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Preface

Le juge: Accusé, vous tacherez d’étre bref.

L’accusé: Je tacherai d’étre clair.

—@G. Courtelindl]

This document is a collection of grade-by-grade mathematical commentaries on
the teaching of the geometry standards in the CCSSM (Common Core State Stan-
dards for Mathematics) from grade 4 to high school. The emphasis is on the progres-
sion of the mathematical ideas through the grades. It complements the usual writings
and discussions on the CCSSM which emphasize the latter’s Practice Standards. It
is hoped that this document will promote a better understanding of the Practice
Standards by giving them mathematical substance rather than adding to the verbal
descriptions of what mathematics is about. Seeing (correct) mathematics in action
is a far better way of coming to grips with these Practice Standards but, unfortu-
nately, in an era of Textbook School Mathematics (TSM) | one does not get to
see mathematics in action too often. Mathematicians should have done much more
to reveal the true nature of mathematics, but they didn’t, and school mathematics
education is the worse for it. Let us hope that, with the advent of the CCSSM, more

of such efforts will be forthcoming.

The geometry standards in the CCSSM deviate from the usual geometry standards
in at least two respects, one big and one small. The small one is that, for the first
time, special attention is paid to the need of a proof for the area formula for rectangles

when the side lengths are fractions. This is standard NF 4b in grade 5:

Find the area of a rectangle with fractional side lengths by tiling it with [rect-
angles] of the appropriate unit fraction side lengths, and show that the area
is the same as would be found by multiplying the side lengths. Multiply frac-
tional side lengths to find areas of rectangles, and represent fraction products

as rectangular areas.

'Quoted in the classic, Commutative Algebra, of Zariski-Samuel. Literal translation: The judge:
“The defendant will try to be brief.” The defendant replies, “I will try to be clear.”

2 A turquoise box around a phrase or a sentence (such as Textbook School Mathematics|) indicates
an active link to an article online.
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The lack of explanation for the rectangle area formula when the side lengths are
fractions is symptomatic of what has gone wrong in school mathematics education, or
more precisely, in TSM. Often basic facts are not clearly explained, or if explained, it
is done incorrectly. Because the explanation in this case requires a full understanding
of fraction multiplication and the basic ingredients of the concept of area (see (a)—(d)
on page [21]), and because the reasoning is far from routine and yet very accessible to
fifth graders, this explanation is potentially a high point in students’ encounter with
geometric measurements (length, area, volume) in K-12. Let us make sure that it is
so this time around.

The major deviation of the CCSSM from the usual geometry standards occurs
in grade 8 and high school. There is at present an almost total disconnect in
TSM between the geometry of middle school and that of high school. Congruence
and similarity are (vaguely!) defined in middle school as “same-size-and-same-shape”
and “same-shape-but-not-necessarily-same-size”, respectively, while middle-school ge-
ometric transformations (rotations, reflections, and translations) are taught seemingly
only for the purpose of art appreciation, such as appreciating the internal symmetries
of Escher’s famous designs and medieval Islamic art without any reference to their
mathematical relevance.

In the high school geometry of TSM, congruence and similarity are defined anew
(e.g., ASA, SSS, etc.) but only for polygons, thereby creating the impression that
mathematical precision can be achieved only for polygons. As for geometric trans-
formations, well, they are relegated to the end of the year as an enhancement of the
concepts of congruence, if time allows.

It goes without saying that such a disconnect is not acceptable mathematics edu-
cation. In contrast, there is a seamless transition from the geometry of grade 8 to high
school geometry in the CCSSM. The concepts of rotation, reflection, translation, and
dilation taught in grade 8—basically on an intuitive level-—become the foundation for
the mathematical development of the high school geometry course. In the process,
students get to see, perhaps for the first time, the mathematical significance of rota-
tion, reflection, translation, and dilation as well as the precise meaning of congruence
and similarity. Thus the latter are no longer seen to be some abstract and shadowy
concepts but are, rather, concepts open to tactile investigations. In addition, it is only

through the precise definition of congruence as a composition of rotations, reflections,
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and translations that students can begin to make sense of what is known in TSM as
“CPCTC” (corresponding parts of congruent triangles are congruent).

Many have expressed reservations about the CCSSM geometry standards. Because
rotation, reflection, translation, and dilation are now used for a serious mathematical
purpose, there is a perception that so-called “transformational geometry” (whatever
that means) rules the CCSSM geometry curriculum. “Transformational geometry” is
perceived to be something quaint and faddish—mnot to say incomprehensible to school
students.

The truth is that the school geometry curriculum in TSM has been dysfunctional
for far too long and the needed restructuring is way overdue. The new course charted
by the CCSSM will be seen to be not only mathematically defensible but also a
conservative one, in the sense that it does not inject any new topics into the standard
curriculum. Its main innovation lies in nothing more than exhibiting new connections
among the existing topics to clarify their mathematical relationships. Let it be noted
explicitly that

the CCSSM do not pursue transformational geometry per se.

Geometric transformations are merely a means to an end: they are used in a strictly
utilitarian way to streamline and shed light on the existing school geometry curricu-
lum. For example, once reflections, rotations, reflections, and dilations have con-
tributed to the proofs of the standard triangle congruence and similarity criteria
(SAS, SSS, etc.), the development of plane geometry can proceed in the usual way if

one so desires.

At the moment, the introductory portion of such a development of geometry can
be found, in greater detail than is given in this article, in Chapters 4-7 of H. Wu,
Pre-Algebra. In fact, this approach to school geometry has been taught to teachers in
three-week professional development institutes since 2004, and the document H. Wu,
Pre-Algebra is nothing but a set of lecture notes from these institutes. This set of
notes is referenced on page 92 of the CCSSM, but under a different title:

Wu, H., “Lecture Notes for the 2009 Pre-Algebra Institute,”
September 15, 2009.
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A completely revised version of these notes will appear as part a textbook for middle

school mathematics teachers:
H. Wu, From Pre-Algebra to Algebra, to appear in 2014.

Furthermore, a complete account of this treatment of school geometry will appear

(probably in 2015) as part of a two-volume textbook for high school teachers:
H. Wu, Mathematics of the Secondary School Curriculum, I and II.

In the meantime, please see page[L50|and page for further comments on this issue.

The logical relationship between reflections, rotations, etc., on the one hand and
congruence and similarity on the other in plane geometry, while completely routine
to working geometers, is mostly unknown to teachers and mathematics educators be-
cause mathematicians have been negligent in sharing their knowledge. A successful
implementation of the CCSSM therefore requires a massive national effort to teach
mathematics to inservice and preservice teachers. To the extent that such an effort
does not seem to be forthcoming as of October 2013, I am posting this document on-
line in order to make a reasonably detailed account of this knowledge freely available.

If this mathematical restructuring of school geometry by the CCSSM can be
backed up by a strong commitment to the professional development of teachers, there

is no reason to doubt that greater student achievement would follow.

The reader will note that the present commentaries avoid the pitfall of most ex-
isting materials that treat school geometry as an exercise in learning new vocabulary
or memorizing new formulas. The main focus will be on mathematical ideas with
detailed reasoning given whenever it is feasible. In essence, this article gives sub-
stance to the Practice Standards in the CCSSM (recall the comments on the Practice
Standards at the beginning of this Preface). In the case of the transition from middle
school to high school geometry, the commentaries on the relevant geometry stan-
dards are uncommonly detailed for exactly the reason that there seems to be no such

account in the education literature. Special attention is given to showing how,

once some obvious properties of these transformations are as-
sumed, one can give precise proofs of all the standard theorems

in plane geometry.


http://math.berkeley.edu/~wu/NoticesAMS2011.pdf

Because even that may not be enough to inform teachers and publishers, other refer-
ences will be given in due course for further study (see page [64] and page [114)).

Acknowledgements. [ owe Angelo Segalla and Clinton Rempel an immense
debt for their invaluable help in the preparation of this article. Over a period of
nine months, they not only gave me mathematical and linguistic feedback about the
exposition, but also told me how to adjust my writing to the realities of the school
classroom. This would have been a lesser article without their intervention.

This revision was made possible only through the generosity of my friends: David
Collins, Larry Francis, and Sunil Koswatta in addition to Angelo and Clinton. They
pointed out many flaws of the original from different angles, and their critical com-
ments spurred me to rewrite several passages. The resulting improvements should be
obvious to one and all. It gives me pleasure to thank them warmly for their contri-
butions. I also want to thank Larry and Sunil for creating animations at my request

to go with this article; they can be found on:

pp. [77, B2, [102, and [144]. (Larry)
pPp- . and [73] . (Sunil)

The Common Core geometry standards for each grade are recalled at the beginning

of that grade in sans serif font.



GRADE 4

Geometric measurement: understand concepts of angle and measure angles.

5. Recognize angles as geometric shapes that are formed wherever two rays share a
common endpoint, and understand concepts of angle measurement:

a. An angle is measured with reference to a circle with its center at the common
endpoint of the rays, by considering the fraction of the circular arc between the points
where the two rays intersect the circle. An angle that turns through 1/360 of a circle is
called a one-degree angle, and can be used to measure angles.

b. An angle that turns through n one-degree angles is said to have an angle measure
of n degrees.

6. Measure angles in whole-number degrees using a protractor. Sketch angles of
specified measure.

7. Recognize angle measure as additive. When an angle is decomposed into non-
overlapping parts, the angle measure of the whole is the sum of the angle measures of the
parts. Solve addition and subtraction problems to find unknown angles on a diagram in
real world and mathematical problems, e.g., by using an equation with a symbol for the

unknown angle measure.
Geometry 4.G

Draw and identify lines and angles, and classify shapes by properties of their
lines and angles.

1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpen-

dicular and parallel lines. ldentify these in two-dimensional figures.

2. Classify two-dimensional figures based on the presence or absence of parallel or
perpendicular lines, or the presence or absence of angles of a specified size. Recognize

right triangles as a category, and identify right triangles.



3. Recognize a line of symmetry for a two-dimensional figure as a line across the
figure such that the figure can be folded along the line into matching parts. Identify

line-symmetric figures and draw lines of symmetry.

Comments on teaching grade 4 geometry

The main topics of Grade 4 geometry are angles and their measurements, and the

phenomena of perpendicularity and parallelism.

We know that a line goes on forever in two directions (first of the three figures
below). When a point O is chosen on a line, it creates two rays: one ray goes on
forever from O to the right, and the other goes on forever from O to the left, as
shown. Thus each ray goes on forever only in one direction. In each ray, the point O

is called the vertex of the ray.

An angle is the figure formed by two rays with a common vertex, as shown.

@)

We are mainly interested in angles where the two rays are distinct. The case where
the two rays coincide is called the zero angle. The case where the two rays together

form a straight line is called a straight angle, as shown.

@)




For an angle that is neither the a zero angle nor a straight angle, there is a question
of which part of the angle we want to measure. Take an angle whose sides are the
rays OA and OB, as shown below. Then ZAOB could be either one of two parts, as

indicated by the respective arcs below.

A A

Figure 1

We will use the notation Zs to denote the part of the angle ZAOB indicated on
the left, and Zt to denote the part of the angle ZAOB indicated on the right. If
nothing is said, then ZAOB will be understood to mean /s.

Just as we measure the length of a line segment in order to be able to say which
is longer, we want to also measure the “size” of an angle so that we can say which
is “bigger”. In the case of length, recall that we have to begin by agreeing on a unit
(inch, cm, ft, etc.) so that we can say a segment has length 1 (respectively, inch, c¢m,
ft, etc.), we likewise must agree on a unit of measurement for the “size” of an angle.
A common unit is degree, and we explain what it is as follows.

Given ZAOB as above, we draw a circle with the vertex O as center. Then the
sides of ZAOB intercept an arc on the circle: Zs intercepts the thickened arc on
the left, and Zt intercepts the thickened arc on the right.




The length of this arc when the length of the whole circle is taken to be 360 is what
is meant by the degree of the angle. Let us explain this in greater detail. Think of
the circle as a (very thin piece of round) steel wire. We may as well assume that the
points A and B of the angle are points on the circle. Then imagine we cut the wire
open at B and we stretch it out as a line segment with B as the left endpoint of the
segment. Now divide the segment into 360 equal parts (i.e., parts of equal length)
and let the length of one part to be the unit 1 on this number line (the unit is too
small to be drawn below). Then this unit is called a degree. Relative to the degree,

the length of the whole segment (i.e., wire) is 360 degrees.

360

B

Recall that A is now a point on the segment. If we consider /s, let the arc AB
correspond to the thickened segment from B to A shown below; the length of the
latter (or what is the same thing, the number represented by A) is what is called the
degree of the angle /s. We emphasize that this length of the segment from B to

A is taken relative to the unit which is the degree.

0 360

If we consider /t instead, then the arc intercepted by Zt is the following thickened
segment. As with Zs, the degree of /t is by definition the length of this thickened

segment (again taken relative to the degree):

0 | 360

B A

What needs to be emphasized is that, so long as the center of the circle is O,
then no matter how “big” the circle is, the degree of Zs or Zt defined with respect
to the circle will always be the same number, so long as the whole wire is declared
to have length 360 degrees. In intuitive language, the length of the intercepted arc
by ZAOB always stays a fixed fraction of the total length of the circle (called the

circumference) regardless of which circle is used. This assertion should fascinate
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fourth graders as indeed it is a remarkable fact. They should be encouraged to verify
it by extensive experimentation, for example, using a string to model circles of many
sizes. In fourth grade, the experimentation should mostly be done with “nice” angles

such as what we call “90 degree” angles:

A A
N
o o
D

One way to do this is to draw a circle with center O on a piece of paper and fold the
paper to get a line BOC' through O (see the above picture on the left). Notice that
the paper folding identifies the two halves of the circle separated by line BOC' (see
the discussion of the “symmetry of the circle” on page immediately following).
Now fold the circle once again across the center O so that the point B is on top of
the point C', thereby getting a line AOD. We are interested in the part of angle
ZAOB indicated by Zs in the picture, which intercepts the thickened arc on the
circle between A and B. Now notice that the paper folding, across line AOD and
also across line BOC, identifies the four arcs separated by the two lines. Therefore
these four arcs have the same length, and therefore the whole circle is now divided
into four parts of equal length. It follows that if we stretch out the circle into a line
segment as before, then the point A would be the first division point if the segment

is divided into 4 parts of equal length:

0 | 360

B A

If the length of the whole segment is to be 360 degrees, then segment O A, being one
part when 360 is divided into 4 equal parts, has length 90 degrees (but see page [13|for
a more elaborate discussion of 90 degree angles). Since this discussion has nothing to
do with how big the circle is, we see that Zs has 90 degrees no matter which circle is

used to measure Zs, so long as its center is at O.

11



We can give the same discussion to the angle Zt in the preceding picture on the
right; it has 270 degrees because it is the totality of 3 parts when 360 is divided into
4 equal parts. Needless to say, we can do the same to other angles which have 45, 60,
or 120 degrees.

The notation for the measure of an angle Zt is |Z£t|, or sometimes, m(Z£t). One
also uses the notation |ZAOB| or m(£AOB) for the same purpose, but keep in
mind that this notation carries with it the uncertainty of whether |Zs| or |Z¢t| is
being measured (in the notation of Figure 1 on page |§]) unless it is clearly specified.
Suppose the angle Zs in Figure 1 on page[d] has d degrees, then a common terminology
is that the side O A is obtained from OB by turning d degrees counterclockwise.
Similarly, we say OB is obtained from OA by turning d degrees clockwise.

This definition of degree is the principle that underlies the construction of the
protractor. Students should be given various angles to find their degrees with the
help of a protractor. (For a simple demonstration, click here.)

A few special angles have degrees that are so striking that no protractor is needed
for their determination. One of these is the straight angle, A straight angle is 180°
(the ° is the abbreviation for “degree”), and the reason for this is equally interesting.
To measure a straight angle ZAOB, we draw a circle centered at O. Now the circle
is symmetric with respect to the line AB, which is a line passing through the
center, in the sense that if the circle is drawn on a piece of paper and the paper is
folded across the line AB, then the circle folds into itself, as shown on the right of

the following picture.

LN .
A o r/ B A 0 B

This shows that the arclength of the upper semi-circle is equal to that of the lower
semi-circle. By the above definition of degree, the degree of the straight angle ZAOB
is half of 360°, which is, of course, 180°.

0 360

B A

12
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It would be instructive to explain to fourth graders why the converse statement
is also true: if an angle is 180°, then the two sides of the angle form a line.

Before we discuss angles of 90°, we observe an important additive property of
degree measurement: Given an angle ZAOB, we first decide which part of ZAOB we
wish to address, i.e., in the notation of Figure 1 on page [0) we decide at the outset
whether we use ZAOB to refer to Zs or to Zt. Once that is done, then it is entirely
unambiguous to say whether a point C' is in ZAOB or not. That done, then it is
always the case that if C'is in ZAOB,

|ZAOC| + |£COB| = |ZAOB].

as the following pictures show:

It follows from simple arithmetic using this additive property that, if two lines
CD and AB meet at a point O and one of the four angles, let us say ZCOB at the
point of intersection is 90°, then all four angles are 90°. See the picture below, where

the broken segment | is the standard notation to indicate an angle of 90°.

In this case, we say line AB is perpendicular to C'D: in symbols, CD 1 AB.
Notice also that in the case of CD L AB, the ray OC divides the straight angle
into two equal parts in the sense that the two angles ZAOC and ZCOB have the

13



same degree. The ray OC'is then called the angle bisector of ZAOB. In general, if
a ray OC for a point C in the angle AOB has the property that ZAOC and ZCOB
have the same degree, then OC' is said to be the angle bisector of the angle ZAOB.
For /s and Zt of Figure 1, here are their angle bisectors.

A

Observe that if the two angle bisectors above are drawn in the same figure, it is a
straightforward computation to show that they form a straight line; in a fourth grade
classroom, the simple explanation should be given for angles with whole-number
degrees (but make sure that the degree is an even number because you want the
degree of each half-angle to be a whole number too). Point out that every angle has
an angle bisector. There should be plenty of exercises of using a protractor to find
the (approximate) angle bisector of a given angle.

A protractor is designed to measure angles up to 180°. However, the additive
property of degrees makes possible the measurement of angles bigger than a straight

angle by the use of a protractor. For example, the degree of Zt below is
|Z/BOC| + |£ZCOA| = 180° + [LAOC],

and we can measure the indicated ZAOC' with a protractor.

By the same token, we can easily recognize an angle of 270°, e.g., the part of
ZCOB below as indicated by the arc:

14



A /j B
\q/

D

By definition, an acute angle is an angle that is < 90°, an obtuse angle is one
that is > 90°, and a right angle is one that is 90°.

Perpendicularity is one of two special relationships between two lines. The other
is parallelism. Two lines are said to be parallel if they do not intersect. One should
emphasize to students that the concept of parallelism applies only to lines, which ex-
tend in both directions indefinitely, rather than to segments. Thus while the following

two segments do not intersect, they are not parallel,

\

because the lines containing these segments do intersect. More precisely, when the

same segments are extended sufficiently far to the right, they intersect, as shown:

Students should be alerted, early on, to the fact that we can never represent a

complete line pictorially on a finite piece of paper, only a part of a line. So classroom
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instruction should be careful to distinguish between what a picture suggests and what

a picture says literally.

It would help students to develop geometric intuition if they can verify the fol-

lowing by hands-on experiments:

e If a line is perpendicular to one of two parallel lines, then it is perpendicular to
both.

e Let L and L’ be parallel lines, and let another line ¢ be perpendicular to both.
Then the length of the segment intercepted on ¢ by L and L’ is always the same,
independent of where ¢ is located (so long as it is perpendicular to both L and
L'. This length is called the distance between L and L’.

14 I’

e If two distinct lines are perpendicular to the same line, then they are parallel

to each other.

e Define a triangle to be a figure consisting of the segments joining three non-
collinear points (i.e., they do not lie on a line). Then the sum of the degrees

of the angles of a triangle is 180°.

We can make use of these facts as follows. A quadrilateral is a figure consisting
of four distinct points A, B, C, D (called vertices) together with the four segments
AB, BC, CD, DA (called edges or sides) so that the only intersections allowed
between the edges are at the vertices, namely, AB and BC' intersect at B, BC' and
CD intersect at C', C'D and DA intersect at D, and DA and AB intersect at A. The
segments AC' and BD are called the diagonals of the quadrilateral. The idea behind
the definition of a quadrilateral is that we do not want either figure in the middle or

on the right below to be a quadrilateral:
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C C
D D
A B A B A B

Assuming the last bullet above, one can give the simple reasoning as to why
the sum of the angles of a quadrilateral is 360° (draw a diagonal to separate the
quadrilateral into two triangles). However, one has to be careful in the case of a
quadrilateral that looks like this:

In this situation, when we sum all the angles of this quadrilateral, the angle to use
at the vertex D will be understood to be the angle /s rather than the other part of
ZADC'. Furthermore, one should use the diagonal BD in this case for the verification
that the sum of the angles of this quadrilateral is 360°. (One may also notice that
the diagonal AC lies outside the quadrilateral ABCD.)

A quadrilateral is called a parallelogram if opposite sides are parallel, and is
called a rectangle if all four angles are 90°. It follows from the third bullet on page
that a rectangle is a parallelogram, and from the second bullet that the opposite
sides of a rectangle are equal (i.e., of the same length). It is valuable to impress on
students that as soon as a quadrilateral has four angles equal to 90°, then its opposite
sides must be equal (see page for a proof).E] In addition, because the sum of the
angles of a quadrilateral is 360°, a quadrilateral with three right angles is a rectangle.

A rectangle with four equal sides is called a square.

30f course, the usual definition of a rectangle is that it is a quadrilateral with both properties that
all four angles are 90° and each pair of opposite sides are equal. We avoid this definition because it
makes it difficult to recognize whether a quadrilateral is a rectangle or not.

