 be a point in the plane, and let (𝐷2∘𝐷1)(𝑃1) = 𝑃2.

Then we have to show that the vector
−−→
𝑃1𝑃2 has length (1 − 𝑟2) |𝑂1𝑂2| and points in

the same direction as
−−−→
𝑂1𝑂2. Let 𝐷1(𝑃1) = 𝑄, then 𝐷2(𝑄) = 𝑃2. Because 𝑟1 > 1,

𝑃1 ∈ 𝑂1𝑄, and because 𝑟2 < 1, 𝑃2 ∈ 𝑂2𝑄.
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Since 𝐷1 and 𝐷2 are dilations with centers 𝑂1 and 𝑂2, respectively, and with scale
factors 𝑟1 and 𝑟2, respectively, we have

|𝑂1𝑄| = 𝑟1 |𝑂1𝑃1| (8)

|𝑂2𝑃2| = 𝑟2 |𝑂2𝑄| (9)

Therefore,
|𝑃1𝑄|
|𝑂1𝑄|

=
|𝑂1𝑄| − |𝑂1𝑃1|

|𝑂1𝑄|
= 1 − 1

𝑟1
= 1 − 𝑟2

where the last equality is because 𝑟1𝑟2 = 1. Similarly,

|𝑃2𝑄|
|𝑂2𝑄|

= 1 − 𝑟2

It follows that
|𝑃1𝑄|
|𝑂1𝑄|

=
|𝑃2𝑄|
|𝑂2𝑄|

because both are equal to 1 − 𝑟2 . By FTS (Theorem G10 on page 256), we have

|𝑃1𝑃2| = (1 − 𝑟2) |𝑂1𝑂2| (10)

and
𝑃1𝑃2 ‖ 𝑂1𝑂2 (11)

3See page 231 of RNLE for the definition of pointing in the same direction.
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In view of (11), we can now prove that
−−→
𝑃1𝑃2 and

−−−→
𝑂1𝑂2 point in the same direction

by proving that the closed half-plane of 𝐿𝑂1𝑄 that contains 𝑃2 also contains both
of the rays 𝑅𝑂1𝑂2 and 𝑅𝑃1𝑃2 . Indeed, 𝑂2𝑃2 contains no point of 𝐿𝑂1𝑄 because if it
did—let us say 𝑂2𝑃2 contains a point 𝑄′ of 𝐿𝑂1𝑄—then the two lines 𝐿𝑂1𝑄 and 𝐿𝑂2𝑃2

would have two distinct points 𝑄 and 𝑄′ in common and therefore must coincide (by
Lemma 4.2 on page 165 of RNLE). A contradiction. Hence the segment 𝑂2𝑃2 does not
intersect 𝐿𝑂1𝑄, and 𝑂2 and 𝑃2 belong to the same half-plane of 𝐿𝑂1𝑄 (see assumption
(L4)(𝑖𝑖) on page 176 of RNLE). It is now straightforward to show that both rays
𝑅𝑂1𝑂2 and 𝑅𝑃1𝑃2 also belong to this closed half-plane (consider using Lemma 4.6 on
page 174 of RNLE). So

−−→
𝑃1𝑃2 and

−−−→
𝑂1𝑂2 point in the same direction. This proves the

claim and therefore also Case I when 𝑟1 > 1.
To complete the proof of Case I, it remains to consider the case of 𝑟1 < 1 (so

that 𝑟2 > 1). We claim that in this case, 𝐷2 ∘ 𝐷1 is the translation along a vector
pointing in the same direction as

−−−→
𝑂2𝑂1 with length equal to (𝑟2 − 1) |𝑂1𝑂2|. Let 𝑃1

be a point in the plane and let (𝐷2 ∘𝐷1)(𝑃1) = 𝑃2. Then we must prove that
−−→
𝑃1𝑃2

and
−−−→
𝑂2𝑂1 point in the same direction and that |𝑃1𝑃2| = (𝑟2 − 1) |𝑂11𝑂2|. To this

end, let 𝐷1(𝑃1) = 𝑄; then 𝐷2(𝑄) = 𝑃2. Now, because 𝑟1 < 1, we have 𝑄 ∈ 𝑂1𝑃1,
and because 𝑟2 > 1, we have 𝑄 ∈ 𝑂2𝑃2, as shown.
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A similar computation as before yields

|𝑄𝑃1|
|𝑄𝑂1|

=
|𝑄𝑃2|
|𝑄𝑂2|

= 𝑟2 − 1 (12)