17



A triangle is called a right triangle if one of its angles is a right angle, an acute
triangle if all three angles are acute, and an obtuse triangle if it contains an obtuse
angle. It follows from the last bullet on page that a triangle cannot have more
than one obtuse angle or more than one right angle. The easiest way to get a right
triangle is to draw a diagonal of the rectangle; one gets two right triangles. One can
verify, by hands-on experiments such as cutting papers, for example, that the 180
degree rotation around the midpoint of the diagonal brings one of the right triangles
exactly on top of the other. We say in this case that a rectangle has rotational

symmetry.

An isosceles triangle is a triangle with two equal sides. We usually refer to the
common vertex of the equal sides as the top vertex of the isosceles triangle, and
the angle at the top vertex the top angle. Again, verify through hands-on activities
that an isosceles triangle is symmetric with respect to (the line containing) the angle
bisector of the top angle. It follows that the angles facing the equal sides are equal
(i.e., same degree).

A triangle with three equal sides is called an equilateral triangle. Thus all three

angles of an equilateral triangle are equal.

18



GRADE 5
Number and Operation — Fractions 5.NF

4. Apply and extend previous understandings of multiplication [of fractions| to multiply
a fraction or whole number by a fraction.

b. Find the area of a rectangle with fractional side lengths by tiling it with [rectangles]
of the appropriate unit fraction side lengths, and show that the area is the same as would
be found by multiplying the side lengths. Multiply fractional side lengths to find areas of

rectangles, and represent fraction products as rectangular areas.

Geometric measurement: understand concepts of volume and relate volume
to multiplication and to addition.

3. Recognize volume as an attribute of solid figures and understand concepts of volume
measurement.

a. A cube with side length 1 unit, called a unit cube, is said to have one cubic unit of
volume, and can be used to measure volume.

b. A solid figure which can be packed without gaps or overlaps using n unit cubes is

said to have a volume of n cubic units.

4. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and

improvised units.

5. Relate volume to the operations of multiplication and addition and solve real world
and mathematical problems involving volume.

a. Find the volume of a right rectangular prism with whole-number side lengths by
packing it with unit cubes, and show that the volume is the same as would be found
by multiplying the edge lengths, equivalently by multiplying the height by the area of
the base. Represent threefold whole-number products as volumes, e.g., to represent the
associative property of multiplication.

b. Apply the formulas V' = /¢ x w x h and V = b x h for rectangular prisms to find

volumes of right rectangular prisms with whole-number edge lengths in the context of
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solving real world and mathematical problems.

c. Recognize volume as additive. Find volumes of solid figures composed of two non-
overlapping right rectangular prisms by adding the volumes of the non-overlapping parts,
applying this technique to solve real world problems.

Geometry 5.G

Graph points on the coordinate plane to solve real-world and mathematical
problems.

1. Use a pair of perpendicular number lines, called axes, to define a coordinate system,
with the intersection of the lines (the origin) arranged to coincide with the 0 on each line
and a given point in the plane located by using an ordered pair of numbers, called its
coordinates. Understand that the first number indicates how far to travel from the origin
in the direction of one axis, and the second number indicates how far to travel in the
direction of the second axis, with the convention that the names of the two axes and the

coordinates correspond (e.g., z-axis and z-coordinate, y-axis and y-coordinate).

2. Represent real world and mathematical problems by graphing points in the first
quadrant of the coordinate plane, and interpret coordinate values of points in the context

of the situation. Classify two-dimensional figures into categories based on their properties.
3. Understand that attributes belonging to a category of two-dimensional figures also
belong to all subcategories of that category. For example, all rectangles have four right

angles and squares are rectangles, so all squares have four right angles.

4. Classify two-dimensional figures in a hierarchy based on properties.

Comments on teaching grade 5 geometry

The main objectives of this grade are the computation of the area formula of a

rectangle whose side lengths are fractions, the introduction of the concept of the vol-
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ume of a rectangular prism, the setting up of a coordinate system in the plane, and

the classification of common triangles and quadrilaterals according to their properties.

The computation of the area formula of a rectangle with fractional sides should
be a high point in school geometry. The result is not in doubt: it is length times
width. But it is the reasoning that reveals the essence of the concept of area, and this
reasoning is of course based on the basic properties of fractions and area. In advanced
mathematics, we simply prove that there is a way to assign an area to a region in
the plane so that the area so obtained enjoys these desirable propertiesﬁ However,
this is a torturous process that is entirely unsuitable for use in schools, much less in
grade 5. So we start from the opposite end by assuming that such an assignment is
possible, and concentrate instead of finding out, if the assignment of area possesses

the following obvious properties, what the area of each geometric figure must be:

(a) The area of a planar region is always a number > 0.

(b) The area of a unit square (a square whose sides have length 1) is 1

square unit.
(c) If two regions are congruent, then their areas are equal.

(d) (Additivity) If two regions have at most (part of) their boundaries in
common, then the area of the region obtained by combining the two is the

sum of their individual areas.

We can amplify on the meaning of (d) by the following pictures.

4Strictly speaking, we can only assign an area to some, but not all regions.
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On the left, the regions A and B intersect only in a horizontal segment and a vertical
segment along their common boundary, so it is intuitively clear that the area of the
combined region of A and B is the sum of the areas of A and B. This is exactly what
(d) says. See the left figure below. On the right, the regions A and C' have more than
part of their boundaries in common as they overlap in a sizable region. So the area of
the combined region of A and C'is clearly strictly smaller than the sum of the areas
of A and C because, in adding the areas of A and C' together, we count the area of

the overlapped region twice. See the right figure below.

We make a simple observation: (d) easily implies that if a region R is the com-
bined region of several smaller regions (i.e., more than two) that have at most their
boundaries in common, then the area of R is the sum of the areas of these smaller
regions.

Regarding (c), it suffices to define “congruent regions” in a fifth grade classroom
as “same shape and same size”; one can also check congruence of figures by cutting
out cardboard drawings and moving one on top of another. More precisely, the only
fact we need for the computation of the area of a rectangle is that rectangles with

the same length and width are “congruent” and therefore have the same area.

We can now compute the area of a rectangle with sides % and % (The proof
is taken from the proof of Theorem 2 on pp. 63-64 of H. Wu, Pre—Algebraﬂ) We
give the side lengths these explicit values because in a fifth grade classroom, one has
to begin with simple cases like this. Moreover, it will be seen that the reasoning

is perfectly general. Also observe how the computation is guided at every turn by
(a)(d).

5Recall: The turquoise box indicates an active link to an article.
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We break up the computation into two steps.

(i) The area of a rectangle with sides } and 1.

(i7) The area of a rectangle with sides 2 and 2.

We begin with (7). To get a rectangle with sides }l and %, divide the vertical sides
of a fixed unit square into 4 equal parts and the horizontal sides into 7 equal parts.
Joining the corresponding division points, both horizontally and vertically, leads to a
partition of the unit square into 4 x 7 (= 28) congruent rectangles, and therefore 28

rectangles of equal areas, by (c). Observe that each small rectangle in this division

1

has vertical side of length i and horizontal side of length =, and is congruent to the

shaded small rectangle in the lower left corner, as shown.

=

==

What Step (i) asks for is the area of this shaded rectangle. The unit square is now
divided into 28 small rectangles each of which is congruent to this shaded rectangle.
By (c) of page , the unit square has been divided into 28 parts of equal area.
Consider the number line where the unit is the area of the unit square; then we have

divided the unit into 28 equal parts. By the definition of a fraction, each one of
1 1

287 47" ) .
shaded rectangle in the lower left corner (with side lengths 7 and = ) is equal to

these 28 areas represent In other words, the area of the

1
4X7"

which is equal to

Therefore: )

- 4x7 (1)

To perform the computation in Step (ii), we change strateqy completely. Instead

of partitioning the unit square, we use small rectangles of sides %L and % to build a

=

Area of rectangle with sides % and

rectangle of sides % and % By the definition of %, it is the combination of 3 segments
each of length }l. Similarly, the side of length % consists of 2 combined segments each

of length % Thus we create a large rectangle consisting of 3 rows of small rectangles
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each of sides }l and %, and each row has two columns of these small rectangles. This

: 3 2
large rectangle then has side lengths 3 and .

AT,

1
7

By equation , each of the small rectangles has area &7. Since the big rectangle

contains exactly 3 x 2 such congruent rectangles, its area is (by (d) above):

Lo 1 b 3x2 3
A4x7  4Ax7 4x7  4AxT 4

3x2

Do

Therefore the conclusion of (i7) is:

A~ w
X
=N

Area of rectangle with sides % and % =

In other words, the area of the rectangle is the product of (the lengths of) its
sides.

The general case follows this reasoning word for word. In most fifth grade class-
rooms, it would be beneficial to state the general formula, as follows. If m, n, k, ¢ are

nonzero whole numbers, then:

L m o om _k
Area of rectangle with sides - and 7 = el (2)

Instead of giving an explanation of equation () directly in terms of symbols, it would

probably be more productive to compute the areas of several rectangles whose sides

3 17 5 :
5 and ¢, 3 and g, etc., and direct

students’ attention to the fact that the reasoning in each case follows a fixed pattern

have lengths equal to reasonable fractions, e.g.,

which then affirms the truth of the general case.ﬂ Of course one should give the

SThere is much talk about using “patterns” to ease students’ entry into algebra. Unfortunately,
it is not often recognized that it is the “thought patterns” like the proofs just described rather than
visual patterns that truly matter in this pedagogical strategy. When all is said and done, Content
Dictates Pedagogy in mathematics education.
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symbolic proof (computation) if the students are up to it.

If students have a firm mastery of the preceding computation, then the concept
of the volume of a rectangular prism will be almost anti-climactic: it is more of the
same (see equation ([3) below). First, the assignment of a number to a (3-dimensional)
solid, called its volume, is qualitatively identical to the case of area. We will make

analogous assumptions on how volumes are assigned to solids:

(a) The volume of a solid is always a number > 0.

(b) The volume of a unit cube (a rectangular prism whose edges all have
length 1) is 1.

(c) If two solids are congruent, then their volumes are equal.

(d) (additivity) If two solids have at most (part of) their boundaries in
common, then the volume of the solid obtained by combining the two is

the sum of their individual volumes.

Again, we will not define “congruent solids” precisely in 5th grade except to appeal to

the intuitive idea that congruent solids are those with the “same size and same shape”.

We want to show that, if a rectangular prism R has edge lengths equal to ¢, w
and h, and £, w, h are all whole numbers, then the volume of R is the product of

these three numbers, i.e.,
volume R = £ xw x h (3)

In the interest of clarity, we will prove the special case ¢/ = 2, w = 3, and h = 4.
The reason for this expository decision is that the reasoning in this special case is
in fact completely general. So let P be a rectangular prism with edge lengths 2, 3,
and 4. Divide each of these edges into segments of unit length. Pass a plane through
corresponding division points of each group of parallel edges, and these planes give
rise to a partition of P into 2 x 3 X 4 unit cubes because each horizontal layer of unit
cubes has two rows and each row has three columns and therefore each layer has 2 x 3

unit cubes; moreover, there are 4 such horizontal layers.
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3

Each unit cube has volume 1 (by (a)), and since there are 2 x 3 x 4 of them, the
additivity of volume (i.e., (d) above) implies that the volume of P is

1+14---+1 = 2x3 x4,
—_————
2x3x4

as desired. It is clear that since the explicit values of 2, 3, 4 played no role in the

preceding argument, we see that equation ([3)) is correct.

The next topic—coordinatizing the plane—may be regarded as an extension of
the idea of the number line to the plane. The essence of the number line is to assign
a number to each point on the line, provided 0 and 1 have been fized on the line. (In
grade 5, we recognize that the “number” in question can only be a fraction, but once
negative numbers have been introduced in grade 6, “number” will refer to all rational
numbers.) Of course, once 0 and 1 have been fixed, it would follow that, conversely,
every number corresponds to a unique point on the line. With this in mind, we are
going to show how to associate an ordered pair of numbers to each point in the plane
provided a pair of perpendicular aves has been fived in the plane.[| Conversely, once
such a pair of axes has been fixed, each ordered pair of numbers will correspond to a
unique point of the plane. We will begin by explaining how to associate an ordered
pair of numbers to a point in the plane. The fundamental idea is very simple, and it
is not unlike the way we associate to each house in an rectangular array of streets its
street address: a number and a street name.

Choose two perpendicular lines in the plane which intersect at a point to be
denoted by O. O is called the origin of the coordinate system. Let one of them

“For the gifted students, they can be assigned the task of coordinatizing the plane using any two
intersecting lines.
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be horizontal (i.e., extending from left to right) and let the other be vertical. The
horizontal line is traditionally designated as the x-axis, and the vertical one the y-
axis. We will regard both as number lines and will henceforth identify each point on
these coordinate axes (as the z and y axes have come to be called) with a number.
As expected, we choose the fractions on the x-axis to be on the right of O so that O
is the zero of the z-axis; we also choose the fractions on the y-axis to be above O on
the y-axis so that O is also the zero of the y-axis. These axes divide the plane into

four parts (called quadrants): upper left, upper right, lower left, and lower right.

We will associate with each point P in the plane an ordered pair of numbers, but
because we do not as yet have negative numbers, we will limit ourselves to the upper
right portion of the plane, which is usually called the first quadrant. So let P be
a point in the first quadrant. Let us agree to call any line parallel to the z-axis
a horizontal line, and also any line parallel to the y-axis a vertical line. Then
through P draw two lines, one vertical and one horizontal, so that they intersect the
r-axis at a number a and the y-axis at a number b, respectively. Then the ordered
pair of numbers (a, b) are said to be the coordinates of P relative to the chosen
coordinate azes; a is called the x-coordinate and b the y-coordinate of P relative

to the chosen coordinate azes. Observe that the coordinates of O are (0,0).

Y
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Now, by construction, the three angles of the quadrilateral PaOb at the vertices
O, a, and b are right angles. By an observation on page [I7, PaOb is a rectangle.
It follows from another observation on page [L7] that the opposite sides of PaOb are
equal (in length). Thus the length of the side bP is equal to the length of the side
Oa. Since by the definition of length on the number line, the length of Oa is just the
number a, we see that the x-coordinate a of the point P is nothing other than the
length of the perpendicular segment Pb from P to the y-axis. Likewise, the length
of the perpendicular segment Pa from P to the z-axis is just the y-coordinate b of
P. The length of the perpendicular segment from a point to a given line is called
the distance of the point from the line. We have therefore obtained a different

interpretation of the coordinates of P when P is a point in the first quadrant:

The x-coordinate of a point P in the first quadrant is the distance of P
from the y-axis and the y-coordinate of P s the distance of P from the

T-QTiS.

Conversely, with a chosen pair of coordinate axes understood, then given an ordered
pair of fractions (a,b), there is one and only one point in the plane with coordinates
(a,b): this is the point of intersection of the vertical line passing through (a,0) and
the horizontal line passing through (0, b).

It is common to just zdentify a point with its corresponding ordered pair
of numbers. In the plane, we define (a,b) = (c,d) to mean that the points
represented by (a,b) and (¢, d) are the same point. (This is the analog in the plane
of the definition that two fractions § and ¢ are equal if the points on the number line
represented by £ and £ are the same point.) Since every point corresponds to one
and only one ordered pair of numbers, we see that

(a,b) = (c¢,d) 1is the same as saying a=r¢, b=d.

A plane in which a pair of coordinate axes have been set up is called a coordinate

plane.

Caution: We should make explicit an assumption about the x- and y-axes that
is usually taken for granted. We will state the assumption using intuitive language,

but the assumption will be put on a firm foundation in high school (see (A7) on page
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133[). We assume that if we rotate the plane 90 degrees counter-clockwise around
(0,0), then the numbers on the z-axis coincide with those on the y-axis, i.e., the
unit segments on the two number lines have “the same length”. (To understand the
last statement, recall that the choice of the location of 0 and 1 on a number line is
arbitrary.) Also if we reflect across the angle bisector of the 90° angle between the
positive z-axis and the positive y-axis, then the numbers on the x-axis again coin-
cide with those on the y-axis, and vice versa. As will be seen in high school, these

assumptions are of critical importance for understanding the geometry of the plane.

The last major topic of grade 5 has to do with basic definitions of various triangles
and quadrilaterals. In TSM (see page , there is some confusion about whether a
square is a rectangle and whether an equilateral triangle is isosceles. However, the

content of two of the standards in Standard 5.G is to remove this confusion:

3. Understand that attributes belonging to a category of two-dimensional
figures also belong to all subcategories of that category. For example, all
rectangles have four right angles and squares are rectangles, so all squares

have four right angles.

4. Classify two-dimensional figures in a hierarchy based on properties.

Thus start with triangles. Recall that we defined an isosceles triangle as a triangle
with two equal sides (see page ); this means that so long as it has two equal sides,
it has to be called “isosceles”. In particular, even if the third side is also equal to the
other two (in which case we call it an equilateral triangle; see page [1§)), it is still an
isosceles triangle. This is the standard mathematical usage of the terms isosceles and
equilateral and is consistent with the quoted standards above.

For quadrilaterals, there are other notable ones in addition to parallelograms and
rectangles. For the sake of completeness, we list their definitions together. With a

quadrilateral understood, we have:

Trapezoid: One pair of parallel opposite sides, i.e., any quadrilateral
with the property that it has one pair of parallel opposite sides qualifies

to be called a trapezoid.

Parallelogram: Two pairs of parallel opposite sides.
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Rectangle: Four right angles.
Square: Four right angles and four equal sides.

Kite: Two pairs of equal adjacent sidesﬁ

Then: every square is a rectangle, every rectangle is a parallelogram, and every
parallelogram is a trapezoid. A square is always a kite. Moreover, there are kites
that are not squares, there are trapezoids that are not parallelograms, there are
parallelograms that are not rectangles, and finally, there are rectangles that are not
squares.

Many exercises can be given on quadrilaterals and triangles in a coordinate plane
so that the coordinates of their vertices are already given. In simple situations, these
coordinates already allow us to determine if the triangle or quadrilateral has certain

properties, such as rotational symmetry or symmetry with respect to a line.

8Two sides of a quadrilateral are said to be adjacent if they have a vertex in common.
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GRADE 6
The Number System 6.NS

Apply and extend previous understandings of numbers to the system of ra-
tional numbers.

6. Understand a rational number as a point on the number line. Extend number line
diagrams and coordinate axes familiar from previous grades to represent points on the line

and in the plane with negative number coordinates.
Geometry 6.G

Solve real-world and mathematical problems involving area, surface area, and

volume.

1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons
by composing into rectangles or decomposing into triangles and other shapes; apply these

techniques in the context of solving real-world and mathematical problems.

2. Find the volume of a right rectangular prism with fractional edge lengths by packing
it with [rectangular prisms] of the appropriate unit fraction edge lengths, and show that
the volume is the same as would be found by multiplying the edge lengths of the prism.
Apply the formulas V' = fwh and V' = bh to find volumes of right rectangular prisms with

fractional edge lengths in the context of solving real-world and mathematical problems.

3. Draw polygons in the coordinate plane given coordinates for the vertices; use co-
ordinates to find the length of a side joining points with the same first coordinate or the
same second coordinate. Apply these techniques in the context of solving real-world and
mathematical problems.

4. Represent three-dimensional figures using nets made up of rectangles and triangles,

and use the nets to find the surface area of these figures. Apply these techniques in the
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context of solving real-world and mathematical problems.

Comments on teaching grade 6 geometry

The geometry of grade 6 is, in the main, about areas and volumes. Here will be
found the common area formulas for triangles and quadrilaterals. The importance of
the area formula for triangles is that it allows us, at least in principle, to compute
the area of any polygon by “triangulation” (see page[39]). In addition, along with the
area formula for rectangles with side lengths that are fractions, we will also give the
corresponding volume formula for rectangular prisms whose edge lengths are fractions.

We will also mention the four quadrants of the coordinate plane, the computation
of lengths of horizontal and vertical segments in a coordinate plane, nets, and the

definitions of tetrahedra and pyramids.

We begin by recalling the basic assumptions about what we call area. They were
already mentioned in grade 5 and there are four of them:
(a) The area of a planar region is always a number > 0.

(b) The area of a unit square (a square whose sides have length 1) is by

definition the number 1.
(c) If two regions are congruent, then their areas are equal.

(d) (Additivity) If two regions have at most (part of) their boundaries in
common, then the area of the region obtained by combining the two is the

sum of their individual areas.
The whole discussion in this sub-section hinges on the simple statement that
Area of rectangle = product of the (lengths of the) sides (4)

The validity of this formula when the lengths of both sides are fractions is exactly
the content of equation ([2) on page [24]. Students should be formally told at this
point that there are numbers which are not fractions (they have probably heard of 7
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and it would make sense to let them know that 7 is not a fraction). So the message
of equation ([4]) is that the area of a rectangle is always the product of its sides no

matter what the lengths of the sides may be.ﬂ

It is astonishing how much useful information can be extracted from the simple
formula ([]) alone. We will show how to exploit this area formula to compute the
areas of triangles, parallelograms, trapezoids, and in fact any polygon (at least in
principle).

We begin with triangles. Consider a right triangle AABC with AB 1 BC. We
compute its area by expanding it to a rectangle, as follows. Let M be the midpoint
of AC.

3

B C

We observe that if we do a rotation of 180° around M, then the rotation interchanges
A and C' and moves B to the position D as shown. We will take for granted that
such a rotation moves a triangle to a congruent one (“with the same size and same
shape”) and therefore one with the same area (by (c)).['] Now use the fourth bullet
on page [16] to explain why all the angles of the quadrilateral ABC' D are right angles
and therefore ABC'D is in fact a rectangle. Therefore, by the additivity of area (i.e.,
(d) above),

area (ABCD) = area(AABC) + area(ACDA)
= area(AABC) + area (AABC)
= 2-area(AABC).

9Strictly speaking, we are invoking the formal extension of the formula area of rectangle = product
of the side lengths from fractional side lengths to side lengths that are arbitrary numbers by using
the Fundamental Assumption of School Mathematics. See page 88 of H. Wu, Pre-Algebra).

10This is a wonderful opportunity to prepare students for geometry in grade 8.
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It follows that 1
area( AABC) = 3 area(ABCD).

At this point, it becomes necessary to use a symbol, | AB]|, to denote the length of a
segment AB. By equation ([4]), we get,

1
area(AABC) = 3 |AB| - |BC]|.

The sides AB and BC' flanking the right angle in a right triangle are called the legs
of AABC'. We therefore have:

1
Area of right triangle = 3 (product of (the lengths of) its legs) (5)

Now suppose AABC' is not a right triangle. Let AD be the altitude from the
vertex A to line BC, i.e., AD is the segment which joins A to line BC and is per-
pendicular to line BC). If D = B or D = C, then AABC would be a right triangle,
contradicting the hypothesis. So we may assume that D # B and D # C. Then
we obtain two right triangles, AABD and AACD, so that equation () becomes
applicable to each of them. There are two cases to consider: the case where D, the
foot of the altitude, is inside the segment BC', and the case where D is outside

segment BC'. See the figures:

A A

|

| |

K &

B b
B D C B C D

In either case, AD is called the height with respect to the base BC. By the usual
abuse of language, height and base are also used to signify the lengths of AD and
BC, respectively. With this understood, we shall prove in general that

1
Area of triangle = 3 (base x height) (6)

For convenience, we shall use h to denote |AD|. Then this is the same as proving
1
area( AABC) = 3 |BC| - h
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In case D is inside BC, we use the additivity of area ((d) on page and refer to

the figure above to derive:

area( AABC) = area(AABD) + area(AADC)
1 1
= §|BD|-h+§|DC’|-h

(|IBD| + |DC) h (by the dist. law)

IBC| - h

N~ DN~

Incidentally, here as well as in the computation for the second case (D is outside BC),
we see how important it is to know the distributive law. One cannot overstate the
need for students from grade 5 and up to be fluent in the use of this law.

In case D is outside BC', we again use the additivity of area and refer to the figure

above to obtain:
area( AABD) = area(AACD) + area(AABC)
This is the same as

1 1
5 |BD|-h = 5 |CD| - h+ area(AABC).

Therefore,
1 1
area(AABC) = 3 |BD| - h — 3 |CD|-h

1

= 3 (|lBD| - |CD|) h (by the dist. law)
1

= — |BC|-h
180

Thus the area formula for triangles has been completely proved.

Almost all school math textbooks mention the first case but not the second in
deriving equation ( @) Looking forward to the proofs of the area formulas for paral-
lelograms and trapezoids below, one realizes that this omission creates a crucial gap

in students’ understanding of these formulas.

Next the area of a parallelogram ABCD. Drop a perpendicular from A to the
opposite side BC. Call it AE. In view of equations ([4) and ([f]), we may assume

E # B or C. Then two cases are possible, as shown below.
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A D A D

| |

= S s R
B F C B C E

AF is called the height of the parallelogram with respect to the base BC. From
the second bullet on page[16], we know that |AE| does not change if another point on
AD replaces A. As before, height and base are also used to designate the lengths of

these segments. The formula to be proved is then:
Area of parallelogram = base X height (7)

The following proof of equation () works for both cases, and it goes as follows. Draw
the diagonal AC' (see page |16 for a definition) and let M be the midpoint of AC.

A D A D
W f

| |

L __h
B FE C B C FE

One verifies by hands-on experiments (e.g., cardboard cut-outs) that the rotation of
180° around M moves ANABC to ACDA. So as usual, we conclude that AABC
is congruent to ACDA and therefore, (c) of page [32 implies that area(AABC) =
area(ACDA). By (d) of page 32, we therefore have:

area(ABCD) = area(AABC) + area(ACDA)
= 2-.area(AABC)
1
= 2.5 (IBC|- |AE])
= |BC|-|AE|

as desired. Note how, in the second case, we need equation ( @) to be still valid when
the foot of the altitude falls outside the base.
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We also get the formula for the area of a trapezoid ABC'D with AD || BC'. Let
DE 1 BC. Again, in view of equations ({]) and (f]), we may assume E # B or C.

A D A D
| |
| |
K K
L R
B E C B C E

Then note that |[DE|, being the distance between the parallel lines Lap and Lgc, is
the height of both AABD with respect to the base AD and ABC' D with respect to
base BC', and is called the height of the trapezoid. Again we denote this height

by h. The segment AD and BC are called the bases of the trapezoid. We are

1

going to prove that the area of a trapezoid is 3

the height times the sum of bases.
Precisely,

Area(ABCD) = %h(]AD| +|BC)

It is of some interest to observe that when the trapezoid ABCD is a parallelogram
(i.e., when AB is also parallel to CD), this area formula reduces to equation (7]).
Indeed, in this case, we saw on page [36| that AABC' is congruent to AC DA so that

in particular, BC' and AD have the same length and the preceding formula becomes
1 1
Area(ABCD) = 50 (|1BC|+ |BC|) = 3" (2|BC|) = h|BC|.

This is exactly equation ) Incidentally, this is one reason why we want a par-
allelogram to be a trapezoid (see the discussion on page [29]) because mathematical
theorems about quadrilaterals such as these area formulas then make sense. As to

the proof of the trapezoid area formula, we have

Area(ABCD) = area(ABAD) + area(ABDC)
1 1
= §h-\AD|+§h-|BC’|

1
= 1 (AD|+|BC|)  (by the dist. law),

as claimed. Note once again that in this proof, we need the area formula of a triangle

when the foot of the altitude falls outside the given base. This is why one must know
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the proof of the area formula of a triangle for this case too.

At this point, students need to be exposed to some general facts about n-gons, or
polygons, including a correct definition. The general definition of a polygon requires
the use of subscripts to denote the vertices. So for sixth grade, it is enough to define
a pentagon and a hexagon and wave hands a bit. A 3-gon is a triangle, and a 4-gon
is a quadrilateral. A 5-gon, called a pentagon, is defined to be a geometric figure
with 5 distinct points A, B, C, D, E in the plane, together with the 5 segments AB,
BC, CD, DE, and FA, so that none of these segments intersects the others except
at the endpoints as indicated, i.e., AB intersects BC at B, BC' intersects C'D at C,
etc. In symbols: the pentagon will be denoted by ABCDE. Here are some examples

A A
E A
E
E
B c P D
c D B ¢
B

In the same way, a 6-gon, called a hexagon, is a geometric figure with 6 distinct
points A, B, C, D, E, F in the plane, together with the 6 segments AB, BC, CD,
DE, EF, and F A so that none of these segments intersects the others except at the
endpoints as indicated, i.e., AB intersects BC at B, BC intersects CD at C, etc.
In symbols: the hexagon will be denoted by ABCDEF'. Here are some examples of

F B
F £ E
B E
E
D
c C
b D
B
C
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In general, for any positive integer n, an n-gon, more commonly called a polygon,
can be similarly defined. What we wish to observe is that, once we know how to
compute areas of triangles, then the area of any polygon can be computed—at least
in principle—through the process of triangulation. It is not necessary to define
precisely, in sixth grade, what a triangulation is, because we just want to give students
a general idea and, for this purpose, some picture-drawing is quite sufficient. As the
name suggests, what we do is to partition any polygon into a collection of triangles
which intersect each other at most on their boundaries. Since the areas of these
triangles can be computed, we can apply repeatedly the additivity of area (see (d)
on page ) to get the area of the polygon itself. Let us illustrate with the above

hexagons. Here are some of the possible triangulations.

Thus for the hexagon ABCDEF on the left, its area is the sum of the areas of
ANOAB, AOBC, AOCD, AODE, ANOEF, AOFA.
For the hexagon ABC'DEF' in the middle, its area is the sum of the areas of
NABF, ANBCD, ABDE, ABEF.
As to the hexagon ABC'DEF on the right, its area is the sum of the areas of
NABF, ABFD, ABCD, ADEF.

Be sure to take note of the fact that there are other possible triangulations in each
case. For example, the hexagon on the left can also be triangulated by joining the
vertex A to C, A to D, and A to E. On the other hand, the triangulations of the

other two hexagons illustrate the complications in obtaining a triangulation: while it
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can be done, there is no simple algorithm to always get it done.

Next, we revisit the volume of a rectangular prism. Recall that the assignment
of a number to a (3-dimensional) solid, called its volume is conceptually identical to

the case of area. We have the analogous assumptions on how volumes are assigned
to solids (see page [25)):

(a) The volume of a solid is always a number > 0.

(b) The volume of a unit cube (a rectangular prism whose edges all have

length 1) is by definition 1 cubic unit.
(c) If two solids are congruent, then their volumes are equal.

(d) (additivity) If two solids have (at most part of) their boundaries in
common, then the volume of the solid obtained by combining the two is

the sum of their individual volumes.

Again, we will not define “congruent solids” precisely in sixth grade except to appeal
to the intuitive idea that congruent solids are those with the “same size and same

shape”.

We want to show that, if a rectangular prism R has edge lengths equal to ¢, w
and h, and ¢, w, h are all fractions, then the volume of R is the product of these
three numbers, i.e.,

volume R = ¢ X w X h (8)

In the interest of clarity, we will prove the special case ¢ = %, w = %, and h = %. The
reason for this expository decision is that the reasoning in this special case is in fact

completely general. As in the case of area, we break up the reasoning into two steps.

11 .
3, 3, and 7 is

=

(7) The volume of a rectangular prism with edge lengths
1,1
X 1

. . 3 2
he volume of a rectangular prism with edge lengths 5, £, and
5

Z.

(i)

18

>t

1
2
2

Wl % wl

X

For step (i), divide each of the three groups of parallel edges of a fixed unit cube

into 2 equal parts, 3 equal parts, and 4 equal parts, respectively. For example, in
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the following picture, each of the group of four vertical edges is divided into 4 equal
parts. Pass a plane through the corresponding division points, as shown. (Recall in

the following picture that the cube is a unit cube and therefore each edge has length
1.)

13
a2

N
N
N

/

[

[

These planes partition the unit cube into twenty-four (= 2 x 3 x 4) congruent small
rectangular prisms, and thus 2 x 3 x 4 prisms of equal volume (see (c) above). By
(d) above, the sum of the volumes of these 2 x 3 x 4 prisms is equal to the volume of
the unit cube, which is 1 (see (b)). Thus by the definition of a fraction, relative to a
unit 1 that is the volume of a unit cube, the volume of one of these prisms, such as

the thickened prism in the preceding picture, is the fraction

1 1

24  2x3x4’

Because by construction, the edges of the thickened rectangular prism in the preceding
2
Now part (ii). As with the case of area, we now ignore the unit cube and, instead,
3 2
20 3
above thickened small rectangular prism with edge lengths %, %, and i. To this end,
take three rows of these small prisms with two columns in each row; place them on a

picture have lengths and i, we have finished explaining why (4) is correct.

build a rectangular prism P whose edge lengths are and % by starting with the

plane with the edges of length le pointing up vertically, as shown in the picture below,

%, %, and }l . Now place 5 such
layers on top of each other to get a rectangular prism whose edge lengths are now %,
2

3

to obtain a rectangular prism whose edge lengths are

and %; this is the prism P we are after, as shown below:
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The volume of the rectangular prism with side lengths %, %, and i is m, by part
(). Since there are 30 (= 3 x 2 x 5) of these prisms in P, the volume of P is thus
1 1 (B3x2x5)x1 3 2 5
e _|_ ...... + — = — X = X —
2x3x4 2x3x4 2x3x4 2 3 4

-
3x2x5

Note the critical fact about fraction multiplication that we have just used: the product

formula, to the effect that % = % X fl (see pp. 4748 of H. Wu, Teaching Fractions

According to the Common Core Standards| for a proof).

The general explanation of equation ( ) is entirely the same, and this can be seen

2

from the fact that the preceding reasoning for the special case of ¢ = %, w = 3, and

3 2 5
2 3,0r 1

In discussing area or volume, the role of property (c) (congruent figures give rise to

h = g never makes use of the explicit values of

the same area or volume) and property (d) (additivity) should be emphasized through
the use of exercises that ask for the computations of areas of planar regions and vol-
umes of solids formed by assembling congruent rectangles and rectangular solids of
varying sizes. In particular, this will make students aware, at an early age, of the

fundamental importance of the concept of congruence.

Next, we expand on the concept of coordinatizing the plane using rational num-
bers. Recall from grade 5 that our work with coordinates thus far has been limited to
the first quadrant (page ) because when a line passing through a point P parallel
to a coordinate axis intersects the other axis, we had to make sure that the point of
intersection was a fraction. In other words, we had to make sure that the coordinates

of P are bigger than or equal to 0. In grade 6, however, we have rational numbers
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and we are no longer concerned with the location of the point of intersection of a
line with a coordinate axis, so everything we said in grade 5 about coordinates, when
suitably modified, will continue to hold. In particular, the analog of the interpretation

of coordinates on page [28] is the following:

If the coordinates of a point P are (p,p’), then |p| (respectively, |p'|) is the
distance of P from the y (resp. x) axis.

The computation of the distance between two points in terms of their coordinates
has to wait for the Pythagorean Theorem. There is a special situation, however, that
allows for such a computation without the Pythagorean Theorem, and this is our next
concern. Given a coordinate system in the plane, let AB be a horizontal segment
in the sense that it lies on a horizontal line. We want to compute the distance between
A and B, i.e., the length |AB| of AB, in terms of the coordinates of A and B. Since
AB is horizontal, the line L containing AB is parallel to the z-axis by definition.
We know that the distances of A and B to the z-axis are equal; thus in the pictures
below, |Aa| = |Bb|. Since opposite sides of a rectangle are equal (page [17)), we know
that the y-coordinates of A and B are equal, say 3. Thus the coordinates of A and
B must be (a,yo) and (b, yo), respectively. If a or b is equal to 0, for example if a = 0,
then the distance between A and B is just |b], by the definition of absolute value and
there would be no need to compute. So we may assume a, b are nonzero. Now there
are two cases.

Case 1: a < 0 <b. Then

|AB| = (distance from a to 0) + (distance from 0 to b) = |a| + [b].
Yy

A Yo B

a O b

Case 2: a<b<0Qor0<b<a. Then

|AB| = (distance from a to 0) — (distance from 0 to b) = |a| — |b].
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a b 10 O b a

What is worth pointing out is that, when students learn about the subtraction of
rational numbers in grade seven, then both formulas above will be subsumed under

one simple formula:

The distance between two points (a,yy) and (b,yo) on a horizontal line
= |la—1|

Such a formula gives a partial explanation of why it is desirable to learn about absolute
value and subtraction of rational numbers.

The case of points on a vertical line can be treated in the same way. Thus:

The distance between two points (xg, a) and (zo,b) on a vertical line

| lal + 0] ifa<0<b
| Jal — b if a<b<0 or 0<b<a.

In the terminology of 6th grade mathematics, we have:

The distance between two points (xg,a) and (xg,b) on a vertical line

= |a—1b|

Finally, a word about surface areas of solids. For rectangular prisms, the boundary
of the prism consists of six rectangles. By the additivity property of area (see (d) of
page )B, the total area of the boundary is the sum of the areas of these rectangles;
since the equation ([l]) on page [32] gives the area of any one of these rectangles, one
can add up these areas to get the total area. This total area is what is known as the
surface area of the prism. Nets are sometimes used to help students visualize this
surface to ease the computation of surface area. We will not go into any discussion of
nets here for the simple reason that this is one example where interactive materials
are much more instructive than verbal explanations. Click on the following link, for

example, to see the nets of the most common solids:

HStrictly speaking, we need a generalized version of the additivity property as stated on page
because we are now talking about regions that are no longer lying in a plane.
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Surface Area Interactive

In everyday life, there are also solids whose boundaries consist of geometric figures
that are not rectangles. The simplest of these are tetrahedra and pyramids, and we
define them as follows.

Let two parallel planeﬂ be given. We may think of these planes as “horizontal”
ones, with one called the top plane and the other the bottom plane. Let P be a point
in the top plane, then the collection of all the segments joining P to points of a planar
region R in the bottom plane is a solid S. The point P is called the top vertex of S
and R the base of §. Here are two examples of such a solid, where the base is fixed

in the bottom plane but the vertex assumes two different positions in the top plane.

If the base R is a square, then the solid S is called a pyramid (see the two figures
on the left below). If the top vertex of a pyramid lies on the line perpendicular to the
base at the center of the square (the intersection of the diagonals), the pyramid is
called a right pyramid (see figure second from left below). If the base is a triangle,
the solid S is called a tetrahedron (see the two figures on the right below). If the
base is an equilateral triangle and all the other three triangles on the boundary are
congruent to the base, the tetrahedron is called a regular tetrahedron (see figure
on the extreme right). It is known that the top vertex of a regular tetrahedron lies
on the line perpendicular to the base passing through the center, which in this case

is the point of intersection of the three mediand™| of the base.

12These are, by definition, planes that do not intersect, such as the planes containing the top and
bottom of a rectangular prism.

13A median of a triangle is, by definition, a segment joining a vertex to the midpoint of the
opposite side.
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A A D

To compute the surface area of a right pyramid, for example, we can look at the net
of the pyramid in this case. It is intuitively acceptable that the four edges above the
base are all of the same length. Assuming this, if we cut the boundary of the right
pyramid along all the edges coming out of the top vertex and then “flatten out” the
boundary and lay it on the bottom plane of the base, we get the following plane figure

whose eight boundary edges are all of the same length, say s:

If we denote the length of the side of the base square by a, then it is possible to
compute the surface area of the right pyramid in terms of s and a. But right now
we don’t have the necessary tools (the Pythagorean Theorem, which will be proved
on page , or better yet, Heron’s formula) so the only way the surface area can
be computed is if the height of any one of the triangles (indicated by the magenta
segment in the picture above) is also given. Let us say it is h. Then using equations
and on pages|32/and , we get that the surface of this particular right pyramid

1S
1
a’ +4(§ha) = a(a+ 2h).
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GRADE 7
Geometry 7.G

Draw, construct, and describe geometrical figures and describe the relation-
ships between them.

1. Solve problems involving scale drawings of geometric figures, including computing
actual lengths and areas from a scale drawing and reproducing a scale drawing at a dif-
ferent scale.

2. Draw (freehand, with ruler and protractor, and with technology) geometric shapes
with given conditions. Focus on constructing triangles from three measures of angles or
sides, noticing when the conditions determine a unique triangle, more than one triangle,

or no triangle.

3. Describe the two-dimensional figures that result from slicing three- dimensional
figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Solve real-life and mathematical problems involving angle measure, area, sur-
face area, and volume.

4. Know the formulas for the area and circumference of a circle and use them to solve
problems; give an informal derivation of the relationship between the circumference and
area of a circle.

5. Use facts about supplementary, complementary, vertical, and adjacent angles in a

multi-step problem to write and solve simple equations for an unknown angle in a figure.
6. Solve real-world and mathematical problems involving area, volume and surface

area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons,

cubes, and right prisms.
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Comments on teaching grade 7 geometry

We will concentrate on the three key ideas in this grade, namely:

the meaning of “scale drawing”,
the need to develop students’ geometric intuition, and

the area and circumference formulas of a circle.

The kind of problems mentioned in standards 5 and 6 of Geometry 7.G are by com-
parison more routine and therefore will get short shrift for now. (But keep in mind

the distance formula in terms of rational number subtraction on page [44]).

Scale drawings

Like many concepts in school mathematics, the concept of “scale drawing” is
used indiscriminately and students routinely get tested about “scale drawings” on
standardized tests without ever being told what a “scale drawing” is. The reason for
this monstrous state of affairs is that, without the concept of similarity (which will be
taken up in grade 8 and high school) it is not easy to give a simple definition of this
concept. What we will do is to give an intuitive definition of “scale drawing” that
is appropriate for grade 7, and leave the precise definition in terms of the concept
of similarity to grade 8 (see page ) Here is the easy part: if you are given a
scale drawing of a real-life object (usually a car, a staircase, etc.), what it means is
that you have to imagine that the three-dimensional object has been captured, in
exactly the same size, as a two-dimensional image in a picture.|E| Then the so-called
scale drawing refers to a reduced-size picture or an enlarged-size picture of that
two-dimensional picture (but NOT of the three-dimensional object). We repeat: a
scale drawing is either the reduction or the magnification of a two-dimensional picture,
never the three-dimensional object itself.

Now the hard part: how to explain “reduction” or “magnification” in two dimen-

sions. To this end, we adopt a procedure that is standard in mathematics: imagine

4Think of the gigantic pictures on some bill boards, for example.
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that we have enlarged a picture (by using the “magnification” feature of a xerox ma-
chine or the same feature of geometry software) and then we compare it with the
original picture to isolate some observable characteristics of the enlargement. We are
not saying we already know what “enlargement” means; rather, we try to find out
what it could mean by looking at something we all agree is already enlarged. Then
we turn around and use these observed characteristics to define “magnification”. So
suppose we already have a picture of a house and a tree, to be called S; see the picture
on the right below. Let the left picture (to be denoted by &) be an “enlargement”,
in the intuitive sense, of §. Then it is not difficult to see that, in the process of
enlargement, a point in the right picture S goes to one and only one point in &’ on
the left. For example, the point A in S goes to the point A’ in &', the point B in S
goes to the point B’ in &', etc.

Put differently, there is a precise pairing of each point of S on the right to one and
only one point of &’ on the left, and also of each point of &’ on the left to one and
only one point of S on the right. Thus we may symbolically represent this pairing as
A A, B+ B, ..., E <+ FE' and so on, for every point in either picture. Such
pairing is an example of what is known as a one-to-one correspondence. But we can
go further, it is intuitively clear that the paired points enjoy the property that the
“enlarged distances are proportional to the original distances” in the following sense:

if we use |AB| to denote the distance between A and B as usual, then:

‘A’B” B ’A/C/’ B B |A’E" B ‘B'C" B B ’D'E”

|AB| |AC] 7 |AE| BC| - |DE|’

49



and this proportional relationship is supposed to hold no matter what points A, B,

...1in the original picture S are chosen. The number common to these ratios is called

the scale factor, usually denoted by . Thus
|A/BI| B |AIC/|
|AB| — |AC|

= ... = 7

Such a proportional relationship between points in the two pictures will turn out to
be the key feature that makes one picture an enlargement of the other. This is a high-
level mathematical insight and you shouldn’t worry about it if you didn’t discover this
yourself. All of us must learn from the wisdom of the past.