and of course ∠𝑂1𝑄𝑂2 and ∠𝑃1𝑄𝑃2 are equal on account of opposite angles at the
point 𝑄. Therefore △𝑄𝑂1𝑂2 ∼ △𝑄𝑃1𝑃2 because of SAS for similarity (Theorem
G21 on page 287 of RNLE).
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This triangle similarity has two consequences. First, the angles ∠𝑄𝑂1𝑂2 and
∠𝑄𝑃1𝑃2 are equal, and this implies that the alternate interior angles of the transversal
𝐿𝑂1𝑃1 with respect to the lines 𝐿𝑃1𝑃2 and 𝐿𝑂1𝑂2 are equal. By Theorem G19 on page
281 of RNLE, we have 𝑃1𝑃2 ‖ 𝑂1𝑂2. We are now in a position to show that the
vectors

−−→
𝑃1𝑃2 and

−−−→
𝑂2𝑂1 point in the same direction. To this end, we will show that

the closed half-plane of the line 𝐿𝑃1𝑂2 containing 𝑃2 also contains 𝑂1. This is because
the line 𝐿𝑃2𝑄 already intersects 𝐿𝑃1𝑂2 at 𝑂2 and therefore the segment 𝑃2𝑄 cannot
contain another point of 𝐿𝑃1𝑂2 . In other words, 𝑃2𝑄 does not intersect 𝐿𝑃1𝑂2 and
therefore 𝑃2 and 𝑄 lie in the same half-plane of 𝐿𝑃1𝑂2 . A similar reasoning also shows
that 𝑂1 and 𝑄 lie in the same half-plane of 𝐿𝑃1𝑂2 . Thus 𝑃2 and 𝑂1 lie in the same
half-plane of 𝐿𝑃1𝑂2 , and it follows that the rays 𝑅𝑂2𝑂1 and 𝑅𝑃1𝑃2 lie in the same
closed half-plane of 𝐿𝑃1𝑂2 (again, consider using Lemma 4.6 on page 174 of RNLE).
Together with the fact that 𝑃1𝑃2 ‖ 𝑂1𝑂2, this proves that the vectors

−−→
𝑃1𝑃2 and

−−−→
𝑂2𝑂1

point in the same direction.
A second consequence of the triangle similarity △𝑄𝑂1𝑂2 ∼ △𝑄𝑃1𝑃2 is that,

because of (12), we have
|𝑃1𝑃2|
|𝑂1𝑂2|

= 𝑟2 − 1

Equivalently, |𝑃1𝑃2| = (𝑟2 − 1) |𝑂1𝑂2|. This proves the claim and, therewith, com-
pletes the proof of Case I.

Next, we consider Case II of Lemma 2, where 𝑟1𝑟2 ̸= 1. As usual, let 𝑂1 and 𝑂2

be the centers of the dilations 𝐷1 and 𝐷2, respectively. We will first prove that there
is a translation 𝑇 and a dilation 𝐷 so that 𝐷2 ∘𝐷1 = 𝑇 ∘𝐷.

The proof of Case II hinges on a trivial observation: if two dilations 𝐹 and 𝐺

have the same center 𝑂 and their scale factors are 𝑟 and 𝑠, respectively, then their
composition 𝐹 ∘𝐺 is also a dilation, whose center is 𝑂 and whose scale factor is 𝑟𝑠.
This follows immediately from the definition of a dilation.

Back to the proof of Case II. Let 𝐷0 be the dilation with center 𝑂1 and scale
factor 1

𝑟1𝑟2
. By the preceding observation, the composition 𝐷1 ∘𝐷0 is a dilation with

center 𝑂1 and scale factor
𝑟1 ·

1

𝑟1𝑟2
=

1

𝑟2

Therefore, 𝐷2 ∘ (𝐷1 ∘𝐷0) is a composition of two dilations so that their scale factors
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are 𝑟2 and 1/𝑟2, respectively. Because the product of the scale factors is equal to 1,
Case I implies that this composition is a translation 𝑇 , i.e.,

𝐷2 ∘ (𝐷1 ∘𝐷0) = 𝑇 (13)

The left side of (13) can be expressed differently. We have

𝐷2 ∘ (𝐷1 ∘𝐷0) = (𝐷2 ∘𝐷1) ∘𝐷0, (14)

because what this means (see page 208 of RNLE for the concept of equal transforma-
tions) is that for every point 𝑃 in the plane,(︀

𝐷2 ∘ (𝐷1 ∘𝐷0)
)︀
(𝑃 ) =

(︀
(𝐷2 ∘𝐷1) ∘𝐷0

)︀
(𝑃 ).