Obviously it is not important that these two pictures lie in the same plane; if they
lie in different planes, we can also carry out the same discussion.

If the scale factor r is bigger than 1, S’ is called a magnification of S; if r < 1,
then &’ is called a reduction of S. What we have above is (visibly) a magnification.
Of course if » = 1, then by definition, distances between points do not change; in

this case, such a scale drawing turns out to be what we call a congruence. See the

discussions on page [66] and page [81].

Now back to the intuitive definition of scale drawing. Two geometric figures, S
and &', each lying in a plane, are said to be in one-to-one correspondence if there
is a pairing between the points in S and the points &’ so that, each point P of S
is paired with one and only one point P’ in &’ and, likewise, each point @)’ in &’ is
paired with one and only one point () in S.

Now suppose two geometric figures S and S’ are given, each lying in a plane.
We say &’ is a scale drawing of & with scale factor » if there is a one-to-
one correspondence between & and S8’ so that, under the pairing of this one-to-one
correspondence, the distance |PQ| between any two points P and @ of S is related
to the distance | P'Q)’| between the two corresponding points P’ and @' of &’ by the
equality

PQl
ol

Note that the essential feature of a scale drawing is that this equality holds true no

matter what the points P and ) may be. One can check, by direct measurements,

that for the two house-and-tree pictures above, the left picture is a scale drawing of
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the right picture with scale factor g

A typical problem in this context is the following. Referring to the two pictures
above, suppose we only know that the left picture is a scale drawing of the right, and
|B'D’| = 60 mm, |BD| = 36 mm. If the height of the house on the right (defined
to be the distance from the point P to the point () which is the intersection of the
vertical line from P with the bottom edge of the house below P, as shown) is 15 mm,

what is the height of the house on the left?

Knowing that the house on the left is a scale drawing of the house on the right, we

know
height of left house

height of right house

where 7 is the scale factor of the scale drawing. The reason is that if the vertical line

from P’ meets the bottom edge below it at a point (', then P corresponds to P and
@ corresponds to ()’ in the one-to-one correspondence, and therefore by the definition
of a scale drawing, we have

P'Q'|

|PQ

For the same reason,
|B'D’|
|BD)|
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We therefore have the proportion

’P/Q/’ B ’B/D"
|PQ) |BD|

because both sides are equal to r. Since |PQ| = 15 mm, |[BD| = 36 mm, and

|B'D’'| = 60 mm, we have
[P'Q'| 60

15 36
so that |P'Q'| = 25 mm, i.e., the height of the left house is 25 mm.

It should be remarked that the proportion ||[])38|| = |ﬁgg|| is a logical consequence

of the given hypothesis that we have a scale drawing and the fact that we have a pre-
cise definition of “scale drawing” in terms of the concept of “pairing”. What we have
done is to demonstrate how the teaching of mathematics can be done by (i) first
giving students sufficient precise information (i.e., an explicit hypothesis), and (i)

asking them to use reasoning to make logical deductions from the given hypothesis.

Pedagogical Comments: If we seem to be belaboring the point, it is because
the way problems related to scale drawings are posed and solved in textbooks does
not make any mathematical sense: there is no explanation of what a “scale drawing”
means, yet students are asked to do scaling problems. This is simply defective math-
ematics education; in mathematics, one cannot reason on the basis of something not
yet clearly defined. When students fail to preform in this environment, such inevitable
failures then become topics in education research about students’ weak basic skills
and lack of problem-solving ability. (One such example is Case 3 in K. K. Merseth,
Windows on Teaching Math, Teachers College Press, 2003.) At least in this instance,

education research is treating the symptom and not the disease.

Developing geometric intuition

At this stage of students’ learning trajectory, teachers should help students develop
geometric intuition by drawing many pictures. Now “geometric intuition” is not a
measurable quantity, so it is difficult to say whether one has “enough” geometric
intuition or not. Nevertheless, one can say that, if asked to sketch a scale drawing
with scale factor 2 of the triangle on the left, a student draws the triangle on the

right, then her geometric intuition would need further development.
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Students should also acquire the intuition, through extensive drawings, of why the
classic criteria for triangle congruence—SAS, ASA, SSS—are correct, and why ASS,
for example, is not. Consider SAS, once the angle and the lengths of its two adjacent
sides are fixed, clearly the three vertices of the triangle are completely determined so
that the congruence of two triangles both satisfying the conditions of SAS should not

come as a surprise.

|

On the other hand, the following two triangles, AABC and AADC| have two pairs
of equal sides and a pair of equal angles, as indicated, but they are clearly “different”,

no matter how “different” is defined. So ASS cannot be true.

A A

B D C B D C

It remains to make a passing comment on Standard 7.G 3:

Describe the two-dimensional figures that result from slicing three-dimensional
figures, as in plane sections of right rectangular prisms and right rectangular

pyramids.
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The general idea behind studying the slicing of a right rectangular prism by a plane
is the standard method of approaching a geometric figure of a certain dimension by
first studying its “sections” of one dimension lower. For example, we will get to know
something about a triangle by looking at various line segments in it, e.g., angle bisec-
tors, medians, etc., and we will also discover some properties of a circle by inspecting
its various chords and radii. Therefore, to study a sphere or a cone, we look at their
intersections with a plane, thereby obtaining circles in the former case, and circles,
ellipses, parabolas and hyperbolas in the latter case. For this reason, looking at the
plane sections of a rectangular prism is just an illustration of the attempt to develop
students’ three-dimensional geometric intuition but is not intended to be a subject
to be pursued in depth. In any case, there are many websites with excellent graphics

to illustrate what one can get by slicing a solid. See, for example, the solution to
Problem C1 on Learning Math,. E]

Circumference and area of a circle

Although we have made use of circles since grade 4, this is the opportunity to
formalize the terminology of the center, radius and diameter of a circle before
embarking on a rather extensive discussion about the circle. Notice that, because
of tradition, there is a tremendous abuse of language here: “circle” is of course the
round curve, but “area of a circle” actually refers to the “area of the region inside
the circle”. Because of the very real danger of confusion, we hereby adopt a more
reasonable terminology in this document: given a circle of radius r, we call the region
inside the circle the disk of radius r and denote it by D(r). The circle itself we
denote by C(r).

Caution: We will be talking about the “area of D(r)” and the “length of C'(r)”
presently, and there are some things we must be clear about at the outset. The con-
cepts of the length and area of rectilinear objects were taken up in grade 6 (page
32[). Because the concepts of “area” and “length” are part of everyday language,
the familiarity with these words can easily delude us into believing that we know the
meanings of the “area of a disk” and “length of a circle”. A little thought would

reveal that the precise meanings of the area and length of curvy objects such as the

I5Reminder: this is an active link. Just click on it.
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disk or the circle are anything but simple, and so long as we need precise meanings
of the concepts we use in mathematics, we are forced to admit that we really don’t
know what these concepts mean. A main goal of the CCSSM in grade 7 is to take a
first step in getting to know these sophisticated mathematical concepts. Anticipating
the discussion on page [57], we will freely avail ourselves of these terms for the time
being.

The length of C(r) is called its circumference. The fundamental relation be-

tween the area of the disk and the circumference is this:
1
area of D(r) = 3 (circumference of C(r)) - r (9)

We will give an informal derivation of equation (@) presently. However, we will
assume equation ([9)) for the moment and proceed to show why this equation is fun-
damental. The following sequence of derivations may not be well-known in school
mathematics, but it is simple as well as mathematically enlightening; it deserves to

gain a firm foothold in the school curriculum.

First, we introduce the number 7 as the area of the unit disk, i.e., the disk of
radius 1. In other words,
7 ¥ area of D(1)

Caution: Here, we are giving the precise meaning of 7 for the first time as the
area of the unit disk. There is an inherent danger that, because you have heard the
number 7 mentioned so often in daily conversations or popular writings that you
begin to imagine you already know what it is. In that case, you would look at the
equality, m = area of D(1), as something that needs an explanation. But no expla-
nation can be given in this case because, up to this point, we do know what 7 is but
are introducing 7 for the first time as the symbol that stands for the area of the unit
disk D(1). However, the usual relationship of 7 with the circumference (see equation

([12)) below) will then become something whose truth we must explain.

Our job now is to go on from here and get to know 7 just a little bit. First, we
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will show informally that for all r > 0,
area of D(r) = r? (area of D(1)). (10)

Since the area of D(1) is now denoted by 7, we get from equation ([10|) the well-known
area formula of a disk:
area of D(r) = 7r? (11)

But by equation (|§|), mr? = £ (circumference of C(r))-r. The following circumference

formula now follows immediately:
circumference of C(r) = 27r (12)

Recall that the number 2r (twice the radius) is called the diameter of the circle of

radius r. Therefore equation ([12|) implies that

circumference of C(r)
mw =

diameter

This is the usual interpretation of the number 7, but in terms of pedagogy, there is
an excellent reason why 7 should be defined as the area of the unit disk as we have

done. The reason will be explained in the high school course (page M)

We now give the informal arguments for equations ([9]) and ([10]). To this end, the
first order of business is to give meaning to the concepts “area of a disk” and “length
of a circle”. They may be intuitive, but they turn out to be mathematically very
subtle. We have to be content with oversimplified versions of the correct definitions
of the area of a disk and the length of a circle.

A polygon (see page ) is said to be regular if its vertices lie on a circle and
all its sides are equal;m we then also say that the regular polygon is inscribed in
that circle. Let P, be a regular n-gon (see page|39|) inscribed in C(r). The following

shows the case of n = 6 for a disk with center O:

16This is not the standard definition of a regular polygon, but is equivalent to it. Moreover, this
may be the simplest definition for use in the school classroom.
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It is intuitively clear that as n gets larger and larger without bounds, P, gets closer
and closer to C(r) and the region inside P, becomes virtually indistinguishable from
the disk D(r). Because the area of P, is something we know how to compute through
triangulation (see page [39)), it makes sense then to define the area of D(r) to be
the limit of the area of (the region inside) P, as n increases without bounds. Here we
have to be vague about the precise meaning of “limit”, except to point out that it is
one of the central concepts of advanced mathematics.

Next we explain the meaning of “length of C'(r)”. The perimeter of a polygon
is by definition the sum of the lengths of its sides. Then using the notation of the
preceding paragraph, we define the length of C(r) to be the “limit” of the perimeter
of P, as n gets arbitrarily large, in the sense that as n gets larger and larger, the
perimeter of P, will be observed to get closer and closer to a certain number and this
number is what we mean by the “length of C(r)”.

We can now compute the length of C(r). Letting as usual the center of D(r) be

O, let us join O to two consecutive vertices A and B of P, to form a triangle OAB:

@)

A B

From O we drop a perpendicular to side AB of AOAB and we denote the length
of this perpendicular by h. If we denote the length of the segment AB by s, (the
subscript n here indicates that it is the length of one side of P,), then the area of
AOAB is %snh, by equation (|§|) on page [34]. Now remember that AOAB is one of
n congruent triangles which “pave” P,, so the area of P, is n(%s,h), by virtue of the

2
additivity of area (see (c) and (d) of page [32)). We rewrite it as

area of P, = §(nsn)h

But ns, is the perimeter of P, because the boundary of P, consists of n equal

sides (AB being one of them). So as n increases to infinity, ns, becomes in the
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limit the length of C(r), by the definition just given. Moreover, as n increases to
infinity, AB gets smaller and smaller and therefore closer and closer to the circle
C(r). Consequently the perpendicular from O to AB becomes OA in the limit and
therefore h becomes the radius of C(r), which is r. Needless to say, the area of P,
becomes the area of D(r), by the above definition. Letting n increase to infinity, the

preceding equation then becomes

(length of C(r)) - r,

DO | —

area of D(r) =

which is the same as equation ([9]).
Next, we tackle equation ([10]).

The heart of the matter in this case is the following fact about triangles: If B” and
C" are points on the rays AB and AC of AABC so that, for some positive number
r, we have |AB'| = r|AB| and |AC’| = r|AC|, then:

area of AAB'C' = r?.area of AABC (13)
A

B C

wl o

Note this feature of equation (|13]): nothing is said about the third sides BC' and
B'C’. (It will turn out that also |BC’| = r|BC|, but that would belong in a high

school course in geometry.)

Without some facts from similar triangles, we cannot give a complete explanation
of equation ([13|). However, we will provide at least the proof of a special case, and
will try to make this equation appear entirely reasonable by suggesting two hands-on
experiments. The special case in question is that of a right triangle AABC' so that
/A is a right angle. For the sake of definiteness, we assume r > 1. Let B" and C’ be
points on the rays AB and AC, respectively, of AABC' so that |AB'| = r|AB| and
|AC'| = r|AC| (shown here for the case r > 1):
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A C '
We now prove equation ([13]) for this case as follows. By equation (), we have
area of AAB'C' = % |AB'| - |AC'|
= %T|AB|-T|AC|

1
= §r2|AB|-|AC|
= r%.area of AABC,

as desired.
Next we give an intuitive argument for the case of r = 2 and r = 3 in equation
(113]) when ZA is not a right angle. For the case of r = 2, we refer to the left picture

below.
A

/

B’ > W c

If we let Z be the midpoint of B'C” and join BZ, C'Z, and BC, then a well-drawn
picture would show quite convincingly that AAB'C” is now “paved” by four triangles
each of which is congruent to AABC. By (c) and (d) of page [32], we have that the
area of AAB'C" is 4 times the area of AABC, i.e.,

area of AAB'C' = 2%.area of AABC.

This then gives a visual verification of equation (|13|) for r = 2. In the case of r = 3,
we refer to the above picture on the right. If we let X be the midpoint of BB’, Y be
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the midpoint of C'C" and let Z and W trisect B’C’, then again a well-drawn figure
will show that the segments BW, C'Z, and XY meet at a point as shown, and that
ANAB'C" is paved by nine triangles each of which is congruent to AABC. Again,
by (c) and (d) of page [32), we have that the area of AAB'C’ is 9 times the area of
NABC, i.e.,

area of AAB'C’' = 3% area of AABC.

This gives a visual verification of equation ([L3]) for r = 3.
The general reasoning for equation ([13|) will have to come from the study of sim-

ilarity in a high school course on geometry.

We now use equation (|13|) to verify equation ([10]).

Given a circle of radius r; for convenience of drawing, let » > 1. Then with the
same center O, we draw the circles C(r) and C(1), which are the larger circle and the
smaller circle, respectively, in the picture above.

Let AB be one side of a regular n-gon P, inscribed in C'(1), and let the rays OA
and OB intersect C(r) at A" and B’, respectively. It is then easy to believe that A'B’
is also one side of a regular n-gon P/ inscribed in C'(r). The reasoning on page
shows that

area of P, = n-area of AOAB.

Similarly, we have
area of P/ = n-area of AOA'B’.

But because of equation ([13)) and the fact that |[OA| =r =1r-1=r-|OA|, we have

area of AOA'B’ = r? . area of AOAB,
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so that we now have:

area of P/ = n-area of AOA'B’
= n-r’. area of NAOAB
= 7%.(n-area of AOAB)

= r%.areaof P,

As n increases without bound, the area of P! becomes the area of D(r) by the
definition of the latter, while the area of P, becomes the area of D(1), which is .

Therefore, when n increases without bound, the preceding equation becomes
area of D(r) = r*-areaof D(1) = 7r?

which then shows equation (|10]) is correct.
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GRADE 8
Geometry 8.G

Understand congruence and similarity using physical models, transparencies,
or geometry software.

Verify experimentally the properties of rotations, reflections, and translations:
Lines are taken to lines, and line segments to line segments of the same length.

Angles are taken to angles of the same measure.

O o L =

Parallel lines are taken to parallel lines.

2. Understand that a two-dimensional figure is congruent to another if the second can
be obtained from the first by a sequence of rotations, reflections, and translations; given

two congruent figures, describe a sequence that exhibits the congruence between them.

3. Describe the effect of dilations, translations, rotations, and reflections on two-

dimensional figures using coordinates.

4. Understand that a two-dimensional figure is similar to another if the second can be
obtained from the first by a sequence of rotations, reflections, translations, and dilations;
given two similar two-dimensional figures, describe a sequence that exhibits the similarity

between them.

5. Use informal arguments to establish facts about the angle sum and exterior angle
of triangles, about the angles created when parallel lines are cut by a transversal, and the
angle-angle criterion for similarity of triangles. For example, arrange three copies of the
same triangle so that the sum of the three angles appears to form a line, and give an
argument in terms of transversals why this is so.

Understand and apply the Pythagorean Theorem.

6. Explain a proof of the Pythagorean Theorem and its converse.
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7. Apply the Pythagorean Theorem to determine unknown side lengths in right trian-

gles in real-world and mathematical problems in two and three dimensions.

8. Apply the Pythagorean Theorem to find the distance between two points in a coor-
dinate system. Solve real-world and mathematical problems involving volume of cylinders,

cones, and spheres.

9. Know the formulas for the volumes of cones, cylinders, and spheres and use them

to solve real-world and mathematical problems.
Expressions and Equations 8.EE

6. Use similar triangles to explain why the slope m is the same between any two
distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx
for a line through the origin and the equation y = mx + b for a line intercepting the

vertical axis at b.

Goals of eighth grade geometry

There are six in all, and they are intended to be achieved with an emphasis on

the intuitive geometric content through the ample use of hands-on activities:

1. An intuitive introduction of the concept of congruence using rotations, transla-

tions, and reflections, and their compositions (page )
2. An intuitive introduction of the concepts of dilation and similarity (page [84])

3. An informal argument for the angle-angle criterion (AA) of similar triangles

(page [95])

4. Use of AA for similarity to give a correct definition of the slope of a line and
prove the Pythagorean Theorem (page )
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5. An informal argument that the angle sum of a triangle is 180 degrees (page
104])

6. Introduction of some basic volume formulas (page [105])

Grade 8 is a pivotal grade in the CCSSM. Unlike other standards of the past
two decades, they provide proper preparations for eighth graders to learn beginning
algebra and they also furnish them with a firm foundation for the more formal devel-
opment of high school geometry. The key fact regarding the former is that the CCSSM
equip students with a working knowledge of similar triangles so that a correct defi-
nition of the slope of a line can be given. Contrast this with the definition-by-rote
of slope given in TSM (see page |2)) as “rise over run”. Because the concept of slope
underlies the discussion of linear equations and functions—which are the mainstay
of the curriculum of introductory algebra—the importance of this curricular decision
cannot be overstated. By emphasizing the intuitive content of geometry, the eighth
grade standards of the CCSSM also manage to maximize students’ chances of learning
geometry in a high school course rather than learning how to memorize two-column
proofs. At this point, the reader may find it profitable to read the pedagogical com-
ments on page[I50/and page[I54]to get a coherent overview of the geometry curriculum
in the CCSSM.

It is worth pointing out, explicitly, that the discussion of geometry in this grade
includes also Standard 6 from FExpressions and Equations because a principal appli-
cation of similar triangles—the definition of the slope of a line—is hidden in that
standard.

Since the release of the CCSSM in June of 2010, very little has been written on
such an approach to geometry that is mathematically sound. For this reason, the
following commentary on the standards of Grade 8 will be more detailed than those
in the earlier grades. If even more details are needed, one may consult the following

(recall: these are active links):

H. Wu, Pre-Algebra (Chapters 4-7)
H. Wu, Teaching Geometry in Grade 8 and High School

According to the Common Core Standards
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http://math.berkeley.edu/~wu/Pre-Algebra.pdf
http://math.berkeley.edu/~wu/CCSS-Geometry.pdf
http://math.berkeley.edu/~wu/CCSS-Geometry.pdf

1. Basic rigid motions and congruence

Overview (page

Preliminary definitions of basic rigid motions (page [67)
Motions of entire geometric figures (page
Assumptions on basic rigid motions (page
Compositions of basic rigid motions (page

The concept of congruence (page

Overview

The main new ideas in the eighth grade are the concepts of translations, reflec-
tions, rotations, and dilations in the plane. The first three—translations, reflections,
rotations—are collectively referred to as the basic rigid motions, and they will be
discussed in this section. Dilation will be explained in the next.

Before proceeding further, we note that the basic rigid motions are quite subtle
concepts whose precise definitions should be preceded by other advanced concepts,

but for grade eight,

it is the intuitive geometric content of the basic rigid motions that needs

to be emphasized.

Fortunately, the availability of abundant teaching tools makes it easy to convey this
intuitive content. In this document, we will make exclusive use of overhead projector
transparencies as an aid to the explanation of basic rigid motions. This expository
decision should be complemented by two remarks, however.

The first is to caution against the premature use of computer software for learning
about basic rigid motions. While computer software will eventually be employed for
the purpose of geometric explorations, it is strongly recommended, on the basis of
professional judgment and experience, that students begin the study of basic rigid
motions with transparencies rather than with computer software. Primitive objects
such as transparencies afford to beginners the advantage of direct control so that

unforeseen software-related subtleties do not interfere with the learning process. Let
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students first be given an extended opportunity to gain the requisite geometric intu-
ition through direct, tactile experiences before they approach the computer. A second
remark is that if you believe some other manipulatives are more suitable for your own
classroom needs and you are certain that these manipulatives manage to convey the

same message, then you should feel free to use them.

In the following, a basic rigid motion will mean a translation, a reflection, or
a rotation in the plane; a preliminary definition of each will be given below. In high
school, these concepts will be precisely defined. In general terms, a basic rigid motion
is a rule F' that assigns to each point of the plane P another point of the planem
to be denoted by F(P), and this rule will be described separately below for each of
translation, reflection, and rotation. Before doing that, we are going to introduce a

piece of terminology for the sake of clarity:
instead of saying “a basic rigid motion F' assigning F(P) to P”,

we will sometimes say: “a basic rigid motion F' moves a point P to
another point F(P).”

This terminology expresses the intuitive content of “motion” better than the original
language of a “rule of assignment”. It may be instructive at this point to give the
historical origin of the term “rigid motion”: it literally means moving the points from
one part of the plane to another “rigidly” so that the relative positions of the points
are unchanged, i.e., the distances between points remain the same in the motion. The
modern terminology for “rigid motion” is isometry. Still speaking intuitively, the
way an arbitrary “rigid motion” moves the points of the plane around may be hard
to describe precisely, but it is known that every such rigid motion can be achieved
also by a sequence of translations, rotations, and reﬂections.ﬁ Because the behav-
ior of translations, rotations, and reflections can be easily understood through the
manipulation of transparencies, the behavior of an arbitrary “rigid motion” becomes
understandable. This is why translations, rotations, and reflections are called the
basic rigid motions. We now proceed to show that the motion of each of these three

basic rigid motions is very easy to visualize.

17This should remind you of the definition of a function of one variable.
18For further details, see the forthcoming volume, H. Wu, Mathematics of the Secondary School
Curriculum, I1.
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In the following, we will describe how to move a transparency over a piece of
paper in order to demonstrate the effect of a basic rigid motions on the points in
the plane. In reading the description, please bear in mind that, «n the classroom,
a face-to-face demonstration with transparency and paper is far easier
to understand than the clumsy verbal description given below. In order to
compensate for this clumsiness, we are going to provide animations on pp. [68], [70],
73, [77, B2, [102, and to give an idea of such a face-to-face demonstration.
Moreover, there are digital document cameras at the time of writing (October, 2013)
that are capable of making a teacher’s demonstrations with transparencies easily vis-
ible to the whole class or even to a large audience. Thus the potential of hands-on

activities in the learning of geometry is far from being exhausted.
Definitions of the basic rigid motions

We begin with the basic rigid motion called a reflection. Let a line L be given.
Then the reflection R across L moves all the points in the plane by “reflecting”
them across L as if L were a mirror. The line L is called the line of reflection of R.
For definiteness, let us say L is a vertical line and let us say two arbitrary points in
the plane are given. We now describe how R moves these points. Let the line L and
the dots be drawn on a piece of paper in black, as in the picture below. The black

rectangle indicates the border of the paper.

Note that we are using a finite rectangle to represent the plane which is infinite
in all directions, and a finite segment to represent a line which is infinite in both
directions. With this understood, trace the line and the points exactly on a trans-

parency (of exactly the same size as the paper, of course) using a different color,
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say red. Keeping the paper fixed, now flip the transparency across the vertical line
(interchanging left and right) while keeping every point on the red vertical line on
top of the same point on the black vertical line. The position of the red figure of two
dots and the red line on the transparency now represents how the original figure has

been reflected. (The red rectangle indicates the border of the transparency.)

One should be aware of how the reflected figure compares with the original, so
we draw them together below. Since the black figure represents where the red figure
used to be, and is therefore just background information, we have drawn the black

rectangular border and the black vertical line in dashed lines to emphasize this fact.

The following animation by Sunil Koswatta realizes this definition of a reflection
and will be helpful to beginners:
http://www.harpercollege.edu/ skoswatt /RigidMotions /reflection.html

We now look at the rule of assignment of the reflection R which moves the points
in the plane represented by the black dots to the corresponding points in the plane
represented by the red dots.
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Of course every point on the vertical line remains unmoved. In partial symbolic

notation, we have:
R(upper black dot) = upper red dot,  R(lower black dot) = lower red dot

It goes without saying that R moves every point in the plane not lying on L to the
“opposite side” of L, and the two points above are meant to merely suggest what
happens in general. A key observation is that, if we take two points A and B in the

plane and

if R moves the points A and B to R(A) and R(B), respectively, then the
distance between A and B is equal to the distance between R(A) and R(B).

This is because the red dots are the ezact replicas (on the transparency) of the black
dots on the paper, and so the distance between the red dots is exactly the same as that

between the black dots. We refer to this property of R as the distance-preserving
property.

Next, we define the basic rigid motion of a translation along a given vector
. A vector is a segment in the plane together with the designation of one of its two
endpoints as a starting point; the other endpoint will be referred to simply as the
endpoint. Pictorially, the arrowhead on the endpoint of a vector will distinguish it
from the starting point. Let us continue with the same picture of a vertical line with

two dots on a piece of paper, and we keep the paper fixed, as before. We are going
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to define the translation T" along a given blue vector, to be called 7, as shown.

"

We copy the vertical line, the two dots, and the vector on a transparency in red; in

particular, the copy of o on the transparency will be referred to as the red vector.
Let the line containing the blue vector be denoted by ¢ (this is the slant dashed line
in the picture above). We now slide the transparency along 7, in the sense
that we move the transparency in the direction of 7 so that the red vector on the
transparency remains in the line ¢, and so that the starting point of the red vector

rests on the endpoint of the blue arrow, as shown.

\

The whole red figure is seen to move “in the direction of 7 and by the same dis-
tance”. Then by definition, 7" moves the black dots to the red dots. Precisely,
the rule of assignment of 7" moves the point in the plane represented by the upper
(respectively, lower) black dot to the point in the plane represented by the upper
(respectively, lower) red dot. The following animation of essentially this translation
by Sunil Koswatta would be helpful to a beginner:

http: //www.harpercollege.edu/ “skoswatt /RigidMotions/translation.html
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If we draw the translated figure by itself without reference to the original, it is

visually indistinguishable from the original:

So we put in the black figure as background information to show where the red
figure used to be. Then T moves the points represented by the black dots to the
corresponding points represented by the red dots, and moves each point in the black
vertical line to a point in the red vertical line. The dashed arrows are meant to

suggest the assignment.

———————————————————————————————

For exactly the same reason as in the case of a reflection, a translation is distance-
preserving: if A and B are any two points in the plane and if T assigns the points
T(A) and T'(B) to A and B, respectively, then the distance between A and B is equal
to the distance between T'(A) and T'(B).

We make an observation about translations: If 6> is the zero vector, i.e., the
vector with 0 length, which is a point, the translation along 6> then leaves every

point unchanged. This is the identity basic rigid motion, usually denoted by I.
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Thus I(P) = P for every point P. (This is the transformation analog of the identity
function of one variable: f(x) = z for every number z.)

Finally, we define the basic rigid motion called the rotation Ro around a given
point O of a fixed degree. The point O is called the center of rotation of Ro.
The center O could be any point, but for definiteness, let it be the lower endpoint
of the vertical line segment we have been using, and let the rotation be 30 degrees
counterclockwise around this point (one could also do a clockwise rotation). Again,
we trace the vertical line segment and the two dots on a transparency in red. Then
we pin the transparency down at the center of our chosen rotation, which is the
lower endpoint of the segment and (keeping the paper fixed of course) rotate the
transparency counterclockwise 30 degrees, i.e., so that the angle between the black
segment and the red segment is 30 degrees. In the picture below, the rotated figure
is superimposed on the original figure and, as usual, the red rectangle represents the
border of the transparency. By definition, the rotation moves the upper black dot to

the upper red dot, and the lower black dot to the lower red dot.

Observe that the angle formed by the ray from the center of rotation to a black dot
and the ray from the center of rotation to the corresponding red dot is also 30 degrees.

So far we have discussed rotations of positive degrees, and they are, by definition,
the counter-clockwise rotations. A rotation of negative degree is defined exactly as
above, except that the transparency is now rotated clockwise. Therefore, a rotation of

—35 degrees around a point B means we rotate the transparency clcokwise 35 degrees
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around the point B.

The following two animations by Sunil Koswatta show how a rotation of 35 degrees
(respectively, —35 degree) rotates a geometric figure consisting of three points and

an angle whose vertex is the center of the rotation:

http://www.harpercollege.edu/~skoswatt /RigidMotions /rotateccw.html
http://www.harpercollege.edu/ “skoswatt/RigidMotions/rotatecw.html

We now draw the rotated figure as a geometric figure in the plane. Again we
emphasize that the dotted black figure is provided only as background information;
it serves as a reminder of where the red figure used to be. The dotted arcs indicate

the rule of assignment by Ro.

A rotation is distance-preserving, for the usual reason that what is on the trans-
parency is nothing but an exact replica of what is on the paper. Note that a rotation

of 0 degrees is also the identity basic rigid motion /.
Motions of entire geometric figures

We now introduce some terminology to facilitate the ensuing discussion. Given a
basic rigid motion F', it assigns a point F'(P) to a point P in the plane. We say F'(P)
is the image of P under F, or that F' maps P to F(P).

We have given a description of how a reflection, a translation, or a rotation moves

each point. What we do next is to examine a bit how a basic rigid motion moves, not
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just a point, but a whole geometric figure, in the following sense. Given a geometric
figure S in the plane, then each point P in S is mapped by F' to another point F'(P).
Now focus entirely on S and observe what the total collection of all the points F'(P)
looks like when P ranges over all the points of S, and only the points in S. For un-
derstandable reasons, we denote such a collection by the symbol F'(8) and call it the
image of S by F. (We also say F maps S to F(S).) For example, in the preced-
ing picture of the 30 degree counterclockwise rotation Ro around the lower endpoint
of the vertical segment, let the lower endpoint be denoted by B and let S denote
this vertical segmentH Then Ro(S) is the red segment AB, as shown. It makes a
30 degree angle with S. (Again, the red rectangle represents the border of the trans-

parency, and it is left in the picture to better convey how the plane has been rotated.)

Now, let T" be the translation along the blue vector that we encountered earlier on
page [70], and if S continues to denote the same vertical segment, then T'(S) becomes
the red segment which is now parallel to S rather than making a 30 degree angle with

S at its lower endpoint. (In the picture below, the fact that the upper horizontal

9Notice that in this instance, we are taking the picture literally and regard the segment for what
it really is: a segment. By contrast, we have, up to this point, used this segment to represent the
whole vertical line.
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dashed line passes through the lower red dot is entirely accidental.)

T(P)s |

We see that by looking at the image of a segment, we obtain at a glance a fairly
comprehensive understanding of the basic difference between a rotation and a transla-
tion, something that is not possible if we just look at the cut-and-dried descriptions of
how these basic rigid motions move the points, one point at a time. Students should
be exposed to many such hands-on activities to get a better feel for the “image of a

figure”.

We observe that rotation maps lines, rays, and segments to lines, rays, and seg-
ments, and are distance- and degree-preserving for the reason that each such image
is nothing but an exact replica (on the transparency) of the corresponding geometric

figure on the paper.
Assumptions on basic rigid motions

Let us summarize our findings thus far. Hands-on experiences, such as those above,
predispose us to accept as true that the basic rigid motions (reflections, translations,

and rotations) share three common “rigidity” properties:
1. They map lines to lines, rays to rays, and segments to segments.

2. They are distance-preserving, meaning that the distance between the images of

two points is always equal to the distance between the original two points.

3. They are degree-preserving, meaning that the degree of the image of an angle is
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always equal to the degree of the original angle.

Notice that property 1 implies that a basic rigid motion maps rays to rays, and since
angles are two rays with a common vertex (see page ), a basic rigid motion also
maps angles to angles. This is why in property 3 we can speak about “the degree of
the image of an angle” because this image is an angle.

The three properties above are believable, so why not just declare that these are
the starting points of our reasoning? In other words, on the basis of these properties,
what else can we say about geometric figures using logical reasoning? This will in
fact be our official position. In the ordinary parlance of mathematics, properties 1, 2,
3 above will be our assumptions about basic rigid motions, i.e., we will henceforth
agree that every basic rigid motion has these properties, and will use these properties
to make logical deductions about geometric figures.

For now, will also accept as part of our assumptions that there are “plenty” of

basic rigid motions, in the following sense:
R Given any line, there is a reflection across that line.
T Given any vector, there is a translation along that vector.

Ro Given a point and a degree, there is a rotation (clockwise or counterclockwise) of
that degree around the point.

In the high school course where we will have to make explicit other assumptions, we
will see that, in fact, R, T, and Ro can be proved and there will be no need to accept
them as an article of faith (see Lemmas 2-4 on page [13§]).

Compositions of rigid motions

Having explained the meaning of the basic rigid motions, it is time to go to the next
level and explain the concept of the composition of basic rigid motions, which
means moving the points of the plane by use of two or more basic rigid motions in
succession, one after another. The need for composition is easily seen by considering
an example. Suppose the following two identical H’s are paced in the plane as shown.

Is there a single basic rigid motion so that it maps one of these H’s to the other?
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Because there is no obvious such rigid motion to get the job doneET] we do the next
best thing by devising a sequence of basic rigid motions to accomplish the same thing.
Before describing this sequence of basic rigid motions, I want to point out that Larry

Francis has created an animation for this purpose:
Composition of Rigid Motions (translation, rotation, and reflection)

I think it would be profitable to watch this animation and also read the following
description; they complement each other.

We begin by mapping the lower right corner of the left vertical H to the upper
left corner of the right horizontal H because those two points are “well-matched”
intuitively. Once we have done that, then we can better think of what to do next. So

we translate the plane along the blue vector, as shown:

Now we trace the left vertical H onto a transparency in red, and then we slide the
transparency along the blue vector (see page [70| for the definition of slide). Then the
vertical (black) H on the left is moved to the position indicated by the red figure of

the transparency as indicated below:

20Tn fact it is impossible to use one basic rigid motion to map either H onto the other.
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Note that the translation along the blue vector also moves the horizontal black H
to a higher position (not shown here), but for our purpose, there is no need to keep
track of where this horizontal black H goes because we are only interested at this
point in the new position of the vertical black H. However, we put the black dashed
H’s in the picture above in order to remind ourselves where the original figure (of the
two H’s) used to be. In particular, they remind us that our goal is to further move
the vertical red H to where the dashed horizontal H is.

We have to move the plane (i.e., the transparency) again by using basic rigid
motions until the red vertical H on the transparencyf!| coincides with the black dashed
horizontal H. If we rotate the plane (i.e., the transparency) around the red dot (i.e.,
the endpoint of the blue vector) 90 degrees clockwise, the red figure will assume the

following position:

U |

Figure 1

Let us be clear about what the red figure means: this is the position of the

(original) black vertical H moved first by the translation along the blue vector, and

2IMore correctly, all the points of the plane in the area at present occupied by the red vertical H.

78



then followed by the clockwise rotation of 90 degrees around the red dot. Specifically,
under the consecutive actions of these two rigid motions, the vertical black H has
been moved to the position of the horizontal red H in Figure 1 above (the horizontal
black H has also been moved, but we are not concerned with that). At this point, it
is clear that our goal will be achieved if can move the horizontal red H in Figure 1 to
the dashed horizontal black H of Figure 1). This can be done by reflecting the plane
across the horizontal line that passes through the red dot (this line is not drawn in
Figure 1). We proceed to realize this reflection by flipping the transparency across
the horizontal line containing the red dot, interchanging the part of the plane (i.e.,
the transparency) above the line and the part below it (while keeping every point of
the horizontal line fixed). When we do that, the new position of the red figure is the

following;:

r
|
1
|
|
|
|
|
|
|
|
|
| T

By applying three basic rigid motions in succession, we finally achieve our goal.

To summarize: In order to move the left vertical H of the following picture to
coincide with the right horizontal H, we apply three basic rigid motions in succession:
(1) We first translate along the blue vector (whose endpoint we call P), then (2) follow
the translation by a 90 degree clockwise rotation around P, and then (3) follow the

rotation by a reflection across the horizontal line that contains P.
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We now give a formal definition of composition. Let F' and G be two basic rigid
motions. Then the composition F' o G, or G composed with F H is defined to
be the rule that assigns to a given point P the point F/(G(P)). In symbols:

(FoG)(P) = F(G(P))

Let us make sure that this definition makes sense. First of all, G moves P to the
point G(P) of the plane, so it makes sense for the rigid motion F' to move the given
point G(P) to the point F(G(P)). Thus the rule that assigns the point F'(G(P))
to the point P does make sense. Moreover, to find out which point F' o G assigns to
a given point P, first we obtain G(P) and then we focus on what F' does to G(P).
In terms of transparencies, this observation corresponds to our insistence that, once
we have moved the transparency according to the first basic rigid motion G, we are
no longer concerned with the effect that the second rigid motion has on the points in
their original positions in the plane (i.e., on the paper) itself, but only on the points
in their displaced position as a result of G (i.e., the points on the transparency).

Notice that F' o GG so defined also satisfies properties 1-3 on page shared by
the basic rigid motions. Indeed, consider property 1. If we think back on our use
of transparencies to define basic rigid motions, then it is clear that the image of a
figure under F o G is just a relocation of the same figure on the transparency to a
different part of the plane, and therefore if the figure is a line, or a ray, or a segment,
the image remains a line, or a ray, or a segment. For the same reason, distances and
degrees are preserved by F' o G. The conclusion: the composition F' o G enjoys the
same properties 1-3 on page [75| shared by the basic rigid motions.

One way to familiarize students with the concept of composition of basic rigid
motions is to use rigid motions to map geometric figures drawn in a coordinate system.

For example, consider the following triangle in the coordinate plane;

22 comes before F, as the following definition makes clear. It is unfortunate that the writing of
F o G gives the opposite impression when read from left to right.
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-10 -6 O

Suppose R is the reflection across the slant line (the “diagonal”) that makes a 45°
angle with the positive z-axis and 7' is the translation along the vector shown in red,

what is the image of the triangle by the composition 7" o R?

The concept of congruence

A main reason for introducing the concept of the composition of basic rigid motions
is that we need it to define congruence. In general, we say two geometric figures are
congruent if a composition of a finite number of basic rigid motions maps one figure
onto the other. We also call the composition of a finite number of basic rigid motions
a congruence. From the definition, we see that a composition of congruences is also
a congruence.

Because the concept of congruence has been treated in a cavalier manner in K-12
for so long (“same size, same shape” ), we call attention to the fact that once we have
this precise definition, we are duty-bound to use only this meaning of congruence
in all subsequent mathematical discussion. For example, we can no longer claim
that two geometric figures are congruent just because they seem to have the same
size and same shape, but must now produce a composition of basic rigid motions
that moves one figure to the other. As another example, this precise definition of
congruence sheds new light on the all-too-familiar criterion of (for example) ASA
for triangle congruence. In order to claim that ASA is true, we must now exhibit
a composition of basic rigid motions that moves one triangle to another when they
satisfy the requisite conditions (see below). This is what we are going to do. We first

recall the three classical criteria for congruence.

SAS criterion for congruence. If two triangles have a pair of equal
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angles (i.e., same degree) and corresponding sides of these angles in the

triangles are pairwise equal, then the two triangles are congruent.

ASA criterion for congruence. If two triangles have two pairs of equal
angles and the common side of the angles in one triangle is equal to the

corresponding side in the other triangle, then the triangles are congruent.

SSS criterion for congruence. If two triangles have three pairs of

equal sides, then they are congruent.

At this stage, it suffices for students to verify these theorems experimentally by draw-
ing pictures or by use of a geometric software. However, if more details are needed,
we now offer an informal proof of ASA (“informal” means that, while the overall idea
is correct, some details are glossed over) together with a link to an animation of the

proof created by Larry Francis:
Angle-Side-Angle Congruence by Basic Rigid Motions

Please also keep in mind that when the following proof is given in class by moving
(plastic, cardboard, or wooden) models of triangles on the blackboard, it is much more
understandable than the purely verbal explanation given here.

Let us begin the informal proof. Thus we have two triangles ABC and AyByCy
so that |ZA| = |£A|, |[AB| = |A¢By|, and |£B| = |£By|. We have to produce a
congruence (see page [81]) F' so that F(AABC) = AAgByCy, where the notation
means:

F(A) = Ay, F(B)=B,, F()=0,.

In greater detail, we have to produce a composition of basic rigid motions that maps

AABC exactly on AAgByCy, vertex by vertex.
B

A

Step 1: Bring vertices A and Aq together. If A = Ay already, do nothing. If not,

—
let T be the translation along the vector AAq (the vector consisting of the segment
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http://youtu.be/-yIZdenw5U4

joining A to Ag, with A as the starting point and with Ay as the endpoint) . Then
T(AABC) is a triangle with one vertex in common with AAgByCo.

T(B)

1(C)

To realize this by use of a transparency, we trace out AABC in red and then slide
AABC along the vector A—>Ao. We can show two of the positions of AABC (in red)
in its transition from A to Ag; the upper blue arrow in each picture indicates how
much further the red triangle has yet to go. In the background, we draw the original
positions of AABC and AAyByCy in dashed lines as a reminder of where things used
to be.

B B
i Co C
) //3\ L
B, AT B, |
A

/.

Step 2: Bring the sides AB and AgBy together. If the translated segment T(AB)
of AB already coincides with AyBy, do nothing. Otherwise, since A = Ay, a rotation
Ro of a suitable degree around Ay would bring the ray from Ay to T'(B) to coincide
with the ray from Ay to By. Then because of the assumption that |AB| = |AyBy|,
the same rotation would bring T'(B) to By.
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Ro(T(C)) %
Step 3: Bring vertices C' and Cy together. If the point Ro(T(C)) and the point

Cy are on opposite sides of the line joining Ay to By, then the reflection R across
this line would bring the point Ro(T'(C)) to the same side of Cy. We may therefore
assume that, after (possibly) a translation and a rotation and a reflection, the point
C' is brought to a point C’ which lies on the same side as the point Cy with respect
to the line joining Aj to By. See the following picture.

B
c! LN
~Go .
: v c
L /e _—
4 By
A

Now, we claim that, appearance to the contrary (as in the above picture), the ray
from Ay to C’ must coincide with the ray from Ay to Cy. This is because the basic
rigid motions preserve degrees of angles (see page ) and therefore ZC" Ay By is equal
to ZA, which is assumed to be equal to ZCyAgBy. Thus [£C"AgBy| = |£CyAgBo|,
and since C’ and Cj are on the same side of the line joining Ay to By, the two sides
AoCy and AgC’ coincide as rays. Similarly, the ray from By to Cy coincides with the
ray from By to C’. But C” is the intersection of the ray from Ag to C’ and the ray
from By to C’, while Cj is the intersection of the ray from Ay to Cy and the ray from
Ap to Cy. Thus " = Cy, which means after (possibly) a translation and a rotation
and a reflection, A, B, and C are brought respectively to Ag, By, and Cy. We have
proved the ASA criterion.