But this is true because both sides are equal to 𝐷2(𝐷1(𝐷0(𝑃 ))). Therefore (13)
implies

(𝐷2 ∘𝐷1) ∘𝐷0 = 𝑇 (15)

This is almost what we want, and to get to exactly what we want, we introduce the
dilation 𝐷 whose center is 𝑂1 (the center of 𝐷0) and whose scale factor 𝑟1𝑟2. The
virtue of 𝐷 is that the composition 𝐷0 ∘ 𝐷 is the dilation with center 𝑂1 and scale
factor 1

𝑟1𝑟2
· 𝑟1𝑟2 = 1, i.e., 𝐷0 ∘𝐷 is the identity map 𝐼 of the plane. We make use of

this fact in the following way: from (15), we get(︀
(𝐷2 ∘𝐷1) ∘𝐷0

)︀
∘𝐷 = 𝑇 ∘𝐷 (16)

By the reasoning of (14), the left side of (16) is equal to (𝐷2 ∘𝐷1) ∘ (𝐷0 ∘𝐷). Since
𝐷0 ∘𝐷 = 𝐼, we see that the left side of (16) is equal to (𝐷2 ∘𝐷1). Hence, (16) leads
to 𝐷2 ∘𝐷1 = 𝑇 ∘𝐷, as desired.

Finally, we prove that there is a translation 𝑇 ′ and a dilation 𝐷′ so that 𝐷2∘𝐷1 =

𝐷′ ∘ 𝑇 ′. The proof is similar to the preceding one, so we will only sketch it and leave
the details to Exercise 2. Let 𝐷 be the dilation with center 𝑂2 and scale factor 1

𝑟1𝑟2
.

Then 𝐷 ∘𝐷2 is a dilation with center 𝑂2 and scale factor 1
𝑟1

, so that (𝐷 ∘𝐷2) ∘𝐷1

is a composition of two dilations whose scale factors have a product equal to 1. By
Case I, this composition is equal to a translation 𝑇 ′, or

(𝐷 ∘𝐷2) ∘𝐷1 = 𝑇 ′

10



By the reasoning of (14), the left side is equal to 𝐷 ∘ (𝐷2 ∘𝐷1). Thus we have

𝐷 ∘ (𝐷2 ∘𝐷1) = 𝑇 ′ (17)

Now let 𝐷′ be the dilation with center 𝑂2 and scale factor equal to 𝑟1𝑟2 so that
𝐷′ ∘𝐷 = 𝐼. Then (17) implies that

𝐷′ ∘
(︀
𝐷 ∘ (𝐷2 ∘𝐷1)

)︀
= 𝐷′ ∘ 𝑇 ′

By the reasoning of (14), the left side is equal to (𝐷′∘𝐷)∘(𝐷2∘𝐷1). Since 𝐷′∘𝐷 = 𝐼,
the left side becomes 𝐷2 ∘𝐷1. Therefore we conclude 𝐷2 ∘𝐷1 = 𝐷′ ∘ 𝑇 ′. The proof
of Lemma 2 is complete.

Proof of the Main Theorem

Observe that the equivalence of (𝑖𝑖) and (𝑖𝑖𝑖) is a trivial consequence of Lemma 1.
To prove the Main Theorem, it suffices to prove (𝑖) ⇐⇒ (𝑖𝑖). Recall the statements
of (𝑖) and (𝑖𝑖):

(𝑖) 𝐹 is the composition of a finite number of dilations and congruences.

(𝑖𝑖) 𝐹 is equal to the composition of a dilation followed by a congruence.

Obviously, (𝑖𝑖) implies (𝑖). We have to prove (𝑖) implies (𝑖𝑖). So suppose a transfor-
mation 𝐹 is the composition of a finite number of congruences and dilations, and we
have to show that there is a congruence 𝜙 and a dilation 𝐷 so that 𝐹 = 𝜙 ∘𝐷. Let
us first look at a special case. Suppose

𝐹 = 𝜙3 ∘𝐷3 ∘ 𝜙2 ∘𝐷2 ∘𝐷1 ∘ 𝜙1 (18)

where the 𝐷’s are dilations and the 𝜙’s are congruences. Notice that, in (18), there
is a composition of two successive dilations, 𝐷2 ∘ 𝐷1, but there is no composition
of two successive congruences, and that is for a good reason. Suppose we have a
composition of two successive congruences, e.g., 𝜙′ ∘ 𝜙 for congruences 𝜙 and 𝜙′.
Because a composition of congruences is always a congruence, we can more simply
use a single congruence 𝜓 to denote such a composition 𝜙′ ∘ 𝜙 in (18).