2. Dilation and similarity

Dilations and the Fundamental Theorem of Similarity (page
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Basic properties of dilations (page
The dilated image of a figure (page

Similarity (page
Dilations and the Fundamental Theorem of Similarity

So far we have dealt with rules of assignment in the plane that move points in
a distance-preserving manner (see page [75| for the definition). Now we will confront
an important class of such rules that definitely are not distance-preserving. Consider
this question: Given a wiggly curve such as the following, how can we “double its
size”? (Note: Please do not be misled by the imperfection of the graphics; this wiggly

curve has no width.)

One of the purposes of this section is to show how this can be done and, in the
process, clarify what it means to “double the size” of a geometric figure. The basic
idea of getting this done turns out to be the astonishingly simple one of fixing an ar-
bitrary point O in the plane and then pushing every point in the plane away from O
by doubling its distance from O. Once this idea takes root, it becomes clear that not
only “doubling the size”, but also “halving the size” can be achieved by a variation

on this theme. This is the concept of a dilation, and we formulate it as follows.

Definition. A dilation D with center O and scale factor r (r > 0) is a
rule that assigns to each point P of the plane a point D(P) so that
(1) D(O) = 0.
(2) If P # O, the point D(P), to be denoted more simply by P’, is the
point on the ray Rop so that |OP'| = r|OP].

O P P’

(.

r|OP)|
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Intuitively, if » > 1, the dilation pushes every point of the plane away from the center
O by “proportionally the same amount”, and if » < 1, then it pulls every point toward
the center O also by “proportionally the same amount”.

There are two things of note about this definition. One is that unless the scale
factor r is equal to 1, a dilation is not a congruence. The easiest way to see this is to
consider a simple situation where the scale factor r of the dilation D is (let us say)
2.5 and the center O is the origin of a coordinate system. Let the ray from O be the

positive z-axis and let two points P and () be the numbers 2 and 3, respectively.

O P Q Pl Q/
2 3 5) 7.5

Then |PQ|=3—-2=1. Thenif P = D(P) and Q' = D(Q), we have |OP'| =
r|OP| =25x2=5 and |0Q'|=r|0Q| =25 x3 =75. It follows that P’ =5
and Q' = 7.5 and |P'Q'| =7.5—5=25. In particular, |P'Q'| =2.5-|PQ| > |PQ)|
and D is not distance-preserving (see page [75]).

The same reasoning shows that, for any dilation D with center O and scale factor
r, the equality |D(P) D(Q)| = r|PQ| holds for any two points P and @ on a ray
issuing from O. Therefore unless r = 1, D cannot be a congruence.

A second thing to note about the preceding definition of dilation is that the point
P’ in condition (2) is chosen from the ray Rop and not the line Lop. Thus the point P

and its image P’ under D are always on the same side of the center O on the line Lop.

Now suppose points P and @) are on a line passing through the center O but do
not lie on the same ray. Does the equality |P'Q’| = r|PQ| continue to hold? The

answer is affirmative and the computation is quite similar.

r p O Q Q'

However, if line Lpg does not contain O, then the fact that |P'Q)’| = r | PQ| continues
to hold is much more subtle and this is the content of the following Fundamental
Theorem of Similarity, usually abbreviated to FTS. In the statement of the theo-

rem, we adopt a common abuse of notation: Let Lpq (respectively, Lp:g/) denote the
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line joining P and @ (respectively, P’ and @)'). Then instead of saying Lp¢ || Lpg,
we usually write:

P'Q" || PQ

Theorem (FTS). Let D be a dilation with center O and scale factor r > 0 and
r# 1. Let P and Q be two points so that Lpg does not contain O. If D(P) = P’ and
D(Q) = @', then

P'Q | PQ and |P'Q| = r|PQ)

O O

P Q P’ Q'
pl o »l 0

The case r > 1 The case r < 1

Eighth grade is not a suitable place to prove this theorem; a high school course
will be better able to handle such a proof, or at least a part of it. What one can
do in an eighth grade class is to verify simple cases of FTS by direct measurements
to gain confidence in its validity. For example, one can start with r = 2, 3,4, and
then verify that (within the bounds of measurement errors), indeed, |P'Q'| = 2|PQ)|,
|P'Q'| = 3|PQ|, |P'Q| = 4|PQ|, respectively, and PQ || P'Q’ each time. Then do
%, T :%7 T :%, etc.

However, the importance of F'T'S to eighth grade geometry is not so much to learn

the same with r» =

to prove it but learn to use it. We often come across such a situation in school mathe-
matics, namely, using a powerful tool without proof, because the proofs of such tools
can be given without circular reasonmg.@ We will use FTS to deduce the most basic

properties of a dilation.

23Briefly, this means that the reasoning used in affirming the validity of these tools is logically
independent of the application we have in mind for these tools.
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Basic properties of dilations

There are four of them. Their proofs can be found in a high school course, but in
line with the curricular goal of eighth grade geometry, we will only give an informal
proof for the last one.

First of all, notice that insofar as a dilation is a rule of assignment in the plane,
we will simply take over the terminology associated with basic rigid notions such as
maps, image, composition, etc. We will also fix the notation as in FTS, i.e., we have
a dilation D with center at O and scale factor r. Then the discussion leading up to

FTS about |P'Q’| may now be summarized as follows:

(2) Let D be a dilation with scale factor r. Then the distance between the
images P' = D(P), Q' = D(Q) of any two points P and Q) is always r

times the distance between P and @Q), i.e.,
|P'Q'| = r|PQ).

We usually paraphrase (i) by saying that a dilation with scale factor r changes distance
by a scale factor of r. Here is an example where r = 2:

Q

P Q

P/ Q/
A second property is this:

(22) A dilation maps lines to lines, rays to rays, and segments to segments.

The main point here is the assertion about lines. Again, for grade eight, it suffices
to verify this assertion in special cases by picture drawing. Once that we know a
dilation D maps a line PQ to the line P'Q)’, where P’, )’ are the images of P, ()
under D, F'TS now implies:

(2¢d) A dilation maps a line not containing the center of dilation to a

parallel line.
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A fourth basic property of dilation is the following.
(tv) A dilation preserves degrees of angles.

We note first of all that (iv) makes sense because by (ii) above, a dilation maps rays
to rays and therefore angles to angles. So it makes sense to ask for the degree of the
image angle by a dilation. For eighth grade students, the following informal argument
for (iv) will be enough and a rigorous proof can be postponed to a high school course.
We begin with a fact about parallel lines. Let L; and Ly be two distinct lines and
let ¢ be a transversal of L; and L in the sense that ¢ intersects both. Suppose /¢
meets Ly and Ly at P, and Ps, respectively. Then the angles /S P, Ry and £ P, P4
in the picture below, with vertices at P, and P, and lying on the same side of the
line ¢, are called a pair of corresponding angles of the transversal ¢ with respect to
Ly and L,. Replacing one of them by its opposite angle (or vertical angle) such
as /P, P,(Q)o, then /P, P,() and Z P, P (), are called alternate interior angles of /
with respect to Ly and Ly. Similarly, ZRy PPy and ZQ)P,T are also corresponding
angles of ¢ with respect to Ly and L.

Then we have the following theorem.

Theorem 1. (a) Corresponding angles of a transversal with respect to parallel lines
are equal, and conversely, if a pair of corresponding angles of a transversal with respect
to two lines are equal, then the two lines are parallel. (b) Alternate interior angles

of a transversal with respect to parallel lines are equal, and conversely, if a pair of
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alternate interior angles of a transversal with respect to two lines are equal, then the

A
b

Since opposite angles are (easily seen to be) equal, it suffices to prove part (a).

two lines are parallel.

L

2
Ly

We suggest that eighth graders simply verify special cases of this theorem by direct
measurements. In fact, it would be very instructive to teach them how to use the
converse statement of part (a) to draw a line parallel to a given line and passing
through a given point with the help of a ruler and a plastic triangle.

We can now return to the original problem which inspired this detour into par-
allelism: How to prove that a dilation preserves degrees of angles (page ) Let D
be a dilation (with some center O) and let ZPQR be given. Let D(QP) = Q'P" and
without loss of generality, we may assume R is the intersection of Lor and L/ pr. Let
D(QR) = Q'R so that D(ZPQR) = ZP'Q'R'.

P,
We have to prove that /(

[ZPQR| = |ZP'QR|. @ R

Q =

Let the angle formed by Lo pr and Lgr at R, as indicated in the picture, be denoted
by Zs. Since D(QR) = Q'R’, (iii) implies that QR || Q'R (page ), so that, by
Theorem 1(a),

|/P'Q'R'| = |Zs|
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Since also D(QP) = Q'P’ by assumption, Theorem 1(a) implies that
[Zs| = [ZPQR]|

Hence |ZPQR| = |£ZP'Q'R/|, as desired.

We have just given the essential idea of why a dilation preserves degrees of angles.
The dilated image of a figure

Property (ii7) of a dilation makes it very easy to draw the dilated image of a
rectilinear geometric figure, i.e., one that is the union of segments (in the sense of
the collection of all the segments). Consider a segment PQ and a dilation D, then
the image D(PQ) by D is simply the segment P'Q)’, where P’, Q' are the images of
P and @ by D, respectively. This is because (7i7) says the image D(P(Q) is a segment
joining D(P) = P’ and D(Q) = @', and since P'Q)’ is also a segment joining P’ and
@', we must have D(PQ) = P'Q)’ (there is only one line joining two distinct points).

For example, if we have to get the dilated image of a given quadrilateral ABC'D
with a scale factor of 2.1, we take a point O as the center of dilation, draw rays from O
to the vertices. On each of these rays, say the ray from O to A, mark down A’ so that
|OA'| = (2.1) - |OA]. Do likewise to the other rays. We thus obtain a quadrilateral
A'B'C'D’. By assertion (iii), D(ABCD)= A'B'C'D'.

O B 5

This D(ABCD) is by definition the magnification of ABCD to 2.1 times its

size. So for rectilinear figures, how to magnify them is straightforward.
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Notice that, in an intuitive sense, ABC'D and D(ABCD) do “look alike”, i.e.,
they have “the same shape”.

We can now return to the curve at the beginning of this section:

How to “double its size”? We choose an arbitrary point O outside the curve as the
center of a dilation and dilate the curve with a scale factor of 2. Now by definition,
dilating the curve means dilating it point by point, and since the curve contains an
infinite number of points, we have to compromise for the sake of drawing by dilating
only a finite number of points on the curve. We start simply: take a point P on the
curve and on the ray OP, we mark off a point P’ so that |OP’| = 2|OP|. Now repeat
this for a small number of such P’s and get something like the following. The contour

of a curve that is bigger than, but “looks like” the original is unmistakable.

P/

Now if we choose, let us say 1500 points on the original curve@ and dilate them
one-by-one, we get the usual curve that appears on the computer screen. We have
omitted the radial lines but retained the center of the dilation; on a normal computer

screen, of course even the center is omitted.

Given a curve S, if there is a dilation D with scale factor  (and some center) so
that D(S) = &', then we say the curve &’ is a magnification with a scale factor
r of the curve 8. (For lack of a better term, we let the word “magnification” be
used even when r < 1.) In this sense, the above dilated image of the original curve is

“double the size” of the original, and our problem is solved.

24This is an estimate of how many points the graphing software uses.
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0

Of course, you may be puzzled by this new meaning of “magnification”. After
all, don’t we recognize whether something is a “magnification” of a given figure or
not, and whether or not they have the same shape? Perhaps, but in mathematics,
what is needed ultimately is not some vague feelings that any particular individual
happens to possess, but a precise articulation of the properties or qualities that we
try to express in a way that leaves no room for misunderstanding. From this point of
view, the preceding definition of “double the size” (i.e., magnification with scale factor
2) is sufficiently precise to be usable. Furthermore, this definition of “double the size”
would not be acceptable if the image curve under the dilation fails to have “the same
shape” as the original curve or fails to look “twice as big”, but the image curve passes
this common-sense test with flying colors as well. (In a school classroom, be sure to
let students draw many magnifications with various scale factors of different curved
figures so as to give them confidence in this definition of “magnification”.) So this is
the definition we shall abide by in our mathematical work related to “magnification”.
Incidentally, what we have described here is the underlying principle of magnification
in digital photography; this is how an image is enlarged or reduced in size in the
digital world.

In a classroom, getting students to do the magnification of a curvy figure by di-
lation (with a reasonable number of points chosen and strategically placed on the
original figure), and with different scale factors, would be a very worthwhile learning
experience. It would reinforce their confidence in, and their understanding of the
definition of dilation, and it is also a “fun” activity because it is not at all obvious

how a figure can be enlarged or reduced in size.
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Similarity

We have seen that the dilated image of a figure “has the same shape” as the
original, so a geometric figure would most certainly “have the same shape” as its
image under any dilation. But does this suggest that we can simply define two
geometric figures to be “similar” if one is the dilation of the other? The answer is
unfortunately no. Consider, for example, the dilated image of a triangle ABC' to a
triangle AgBCy by a dilation D centered at B as shown, with a scale factor r < 1.
Of course these two triangles “have the same shape”. Now let a congruence F' move
NAyBCy to AA'B'C’, as shown (more precisely, F' is the composition of a 90 degree

clockwise rotation around By followed by a translation).

B
Ay Co
A/
C’kBl
A C

Because AAyBCy and AA’B'C’ “have the same size and the same shape”, we have
to agree that AABC and AA’B’'C" also have the same shape. Yet there is no dilation
D’ that maps AABC to AA’B'C’ because if there were, we’d have

D(A)=A and D(C)=C"

so that by property (iit) of a dilation (page [88]), we would have AC || A’C’, which
is not the case. Therefore similarity between geometric figures cannot be limited to
those so that one is obtained from the other by a dilation. At the same time, the
preceding example also suggests how to define similarity correctly: we should include
the composition with a congruence in the definition.

We therefore define a figure S in the plane to be similar to another figure S’ if
there is a dilation D and a congruence F' so that (F o D)(S) = §’. According to
this definition, we now see that AABC is similar to AA’B'C’ because if D is the
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dilation that maps AABC to AAyBCj and F' is the congruence that maps AAyBC
to AA’B'C’, then

(FoD)(AABC) = F(D(AABC)) (definition of composition, page [80])
= F(AAyBCy) (D maps AABC exactly to AAyBCy)
= AA'B'C'" (F maps AAyBCy exactly to AA’B'C")

Thus the dilation D followed by the congruence F bring AABC to AA'B'C".

According to this definition, it is also the case that if a dilation D maps a figure
S to another figure &', then S is similar to 8’ because we can let the congruence F
be the identity basic rigid motion I (page [71]) so that (I o D)(S) = &'. Likewise, if a
figure S is congruent to another figure &', then S is similar to S’ because we can let
the dilation be the identity dilation (scale factor 1).

The composition F' o D of a dilation followed by a congruence is called a sim-
ilarity. The scale factor of the dilation D is then called the scale factor of the
similarity F o D.

We conclude this section by bringing closure to the discussion of scale drawings
started in grade 7 (page ) If there are two geometric figures in the plane, S and
S’, then by definition, &’ is said to be a scale drawing of S with scale factor r if
there is a similarity F' o D with scale factor r so that (F'o D)(S) = §'.

To see how this definition of scale drawing is related to the discussion on page
b0}, notice first of all that a one-to-one correspondence is a transformation and that
a composition of one-to-one correspondences remains a one-to-one correspondence
(this is a straightforward exercise). Now a dilation is necessarily a one-to-one corre-
spondence of the plane with itself, as is any congruence. Thus a similarity, being a
composition of a dilation and a congruence, is also a one-to-one correspondence. Fur-
thermore, property (i) on page [88 shows that a similarity satisfies the proportionality
relationship given at the bottom of page[51 Thus the concept of similarity is nothing

but a precise formulation of the concept of scale drawing.
3. The angle-angle criterion (AA) for similarity

Let AABC be similar to AA’B'C".
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A/

B C B’

Thus there is a dilation D and a congruence F' so that (F o D)(AABC) = AA'B'C".
It is convenient to denote the similarity F'o D by a single letter, say H = F o D. (We
use H in this document, but it may be better in a school classroom to use only Fo D
to remind students that a similarity is a composition of a dilation and a congruence.)
Recalling the convention regarding the notation of congruent triangles, we explicitly
point out that the notation H(AABC) = AA'B'C’ carries the convention that

H(A)=A", H(B)=B, and H(C)=C(C'
Let the scale factor of the dilation D be r, and let

D(A)= A", D(B)=DB*, and D(C)=C"
By properties (i) and (iv) of dilations (pages [8§]), we get

|LA| = |£LA*|, |4B|=[4B*|, |£C|=|4C"|

|AB| |BC| |AC|
Now F'is a congruence which preserves lengths and degrees. Therefore all this infor-
mation about AA*B*C* will be transferred to AA’B’C" and we arrive at the following

theorem.

and

Theorem 2. Let NABC be similar to NA'B'C'. Then
[ZA| = [£ZA, |4B| =148, [£C]=1£C"]
and

|AB|  |BC|  |AC]|
|A/B/| - |B/O/| - |A/O/|
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It is worth remarking that whereas the content of this theorem is usually taken
to be the definition of similar triangles, for us this theorem is a confirmation of the
fact that two triangles with “the same shape” (equal angles and proportional sides)
are indeed similar in a precise sense.

The converse of Theorem 2 is also true. However, as in the case of congruence
(page ), much more is true. The following are the counterparts in similarity of the
SAS, ASA and SSS criteria for congruence, respectively.

SAS criterion for similarity. Given two triangles ABC and A’B'C’,

suppose
|AB|  |AC]

‘A'B” _ |A/C/’

|ZA| =|£A"| and

Then the triangles are similar.

AA criterion for similarity. Given two triangles ABC and A'B'C’,
suppose two pairs of corresponding angles are equal. Then the triangles

are similar.

SSS criterion for similarity. Given two triangles ABC and A’B'C’,
suppose the ratios of the (lengths) of three pairs of corresponding sides

are equal. Then the triangles are similar.

The proofs of these theorems are more suitable for a high school course than an
eighth grade class, but we are going to give a proof of the AA criterion because it is

so central to the discussion of the slope of a line. The proof is based on FTS.
Proof of the AA criterion for similarity. Suppose we are given triangles ABC

and A’B'C" such that |ZA| = |£A| and |£B| = |£B’|. We have to show that the

triangles are similar.
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A
BA* P
o

B£2 C B’

If |AB| = |A’B'|, then triangles ABC and A’B’C" are congruent because of the
ASA criterion for congruence (pages |82 and ); there would be nothing to prove.
Thus we may assume that the sides AB and A’B’ have different lengths: either
|A’B’| < |[AB] or |A'B’| > |AB|. Since the proofs for these cases are entirely similar,
we take up the former for definiteness. Thus we assume |A'B’| < |AB|. On the
segment AB, let B* be the point so that |AB*| = |A’B’|. Also let r = |A'B'|/|AB| (=
|AB*|/|AB]|). Denote the dilation with center A and scale factor r by D, and let C*
be the point in the segment AC' so that C* = D(C). By FTS (page 87), B*C* || BC
and therefore |ZAB*C*| = |£B|, by Theorem 1 (page [89). But by hypothesis,
|£/B| = |4B'|, so

|LAB*C*| = |£B/|.

Since |ZA| = |£A'] by hypothesis, triangles AB*C* and A’ B'C’ now satisfy the condi-
tions of ASA and are congruent. Hence there is a congruence F' so that F(AAB*C*) =
AA'B'C'. But by the definition of D, we already have D(AABC) = AAB*C*.
Thus we now see that the similarity transformation, which consists of the dilation
D bringing AABC to AAB*C* followed by the congruence F' bringing AAB*C*
to AA'B'C", maps AABC exactly to AA'B'C’. In symbols, (F o D)(AABC) =
AA'B'C" because

(F o D)(AABC) = F(D(AABC)) = F(AAB*C*) = AA'B'C".

The two triangles ABC and A’B’'C" are therefore similar.

We remark that this proof makes use of the ASA criterion for congruence, FTS,

and Theorem 1. It is a remarkable example of making use of the available tools to
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solve a problem. If we want students to be proficient in problem-solving, we have
to give them excellent examples of how it is done. For this reason, although one
cannot mandate the teaching of this proof in all the eighth grade classrooms, it is

nevertheless recommended that this proof be presented in class if at all possible.
4. Slope of a line and the Pythagorean Theorem

For eighth grade, the significance of the above three criteria for similarity lies not
so much in getting students to know how to prove them as in getting them to learn
how to put them to use. In this section, we give two examples of such applications,
the second one being a proof of the Pythagorean theorem.

A typical example arising from algebra is the following. Given a line L in the
coordinate plane together with two points P = (p1,p2) and Q = (q1,¢2) on L. For
this discussion, let the line slant to the right as in the following picture. Let lines
parallel to the coordinate axes and passing through P and () be drawn. In general,

these pairs of parallel lines meet at two points R and R*, as shown:

Y

L
R* P

It will be clear presently that it does not matter whether R or R* is used for this

discussion, but the prevailing convention is to use the lower point R. We will follow
|PR|
IQR|”
of the right triangle APQR to the horizontal side of the same triangle, is commonly

this convention. With this understood, the ratio comparing the vertical side
proposed as a measure of the “degree of steepness” of the line L, and this ratio is
called the slope of the line L.

We hasten to observe that if R* is used instead of R, then the two corresponding

ratios % and Igg:l‘, are equal because |PR| = |QR*| and |QR| = |PR*| (opposite
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sides of a rectangle are equal, see page ) This is the reason that it doesn’t matter
whether R or R* is used.

In school textbooks, % is called the slope of the line L. This should be cause
for some reflection: After all, if two other points P’ and @)’ are chosen on L instead
and we form the ratio % accordingly, as shown,

Y
L
P
Q R
P/
e - Y
Q R/

then we would have the quotient ;g:ﬂ instead of %. So which is the slope of L,
{gi_};l\ or % ? Fortunately, it turns out that they are equal:

|PR|  |P'R|

QR Q' R|
Therefore, the ratio % 15 independent of the choice of the two points P and () and

is well qualified to be called the slope of L.

The failure of school textbooks to address this issue accounts for much of the
nonlearning of linear equations and straight lines in introductory algebra; it also
implicitly encourages sloppy thinking. A main reason for the CCSSM to introduce
similar triangles in the eighth grade is precisely to resolve this issue affirmatively,
thereby showing that the concept of slope is well-defined, in the sense that the ra-

|PR|

tio [OR| remains the same no matter which two points P and () on the line L are

chosen. For a fuller discussion, see Section 4 of H. Wu, Introduction to School Algebra.
Let us start from the beginning and do it properly. Given a line L in the coordinate

plane together with two points P = (p1,p2) and Q = (q1,¢2) on L. Let lines parallel
to the coordinate axes and passing through P and () be drawn and let them meet at
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R (recall the convention above about the point R). Now there are two possibilities

for L: it can slant to the right (left picture below) or to the left (right picture below).

Y
I LY
P
P
Q R
P/ R Q
R/
For the line on the left, the slope of the line L is defined as the ratio %,
whereas for the line on the right, the slope is — % . Thus the minus sign in the slope

differentiates between the two different slants of the lines. It suffices to consider the
case of the line on the left because the reasoning is entirely similar.

We are going to show that the slope of the line L is independent of the two chosen
points P and (). Thus we choose two arbitrary points P’, ()’ on L and we get a point
of intersection R’ in like manner (see left picture above), and we are going to prove:

|PR|  |P'R|
QR QR

Therefore this ratio is a property of the line L after all and not of the pair of points

chosen.

To prove the preceding equality, we are going to use the AA criterion for similarity
(page[97]) to prove that triangles PQR and P'Q'R’ are similar. Indeed, the lines QR
and QQ'R’, being both parallel to the x-axis, are parallel to each other. Theorem 1
(page BY]) implies that [ZPQR| = |ZP'Q'R/|. Since ZPRQ and ZP'R'Q)’ are right
angles, they are also equal. So the triangles PQR and P'Q)' R’ have two pairs of equal
angles and are therefore similar. By Theorem 2 on page [06], we get

PR |QR)

PR QR
This implies

|PR|  |P'R|

QR |Q'R|
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by the cross-multiplication algorithm@ We are done.

As our second application of the AA criterion for similarity, we prove the Pythagorean
Theorem. Let us fix the terminology. Given a right triangle ABC with C being the
vertex of the right angle, then the sides AC' and BC' are called the legs of AABC,
and AB is called the hypotenuse of AABC.

A
C

b

C - B

Theorem 3 (Pythagorean Theorem). If the lengths of the legs of a right triangle
are a and b, and the length of the hypotenuse is c, then a® + b* = 2.

Proof. There is an animation of the following proof created by Larry Francis:
Pythagorean Theorem proof from similar right triangles

We will have more to say about this animation later. For the proof proper, we draw
a perpendicular C'D from C' to side AB of the given AABC', as shown:

4 D 4 D D
C
C C - B C - B

We draw this perpendicular because it creates, from the point of view of the AA

criterion for similarity, three similar triangles. For example, right triangles C' BD and
ABC' are similar because they share ZB in addition to having equal right angles.
Likewise, right triangles ACD and ABC are similar because they share ZA. For

250r rather, by the formal extension of the cross-multiplication algorithm from complex fractions
to arbitrary numbers using the Fundamental Assumption of School Mathematics. See page 88 of
H. Wu, Pre-Algebral (remember, this is an active link).
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beginning students, it may help them to see the similarity of the three triangles better
if we do the following: (1) To AACD, apply a suitable counterclockwise rotation
around the vertex C, a reflection across the line Lpc, and then a translation to
the left to obtain the AACD on the left below. (2) To ACBD, apply a suitable
counterclockwise rotation around the vertex B, a reflection across the line Lgc, and
then a translation to the right to obtain the AC'BD on the right in the following

picture:

AN D C
A b < a
L
D c C _ B D B

Specifically, for the similar triangles AABC and AACD, in order to set up the
correct proportionality of sides, Theorem 2 (page ) tells us that we need the cor-
rect correspondences of the vertices. The vertices of the two right angles obviously
correspond, so C' of AABC corresponds to D of ACDB. The two triangles share
/B, so B of AABC corresponds to B of ACDB. Now there is no choice but that A
of AABC' corresponds to C' of ACDB. Thus we have:

C+ D, B+ B A«C

Hence ;g—g‘ = %, so that by the cross-multiplication algorithm,

|BC|* = |AB| - |BD)|
By considering the similar right triangles ABC' and AC'D, we conclude likewise that
|AC| _ |AD| d
[AB] — JAC| 2"
|AC|? = |AB| - |AD|
Adding, we obtain
|BC|* + |AC|* = |AB| - |BD| + |AB| - |AD| = |AB| (|BD| + |DA|) = |AB|?

This is the same as a? + b?> = ¢?. The proof is complete.
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Now the preceding algebraic computation that leads to |BC|? + |AC|* = |ABJ? is
very natural and one tends to accept it as is. However, in the animation by Larry
Francis (cited at the beginning of the proof), he makes a very nice observation that,
in fact, the algebra has a geometric interpretation in terms of area. If you have not

watched the animation, I highly recommend that you do.

To the teacher: There are all kinds of “cute” proofs of the Pythagorean The-
orem out there, but you are strongly encouraged to present the preceding proof in
your eighth grade classroom. There are two reasons. One is that at this point of the
geometry curriculum according to the CCSSM, students need all the exposure to the
concept of similar triangles they can get, and this proof of the Pythagorean Theorem
serves this purpose surpassingly well. A second reason is that most of the “cute”
proofs of the Pythagorean Theorem involve the concept of area as well as subtle (and
usually hidden) arguments that depend on the Parallel Postulate. The “cuteness” of
these proofs is usually the result of covering up how sophisticated the concept of area
really is and omitting any reference to the Parallel Postulate. These “cute” proofs
deserve to be learned, but should be learned without any cover-ups. In the meantime,
please present the preceding proof, as it is most attractive when viewed from the

perspective of Larry Francis’ animation.
5. The angle sum of a triangle

We now bring closure to the discussion of the AA criterion for similarity. If you
look at all six criteria for congruence and similarity (page 81| and ), you will notice
that the hypothesis of each of them consists of three equalities except for the AA cri-
terion, which has two equalities for angles. It is time to point out that the apparent

difference is an illusion because we will prove the following theorem.

Theorem 4 (Angle Sum Theorem). The angle sum of a triangle (i.e., the

sum of the degrees of the angles in a triangle) is always 180 degrees.

Thus if two pairs of angles in the triangles are equal, then all three pairs of angles

are equal.
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To prove that the angle sum of a triangle is always equal to 180 degrees, let triangle
ABC be given. On the ray from B to C, take a point D so that the segment BD
contains C'. Through the point C', draw a line C'E parallel to AB, as shown.

A
E

B C D
Now |ZA| = |ZACE| as they are alternate interior angles of AC relative to the
parallel lines AB and CE (Theorem 1(b) on page [89]). In addition, |ZB| = |[ZECD|
because they are corresponding angles of BD (Theorem 1(a) on page[89]). Therefore

the angle sum of triangle ABC' is equal to the sum of the angles that make up the
straight angle ZBC'D, and we are done.

[Without going into details, we should mention that there are subtle issues

inherent in this proof that we have chosen to neglect.]

6. Volume formulas

In grade 6 (see page [40), we explained why if a (right) rectangular prism has
dimensions a, b, ¢, its volume is abc cubic units (i.e., if the linear unit is inches,
the unit of the volume measure is inches®, if the linear unit is cm., then the volume
measure is in terms of cm.?), etc. In grade eight, we expand the inventory of volume
formulas to include those of a (generalized) right cylinder, a cone, and a sphere.

First we recall an interpretation of the volume formula for a rectangular prism. If

we have such a prism, as shown,
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and if we call the rectangle ABC'D the base of the prism and c its height, then the
area of the base is ab. Therefore the volume abc of the prism can now be expressed

as follows:
(A) volume of rectangular prism = (area of base) x height

In this form, this formula can be generalized in the following way. Let R be a region
in the plane, then the right cylinder over R of height h is the solid which is the
union of all the line segments of length h lying above the plane, so that each segment
is perpendicular to the plane and its lower endpoint lies in /R. When a right cylinder
is understood, we usually say “cylinder” rather than “right cylinder”. The region R is
called the base of the cylinder. Notice that when R is a rectangle, the right cylinder
over R is a rectangular prism, so that we are back to our starting point. Notice also
that the top of a right cylinder (i.e., the points in the cylinder of maximum distance
from the base) over R is also a planar region which is congruent to R, but we will
not spend time to explain what “congruent” means in three dimensions and will use

the term in a naive sense.

Then we have:
(B) volume of right cylinder over R of height h = (area of R) x h

So if R is a rectangle, this yields volume formula (A) for a rectangular prism, but if
R is a circle of radius r, then the right cylinder over a circle of radius r is called a

right circular cylinder. The preceding formula then implies

(C) volume of right circular cylinder of radius r and height h = 77%h
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The case of a right circular cylinder is the most important example of a “cylin-
der” in school mathematics, but the reason we introduce the more general concept
of a cylinder over an arbitrary planar region is that the explanations of the volume
formulas (B) and (C) are the same. It is also important to recognize that there is

only one general volume formula for cylinders, i.e., (B).

Let P be a point in the plane that contains the top of a cylinder of height h. Then
the union of all the segments joining P to a point of the base R is a solid called a
cone with base R and height h (see discussion in grade 6, page . The point

P is the top vertex of the cone. Here are two examples of such cones.

One has to be careful with the meaning of the word “cone” in the literature. If the
base R is a circle, then this cone is called a circular cone (see left figure below). If the
vertex of a circular cone happens to lie on the line perpendicular to the circular base
at its center, then the cone is called a right circular cone (see second figure from
left below). In everyday life, a “cone” is implicitly a right circular cone, and in many
textbooks, this is how the word “cone” is used. The convention being used in this
article regarding “cone” and “cylinder” is the one universally adopted in mathematics
outside of K-12.

If the base of a cone is a square, then the cone is called a pyramid (see middle
figure below) and if the base is a triangle, the cone is called a tetrahedron (see figure

on extreme right below); see the discussion in grade 6 on page .

The fundamental formula here is
(D) volume of cone with base R and height h

= % (volume of cylinder with same base and same height)
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Of great interest here is the factor %, which is independent of the shape of the base.
How this factor comes about is most easily seen through the actual computations
using calculus. However, even without the full arsenal of calculus, one can see the
reason for the % in an elementary way, as follows. Consider the unit cube, i.e., the
rectangular prism whose sides all have length 1. The unit cube has a center O, and
the simplest definition of O may be through the use of the mid-section, which is the
square that is halfway between the top and bottom faces (see the dotted square in the
following picture), and let O be the intersection of the diagonals of the mid-section.
It is easy to convince oneself, at least at the intuitive level by looking at pictures,

that O is equidistant from all the vertices and also from all six faces.

**********

Then the cone obtained by joining O to all the points of one face is congruen@ to
the cone obtained by joining O to all the points of any other face. There are six such
cones, one for each face.

Let C be the cone joining O to the base of the unit cube; it is the red cone above.
Because congruent geometric figures have the same volume (see (c) on page [40]), and
because six cones congruent to C make up the unit cube, and the unit cube has volume

1 by definition, we obtain:
volume of C = %

We have to interpret this formula the right way in order to bring out its significance.

26 Again we leave undefined the meaning of “congruent” in this context and allow it to be under-
stood in a naive sense.
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Consider the rectangular prism which is the lower half of the unit cube, i.e., the part

of the unit cube that is below the mid-section:

This particular rectangular prism has volume 1 and since % is equal to % X % = %

2 )
X (volume of this short prism), we have

volume of the cone C = 5 (volume of cylinder with same base and same height)

Wl

Here we see the emergence of the factor of %, and this is no accident because, using
ideas from calculus, one can show that if the preceding formula is true for one cone

C, then it is true for all cones.

Finally, we come to the volume formula of a sphere of radius r:

(E) volume of sphere of radius r = % w73

ol

The derivation of this formula is sophisticated and will have to be left to a high
school course. The discovery of this formula by Archimedes (287-212 B.C.) was a
major event in the mathematics of antiquity. Some seven centuries later, the same
formula was independently discovered in China by Zu Chongzhi (A.D. 429-501) and
his son Zu Geng (circa A.D. 450-520) by essentially the same method, which has come
to be known as Cavalieri’s Principle (Bonaventura Cavalieri, 1598-1647). Cavalieri
was a foreunner of calculus and a main reason his name is associated with the method
is that, by the time he enunciated it, his contemporaries were ready for calculus and
therefore he had an audience. Archimedes and the Zus were centuries ahead of their

times.
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HS GEOMETRY
Congruence G-Co
Experiment with transformations in the plane

1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line
segment, based on the undefined notions of point, line, distance along a line, and distance

around a circular arc.

2. Represent transformations in the plane using, e.g., transparencies and geometry
software; describe transformations as functions that take points in the plane as inputs and
give other points as outputs. Compare transformations that preserve distance and angle
to those that do not (e.g., translation versus horizontal stretch).

4. Develop definitions of rotations, reflections, and translations in terms of angles,

circles, perpendicular lines, parallel lines, and line segments.

5. Given a geometric figure and a rotation, reflection, or translation, draw the trans-
formed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a
sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions

6. Use geometric descriptions of rigid motions to transform figures and to predict the
effect of a given rigid motion on a given figure; given two figures, use the definition of
congruence in terms of rigid motions to decide if they are congruent.

7. Use the definition of congruence in terms of rigid motions to show that two trian-
gles are congruent if and only if corresponding pairs of sides and corresponding pairs of

angles are congruent.

8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from

110



the definition of congruence in terms of rigid motions.
Prove geometric theorems

9. Prove theorems about lines and angles. Theorems include: vertical angles are
congruent; when a transversal crosses parallel lines, alternate interior angles are congru-
ent and corresponding angles are congruent; points on a perpendicular bisector of a line

segment are exactly those equidistant from the segment’s endpoints.

10. Prove theorems about triangles. Theorems include: measures of interior angles
of a triangle sum to 180; base angles of isosceles triangles are congruent; the segment
joining midpoints of two sides of a triangle is parallel to the third side and half the length;
the medians of a triangle meet at a point.

11. Prove theorems about parallelograms. Theorems include: opposite sides are con-
gruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other,

and conversely, rectangles are parallelograms with congruent diagonals.
Make geometric constructions

12. Make formal geometric constructions with a variety of tools and methods (com-
pass and straightedge, string, reflective devices, paper folding, dynamic geometric soft-
ware, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle;
constructing perpendicular lines, including the perpendicular bisector of a line segment;

and constructing a line parallel to a given line through a point not on the line.

13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a

circle.
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Similarity, right triangles, and trigonometry G-Srt
Understand similarity in terms of similarity transformations

1. Verify experimentally the properties of dilations given by a center and a scale factor:

a. A dilation takes a line not passing through the center of the dilation to a parallel
line, and leaves a line passing through the center unchanged.

b. The dilation of a line segment is longer or shorter in the ratio given by the scale
factor.

2. Given two figures, use the definition of similarity in terms of similarity transforma-
tions to decide if they are similar; explain using similarity transformations the meaning of
similarity for triangles as the equality of all corresponding pairs of angles and the propor-
tionality of all corresponding pairs of sides.

3. Use the properties of similarity transformations to establish the AA criterion for

two triangles to be similar. Prove theorems involving similarity.
4. Prove theorems about triangles. Theorems include: a line parallel to one side of
a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem

proved using triangle similarity.

5. Use congruence and similarity criteria for triangles to solve problems and to prove
relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles

6. Understand that by similarity, side ratios in right triangles are properties of the

angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

7. Explain and use the relationship between the sine and cosine of complementary
angles.
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8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in
applied problems.

Apply trigonometry to general triangles
10. (+) Prove the Laws of Sines and Cosines and use them to solve problems.
11. (+) Understand and apply the Law of Sines and the Law of Cosines to find un-

known measurements in right and non-right triangles (e.g., surveying problems, resultant
forces).

Circles G-C

Understand and apply theorems about circles

1. Prove that all circles are similar.

2. ldentify and describe relationships among inscribed angles, radii, and chords. In-
clude the relationship between central, inscribed, and circumscribed angles; inscribed
angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent

where the radius intersects the circle.

3. Construct the inscribed and circumscribed circles of a triangle, and prove properties

of angles for a quadrilateral inscribed in a circle.
4. (+) Construct a tangent line from a point outside a given circle to the circle.
Geometric measurement and dimension G-Gmd
Explain volume formulas and use them to solve problems

1. Give an informal argument for the formulas for the circumference of a circle, area

of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's
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principle, and informal limit arguments.

2. (+) Give an informal argument using Cavalieri's principle for the formulas for the

volume of a sphere and other solid figures.

3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Some key ideas in high school geometry

There are many geometry standards for high school; we have listed only those that

make up the core of a typical high school geometry course. The following commentary

on such a course will focus on a few key ideas:

1.

2.

Basic assumptions and definitions (page [116])

Proofs of the first theorems (page [133])

. The congruence criteria for triangles (page m)

The number 7 (page [151|)

Pedagogical implications (page [154])

One cannot understand the CCSSM approach to high school geometry without a

knowledge of the pedagogical problems inherent in such a course in TSM (see page

and the reality of the high school geometry classroom in the past two decades. One

such discussion is given in (recall: this is an active link):

H. Wu, Euclid and high school geometry

For further details of the logical development outlined below, together with a treat-

ment of other topics not mentioned here (e.g., similarity, circles, etc.), see
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H. Wu, Teaching Geometry in Grade 8 and High School

According to the Common Core Standards

A main feature of the CCSSM is the seamless transition from eighth grade geom-
etry to high school geometry. In broad terms, the key geometric ideas (basic rigid
motions and dilations) are gently introduced in grade eight through hands-on activi-
ties; the high school course then begins the normal mathematical study of the plane
by building on students’ prior empirical experience with these transformations. In
lieu of the usual axioms, the high school course begins with a precise summary this
empirical experience in the form of eight assumptions (see in particular page )
Insofar as these assumptions go straight to the essence of congruence—one of the
mysteries of most students’ learning experience—they are more intuitive and more
accessible than the axioms of the usual abstract approach. Due to space limitations,
the following commentary is devoted mainly to the transition from the discussion of
rigid motions to the proofs of the three congruence criteria for triangles (SAS, ASA
and SSS), but not to the subsequent mathematical development once these criteria are
established. For a detailed discussion of this development, one may consult the second
of the documents listed above.

In order to lay a firm foundation for the geometric proofs, we need a clear enunci-
ation of the basic definitions and assumptions. The two are intertwined. Sometimes
a definition must be in place first before the assumption can be stated: the Parallel
Postulate would make no sense if we do not know the meaning of “parallel lines”.
At other times, a definition becomes meaningful only after an assumption has been
made: the definition of a “ray” has mathematical substance only because the Line
Separation assumption (page m) guarantees that every point on a line determines
two rays with that point as vertex. The first section below will briefly summarize
the main points of this foundational material. The second and third sections outline
the path from these assumptions to the proofs of the basic congruence criteria for
triangles (ASA, SAS, and SSS) and, in so doing, they realize the content of Standard
G-Co 8:

Ezplain how the criteria for triangle congruence (ASA, SAS, and SSS)

follow from the definition of congruence in terms of rigid motions.

It will be seen that this can be done quite quickly, so that students will be spared
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the usual doldrums of axiomatic treatments that spend more than a hundred pages

to lay the groundwork for the proofs of theorems of the following type:
e Any two right angles are congruent.
e Every angle has exactly one bisector.

e If M is a point between points A and C' on a line L, then M and A are on the
same side of any other line that contains C'.

A M C

There is something to be said about the value of being able to prove these geo-
metrically obvious facts, but for most students, spending two to three months of the
school year just to learn about such proofs does not constitute an inspiring learning
experience. The goal of the CCSSM is to steer clear of such an approach to geometry
by putting geometry on an equal footing with any other part of school mathematics.
Geometry can be learned the same way fractions or algebra is learned: there should
be reasoning and there should be proofs in every part of the mathematics curriculum,
but there should also be a minimum of formalism.

In two passages on page [150| and page [154], we point out how this mathematical

approach to plane geometry impacts the teaching of geometry.
1. Basic assumptions and definitions

We start from the beginning and go through all the known geometric concepts
one by one in a systematic fashion, with precision but without any preconceptions.
We will begin with a precise enunciation of what we assume to be known about
the plane.

We will not explain what a point is or what a line is other than to say that we
understand them in the intuitive sense and that a “line” stands for a “straight line”
that is infinite in both directions. The eight assumptions are listed as (A1)—(A8) and

they can all be found in this section. Every single one of them is intuitively obvious,
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and the only reason we enunciate them is to make sure that we all have a clearly

defined common starting point.
(A1) Through two distinct points passes a unique line.

Two lines are said to be distinct if there is at least one point that belongs to
one but not the other; otherwise we say the lines are the same. Lines that have no

point in common are said to be parallel. In symbols, L, parallel to L, is denoted by
L, || L.

(A2) (Parallel Postulate) Given a line L and a point P not on L. Then through

P passes at most one line that does not intersect L.