The first step of the proof is to "move" all the 𝜙’s in (18) to the left (thereby
"moving" all the 𝐷’s to the right). This can be accomplished very efficiently by
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moving the rightmost congruence (in case of (18), this would be 𝜙1) all the way to
the left until there are no more dilations to its left. This statement will make more
sense when we illustrate it with a specific case like (18). So start with 𝜙1 in (18). By
Lemma 1, there is a dilation 𝐷4 so that 𝐷1 ∘ 𝜙1 = 𝜙1 ∘𝐷4. Now (18) becomes

𝐹 = 𝜙3 ∘𝐷3 ∘ 𝜙2 ∘𝐷2 ∘ 𝜙1 ∘𝐷4 (19)

One more application of Lemma 1 to 𝐷2 ∘ 𝜙1 in (19) shows that

𝐹 = 𝜙3 ∘𝐷3 ∘ 𝜙2 ∘ 𝜙1 ∘𝐷5 ∘𝐷4 (20)

for a certain dilation 𝐷5. Now the composition 𝜙2 ∘𝜙1 in (20) is a congruence, so we
may let 𝜙4 = 𝜙2 ∘ 𝜙1 and keep in mind that 𝜙4 is a congruence. Thus, we have

𝐹 = 𝜙3 ∘𝐷3 ∘ 𝜙4 ∘𝐷5 ∘𝐷4 (21)

A final application of Lemma 1 shows that 𝐷3 ∘ 𝜙4 in (21) is equal to 𝜙4 ∘𝐷6 for a
suitable dilation 𝐷6. Then we obtain

𝐹 = 𝜙3 ∘ 𝜙4 ∘𝐷6 ∘𝐷5 ∘𝐷4 (22)

Now 𝐹 has been expressed as the composition of congruences on the left and a se-
quence of dilations on the right.

The next step is to use Lemma 2 to reduce the sequence of dilations on the right
of (22) to a single dilation, perhaps at the cost of introducing additional congruences
into (22). We start with the first two 𝐷’s on the left in (22), namely, 𝐷6 ∘𝐷5. Thus,
Lemma 2 says 𝐷6 ∘𝐷5 in (22) is equal to 𝑇7 ∘𝐷7 for a translation 𝑇7 and a dilation
𝐷7. So we get:

𝐹 = 𝜙3 ∘ 𝜙4 ∘ 𝑇7 ∘𝐷7 ∘𝐷4 (23)

Finally, a second application of Lemma 2 to (23) yields the fact that for some trans-
lation 𝑇8 and some dilation 𝐷8, we have 𝐷7 ∘𝐷4 = 𝑇8 ∘𝐷8. Therefore,

𝐹 = 𝜙3 ∘ 𝜙4 ∘ 𝑇7 ∘ 𝑇8 ∘𝐷8 (24)

Since each of 𝜙3, 𝜙4, 𝑇7, and 𝑇8 is a congruence, their composition is just a congruence,
which we denote by 𝜙. Hence we obtain from (24) that 𝐹 = 𝜙 ∘𝐷8. This proves (𝑖𝑖)

for the special case of 𝐹 as in (18).
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A little reflection will show that the preceding proof of "(𝑖) =⇒ (𝑖𝑖)" for the special
case of an 𝐹 as in (18) is in fact perfectly general. Indeed, what we have presented is
an algorithm for transforming a composition of any finite number of congruences and
dilations into the composition of a dilation followed by a congruence. More precisely,
there are two steps:

Step 1. Use Lemma 1 to move the rightmost congruence to the left
and, in the process, combine any two neighboring congruences into one
congruence as in the passage from (20) to (21). Keep doing so until there
are no dilations to the left of a congruence, as in (22). This then leaves us
with a composition of congruences on the left together with a composition
of dilations on the right.

Step 2. Now use Lemma 2 to reduce the composition of dilations on the
right to the composition of a sequence of translations and a single dilation
on the right (as in (24)).

It is not difficult to see that these two steps will suffice to prove that (𝑖) =⇒ (𝑖𝑖) in
general, but writing out the general proof will involve some gruesome notation with
nothing new added to the reasoning. For this reason, we will stop while we are ahead.
The proof of (𝑖) =⇒ (𝑖𝑖) is complete. We have therefore proved the Main Theorem.

Exercises

1. If 𝜓 is a bijection of the plane, prove that (𝜓−1)−1 = 𝜓. (Hint: see Exercise 5
on page 216 of RNLE.)

2. Write out the details of the proof that, given two dilations 𝐷1 and 𝐷2, there is
a translation 𝑇 ′ and a dilation 𝐷′ so that 𝐷2 ∘𝐷1 = 𝐷′ ∘ 𝑇 ′.
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