In other words, we assume as obvious that for a point P in the plane not lying
on a line L, every line that contains P intersects L except possibly for one line. In
school textbooks, the statement of the Parallel Postulate also includes the statement
that there is a line passing through P and parallel to L. However, (A2) above is
the original version of the Parallel Postulate, and we shall see in the Corollary to
Theorem 1 on page that the existence of such a parallel line can in fact be proved
once we know there are enough rotations in the plane. Thus, contrary to what is
normally done in school textbooks, our formulation of the Parallel Postulate merely
asserts that there is no more than one parallel line.

It will be seen that the Parallel Postulate dominates plane geometry by intervening
in logical arguments at critical moments.

If A and B are two distinct points, then by (A1), there is a unique line containing
A and B. We may consider this as a number line. Denote it by Lap and call it
the line joining A and B. On Ljpg, denote by AB the collection of all the
points between A and B together with the points A and B themselves (recall that
on a number line, we know what it means for a number to be between two other
numbers). We call AB the line segment, or more simply the segment joining A
and B, and the points A and B are called the endpoints of the segment AB. The
term segment will be used in general to refer to the segment joining a pair of points.

With the concept of segment available, we are now in a position to define a poly-
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gon. (In the classroom, one would start with the definition of a triangle and a quadri-
lateral before tackling the general case, and care should be given to motivating the
use of subscripts.) Let n be any positive integer > 3. An n-sided polygon (or more
simply an n-gon) is by definition a geometric figure consisting of n distinct points
Ay, As, ..., A, in the plane, together with the n segments A Ay, AsAs, ..., A, 1A,
A, Ay so that none of these segments intersects any other except at the endpoints as
indicated, i.e., A1 As intersects A Az at Ay, Ay As intersects AsAy at Az, etc. In sym-
bols: the polygon will be denoted by Ay As---A,. If n = 3, the polygon is called a
triangle; n = 4, a quadrilateral; n = 5, a pentagon; and if n = 6, a hexagon.
Given polygon A1 A, --- A, the A;’s are called the vertices and the segments A; A,,
AgAs, etc. the edges or sometimes the sides.

In order to define angles, we need to know a little bit more about lines. To this
end, we first introduce a definition. A subset R in a plane is called convex if given

any two points A, B in R, the segment AB lies completely in R.

(A3) (Line separation) A point P on a line L separates L into two non-empty

convex subsets Lt and L™, called half-lines, so that:
(1) Every point of L is in one and only one of the sets L, L™, and the
set { P} consisting of the point P alone.

(17) If two points A and B belong to different half-lines, then the line
segment AB contains P.

A P B

It follows from (i) that any two of the sets L™, L™, and {P} are disjoint, i.e., do
not share a point in common. It also follows from the convexity of L* and L~ that
if two points A, B belong to the same half-line, then the line segment AB does not
contain P:

P A B

The set consisting of the point P and the points from a half-line, L™ or L™, is

called a ray. We also say these are rays issuing from P. If we want to specifically
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refer to the ray containing A, we use the symbol Rp,. We will also refer to Rp4 as
the ray from P to A. Similarly, the ray containing B issuing from P is denoted by
Rpp. The point P is the vertex of Rppg. If P is between A and B, then the two
rays Rp4 and Rpp have only the vertex P in common, and each ray is, intuitively,
infinite in only one direction.

Two rays are distinct if there is a point in one that does not lie in the other. An
angle is the union of two distinct rays with a common vertex. (This is the definition
adopted by the CCSSM; see page ) The angle formed by the two rays Rpoa and
Rop will be denoted by ZAOB.

A

O B

If A, O, B are collinear (i.e., lie on a line so that O is between A and B), we say
the angle is a straight angle. If Rpo, and Rpp coincide, then we do not have an
angle according to the definition above, but we make an exception and call it the
zero angle. Now we have to face up to the fact that the intuitive concept of an angle
is not just “two rays with a common vertex” but also “the space between these two
rays”. In other words, if ZAOB is neither the zero nor the straight angle, which of
the following two subsets of the plane do we have in mind when we say ZAOB, the

space indicated by s or the one indicated by t7

A A

To resolve this difficulty, we need a precise way to differentiate between the two.

(A4) (Plane separation) A line L separates the plane into two non-empty

conver subsets, L and R, called half-planes, so that:

(1) Every point in the plane is in one and only one of the sets L, R, and
L.
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L

(1) If two points A and B in the plane belong to different half-planes, then

the line segment AB must intersect the line L.

Two points that lie in the same half-plane of L are said to be on the same side
of L, and two points that lie in different half-planes are said to be on opposite
sides of L. The union of either £ or R with L is called a closed half-plane.

Now we return to an angle ZAOB which is neither the zero angle nor a straight
angle. The rays Rpa, Rop determine two subsets of the plane, one of them is the

intersection of the following two closed half-planes:

the closed half-plane of the line Loy containing B, and

the closed half-plane of the line Lop containing A.

It is straightforward to show that the intersection of a finite number of convex sets
is convex, and that closed half-planes are also convex (we already know that the
half-planes are convex). Therefore the intersection of these two closed half-planes
is convex, and is suggested by the shaded set in the following figure (note that the

shading only covers a finite portion of a set extending infinitely to the right).

We will refer to this set as the convex part of ZAOB, and this is the set that

corresponds to our intuitive notion of what ZAOB is. When we refer to the convex
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part of an angle, we sometimes denote it by a single letter, e.g., Z0O, if there is no
danger of confusion. See the part indicated by s in the following:

A A

0 B ; B

On the other hand, there will be occasions to use the other subset of the plane
determined by the rays Roa, Rog. This would be the nonconvex part of ZAOB
as indicated by ¢ above. Precisely, this is all the points that do not lie in the convex
part of ZAOB, together with all the points on both of the rays, Ros and Rog.

Given an angle ZAO B that is neither the straight angle nor the zero angle, then we
see that it is necessary to specify whether we mean the convex part or the nonconvex
part of ZAOB. Once that is done, it makes sense to say whether a point of the plane
belongs to the angle or not. For example, in the pictures below, if ZAOB refers
to the convex part, then P belongs to ZAOB while (Q does not, but if the nonconvex
part is meant, then P does not belong to ZAOB but () does.

0 0
A
P P
S
0 B B
t

Unless stated otherwise, a (nonzero and non-straight) angle will refer to the convex

part of the angle.

Our next goal is to formalize the concept of the length of a segment in the plane
and introduce the measurement of angles in terms of degree. Length has to come first,
so we start with that. We have thus far taken the concept of length lightly because it
seems to come naturally to us. However, if we look at it critically, it is not as simple
as it appears. Suppose we have a number line, then even the length of a segment I on

the number line has to be defined with the use of a translation. Indeed, let us recall
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how that is done: we translate the segment I until its left endpoint is over 0, then
the number on which its right endpoint rests is by definition the length of I. If the
segment now lies on a line L in the plane, then because there is no pre-ordained unit
on L (i.e., we don’t know in advance how far apart 0 and 1 may be), the length of the
segment becomes indeterminate unless there is a way to consistently “organize”, so
to speak, all the unit segments on all the lines which lie in the plane. This “organiza-
tion” is made possible by the concept of distance in the plane. The next assumption
spells out part of the basic properties we expect of distance; the remaining properties

are included in assumption (A7) on page [133].

(A5) To each pair of points A and B of the plane, we can assign a number
dist(A, B) > 0 so that

(i) dist(A, B) = dist(B, A).
(1) dist(A,B) > 0, and dist(A,B) =0 <= A and B coincide. (The

symbol “<=" stands for “is equivalent to”.)

(1i1) If A, B, C are collinear points, and C' is between A and B, then

dist(A, B) = dist(A, C) + dist(C, B)

Of course, condition (#ii) is one reason why the assignment of a nonnegative
number dist(A, B) to each pair of points A and B cannot be random or arbitrary.
(The other reason is encoded in assumption (A7) below.) Once we have the concept
of distance between points in the plane, we can define, for any two points A and B
in the plane, the length of the segment AB, denoted by |AB|, to be dist(A, B).
In effect, what the concept of distance has done is to decree that, on each line, a unit
segment has to be a segment whose endpoints are apart by a distance equal to 1.
That done, one can see that the length between two points A and B in the plane will
now be the same as the usual length of the segment AB on the line L,p, which is
now a number line with a prescribed unit segment.

We say two segments are equal if they have the same length.

The concept of distance allows us to formally introduce the concept of a circle.
Fix a point O. Then the set of all the points A in the plane so that dist(O, A) is a

fixed positive constant r is called the circle of radius r about O. The point O is
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called the center of the circle. A line passing through the center O will intersect the
circle at two points, say P and @); the segment P() is then called a diameter of the
circle and the segment OP (or OQ) is called a radius of the circle.

A circle whose radius is of length 1 is called a unit circle.

We need one more definition before we can introduce the concept of the degree
of an angle. Given an angle ZAOB with either the convex part or the nonconvex
part specified, we say two angles ZAOC and ZC'OB, with a common side Roc, are
adjacent angles with respect to ZAOB if C belongs to ZAOB (see definition
on page ) and ZAOC and ZCOB are understood to be part of ZAOB. For
example, if ZAOB is understood to denote the convex part, then in the following
picture, ZAOC has to mean the convex (shaded) part on the left rather than the

nonconvex part indicated by the arc on the right.

A A

B B

On the other hand, if ZAOB is understood to denote the nonconvex part as in the
picture below, then the point C again belongs to ZAOB, and ZAOC and ZCOB
are adjacent angles with respect to ZAOB, provided ZAOC' is understood to be the
convex (shaded) part on the left rather than the nonconvex part indicated by the arc

on the right.
A

Adjacent angles ZAOC and ZCOB (with respect to ZAOB) are the analogs, among
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angles, of segments AC, C'B so that A, B, C' are collinear and C' is between A and
B; they will allow us to formulate the analog of condition (i) in assumption (A5)
above.

Now we can introduce the concept of the degree of an angle by way of an assump-
tion. Intuitively, every angle has a degree, a straight angle should be 180 degrees,
and the “full” angle should be 360 degrees. Our assumption now takes the following

form:

(A6) To each angle ZAOB, we can assign a number |ZAOB)|, called its degree,
so that

(1) 0 < |ZAOB| < 360°, where the small circle ° is the abbreviation
of degree. Moreover, if a ray Rop and a number x are given so that
0 < x <360 but x # 180, and if a half-plane of the line Lop is specified,
then there is a unique angle AOB so that |ZAOB| = z° and the ray Roa
lies in the specified half-plane of Log.

(17) |[LAOB| = 0° <= ZAOB is the zero angle, and |ZAOB| = 180°
<= LAOB is a straight angle.

(1ii) If LZAOC and ZCOB are adjacent angles with respect to ZAOB,
then
|ZAOC| + |£ZCOB| = |£ZAOB]|

Notice that (i) and (ii) together cover all angles regardless of whether the degree is
180 or not.

One can give an intuitive discussion of how to reconcile this definition of degree
with the one on page [10], as follows.

Suppose ZAOB is the zero angle (so that the rays Roa and Rop coincide). Then
the angle corresponding to the nonconvex subset of the zero angle, which is then the
whole plane, is sometimes called the full angle. We will agree to define the degree
of a full angle to be 360° so that (ii7) in (A6) is now true without restrictions.

The existence of the concept of degree allows us to define that two angles are

equal if they have the same degree.
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We note that by themselves, assumptions (A5) on distance and (A6) on degree
do not have much substance. Their significance will be revealed only when we make
the next assumption that the basic rigid motions are distance-preserving and degree-
preserving and prove that there are “plenty of” basic rigid motions in the plane (for
the latter, see Lemmas 2, 3, and 5 on page m, page , and page , respectively).

With the measurements of angles available, we can introduce some standard ter-
minology for angles and polygons. Two angles are defined to be equal if they have
the same degree. An angle of 90° is called a right angle. An angle is acute if it
is less than 90°, and is obtuse if it is greater than 90°. There are analogs of these
names for triangles, namely, a triangle is called a right triangle if one of its angles is
a right angle, an acute triangle if all of its angles are acute, and an obtuse triangle
if (at least) one of its angles is obtuse. (In view of the Angle Sum Theorem in grade
8, page , at most one angle of a triangle can be obtuse.)

Let two lines meet at O, and suppose one of the four angles, say ZAOB as shown,

is a right angle.
A

@)

Al

Then one sees easily that all the remaining angles are also right angles. It is therefore
unambiguous to define the two lines to be perpendicular if an angle formed by the
two lines at the point of intersection is a right angle. In symbols: Lao 1L Lop in
the notation of the preceding figure, although it is equally common to write instead,
AO L OB. In general, if a point C' belongs to an angle ZAOB (see page[121]), the
ray Roc is called an angle bisector of ZAOB if the adjacent angles ZAOC and
ZCOB (with respect to ZAOB) are equal.
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B
Sometimes we also say less precisely that the line Loc (rather than the ray Roc)
bisects the angle AOB.
It is clear that an angle has one and only one angle bisector (by (i) of assumption
(A6)). Therefore if CO L AB where O is a point of AB, as shown below,
C

A Ol B

then C'O is the unique angle bisector of the straight angle ZAOB. Hence,

Let L be a line and O a point on L. Then there is one and only one line

passing through O and perpendicular to L.

We can now complete the list of standard definitions about lines and segments. If
AB is a segment, then the point O in AB so that |AO| = |OB| is called the midpoint
of AB. Analogous to the angle bisector, the perpendicular bisector of a segment
AB is the line perpendicular to L,p and passing through the midpoint of AB. It
follows from the uniqueness of the line perpendicular to a line passing through a given
point that there is one and only one perpendicular bisector of a segment.

We now introduce some common names for certain triangles and quadrilaterals.
An equilateral triangle is a triangle with three sides of the same length, and an
isosceles triangle is one with at least two sides of the same length. A quadrilateral
all of whose angles are right angles is called a rectangle. A rectangle all of whose
sides are of the same length is called a square. Be aware that at this point, we do not

know whether there is a square or not, or worse, whether there is a rectangle or not. A
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quadrilateral with at least one pair of opposite sides that are parallel is called a trape-

zoid. A trapezoid with two pairs of parallel opposite sides is called a parallelogram.

We conclude by making a general observation about angles that follows easily

from assumption (A6)(7):

M
N

A B

Lemma 1. Given two equal angles ZMAB and /N AB with one side Rag in com-
mon and M and N are on the same side of the line Lg, then the other sides Ry

and Ran coincide.

At this point, we begin the discussion of the most substantial part of definitions
and assumptions by taking on the basic rigid motions. In eighth grade, we intro-
duced them as rotations, reflections, and translations, and we did so mostly through
the use of transparencies. Now we are going to define them precisely, and to this end,
we introduce the concept of a transformation F' of the plane as a rule that assigns
to each point P of the plane a (single) point F'(P) of the plane. As in grade 8, F(P)
is called the image of P by F' and often we speak of F' mapping P to F(P). If
S is a geometric figure in the plane (i.e., a subset of the plane), then the collection
of all the points F'(Q)) where @ is a point of S is called the image of S by F', which
is usually denoted by F'(S). We likewise say F' maps S to F(S).

We now give in succession the definitions of the basic rigid motions: rotation,
reflection, and translation. Before we give the definition of rotation, we mention
explicitly that we will freely avail ourselves of the concepts of clockwise direction
and counterclockwise direction on a circle. Because a 180° angle is the straight
angle, if a point B is fixed on a circle with center O, then all the points A so that
A is in the counterclockwise (respectively, clockwise) direction of B and so that 0 <
|ZAOB| < 180° will lie in a half-plane of the line Lop, and all the points A so that
180° < |LZAOB| < 360° lie in the opposite half-plane. In the counterclockwise case,
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these would be the upper half-plane and lower half-plane, respectively, in the following

pictures.

The whole discussion can be made more precise if we are willing to engage in more
formalism and introduce some elaborate definitions, but that may not be the best use

of class time for the learning of geometry at this juncture.

Rotation. The rotation Ro of t degrees (—360 < t < 360) around a given
point O, called the center of the rotation, is a transformation of the plane defined
as follows. Given a point P, the point Ro(P) is defined as follows. The rotation is
counterclockwise or clockwise depending on whether the degree is positive or negative,
respectively. For definiteness, we first deal with the case where 0 <t < 360. If P = O,
then by definition, Ro(O) = O. If P is distinct from O, then by definition, Ro(P) is
the point @ on the circle with center O and radius |OP| so that [ZQOP| = t° and
so that @ is in the counterclockwise direction of the point P. We claim that this
assignment is unambiguous, i.e., there cannot be more than one such (). Indeed, if
t = 180, then @ is the point on the circle so that PQ is a diameter of the circle. If
t =0, then @ = P. Now if 0 <t < 180, then all the Q)’s in the counterclockwise
direction of the point P with the property |ZQOP| = t lie in the half-plane of the
line Lop that contains @), and if 180 < t < 360, then all the @)’s in the clockwise
direction of the point P with the property |ZQOP| = t lie in the half-plane of the line
Lop not containing (). By Lemma 1 (page [127]), there is only one such @ (see the
pictures below). Thus Ro is well-defined, in the sense that the rule of assignment
is unambiguous. Notice that if t = 0, then Ro is the identity transformation I of the

plane.
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Now suppose —360 < t < 0. Then by definition, we rotate the given point P
clockwise on the circle that is centered at O with radius |OP|. Everything remains the
same except that the point ) is now the point on the circle so that [ZQOP| = |t|° and
@ is in the clockwise direction of P (see the pictures below). We define Ro(P) = Q.

I tQ
~

Reflection. The reflection R across a given line L, where L is called the
line of reflection, assigns to each point on L the point itself, and to any point P
not on L, R assigns the point R(P) which is symmetric to it with respect to L,
in the sense that L is the perpendicular bisector (page m) of the segment joining P
to R(P).

L
R(P) ] P

Q ] R(Q)

Translation. The translation 7" along a given vector K4 assigns the point D

to a given point C' in the following way. First, a vector is defined as in Grade 8, page
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. Let the starting point and endpoint of o be A and B , respectively. First assume
C' does not lie on line Lp. Draw the line ¢ parallel to line L4 passing through C.
The line L passing through B and parallel to the line L ¢ then intersects line ¢ at a
point D (L and ¢ must intersect because the Parallel Postulate says that through the
point C, L4c is the only line parallel to L and therefore ¢ is not parallel to L). By
definition, T assigns the point D to C, i.e., T(C) = D.

B \ D
7
' \
14
If C lies on the line L 4p, then the image D is by definition the point on the line L,p
so that the direction from C to D is the same as the direction from A to B and so
that |CD| = |AB|. (Recall that we may regard Lap as the number line so that all

the points on L 45 are now numbers; then the direction from C to D being the same
as the direction from A to B means D is the number so that D —C = B — A.)

Observe that if 0 is the zero vector, i.e., the vector with 0 length, then the transla-
tion along 0 is the identity transformation I.
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We now take a critical look at the preceding definitions.

The definition of rotation is straightforward, but the definitions of translation
and reflection raise some unanswered questions. In the definition of translation, the
statement that we take L to be the line passing through B and parallel to L ¢ begs
the question of how we know that there is such a line L. Recall that the Parallel
Postulate as formulated on page does not guarantee that there is such a line,
only that there is no more than one such line. Fortunately, this issue will be quickly
disposed of by the Corollary to Theorem 1 on page [135]. The difficulty with the
definition of reflection is, however, more knotty, and we will explain it as follows. Let
a line L be given and let P be a point not lying on L. Let the reflection across L be
denoted by R. The definition of the point R(P), to be denoted more simply by P’,
is that L is the perpendicular bisector of the segment PP’. Implicit in this definition
is the fact that (a) there is such a point P’ so that L is the perpendicular bisector of
the segment PP’, and (b) there is only one such point P’. Neither is obvious at the
moment. The need for (a) is obvious, but the need for (b) maybe less so. The fact
is, if there is another point () distinct from P’ so that L is the perpendicular bisector
of PQ, then the definition of a reflection implies that we can also define R(P) = Q.
This would then raise the question about which of the two points R is going to assign
to P, P or Q7 (A transformation, by definition, assigns to a given point a single
point without ambiguity.)

If we cannot verify that both (a) and (b) are valid, then the concept of a reflection
is not well-defined on two levels. Given a line L and a point P in the plane, either
the reflection R across L does not know which point to assign to P (this would be
the case if (a) fails), or there is more than one candidate for such a P’ so that the
assignment of R to P becomes ambiguous (this would be the case if (b) fails).

We will resolve this difficulty by proving the following theorem, and in the pro-

cess of doing this, we shall resolve the difficulty in the definition of translation as well.

Theorem. Given a line L and a point P, there is one and only one line passing

through P and perpendicular to L.

Assuming this theorem, (a) is easily seen to be true because if there is such a line,
we simply let P’ be the point on this line on the other side of L, so that |PO| = |P'O],
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where O is the intersection of this line with L, as shown.

L
P/ 0‘7/ P
Q/

Moreover, (b) is also true because, if there is another point @) so that L is also the
perpendicular bisector of PQ, then in particular PQ) L L. But we know there is only
one such line, so the two lines Lpps and Lpg coincide and the point @) falls on Lppr.
It follows that () and P’ are two points on the same half-line of the line Lpp/ with
respect to O and |QO| = |P'O| (= |PO|). Hence @ = P and (b) is also true.

We will prove the Theorem in the next section. Because the definitions of reflection
and translation come after the definition of rotation, we will be able to avail ourselves,
for the proof of this Theorem, of some properties that we will assume about rotations.
To this end, and for the development of plane geometry as a whole, we now state our
assumptions about rotations. These assumptions should impress the students as being
completely unexceptional because of the hands-on experiences they have had with the

basic rigid motions in grade 8. Precisely, we assume that:
Rol. Rotations map lines to lines, rays to rays, and segments to segments.

Ro2. Rotations are distance-preserving (and therefore length-preserving), mean-
ing that the distance between the images of two points is always equal to the

distance between the original two points.

Ro3. Rotations are degree-preserving, meaning that the degree of the image of an

angle is always equal to the degree of the original angle.

Note that, as in grade 8, assumption Rol guarantees that a rotation maps an angle
to an angle (see page [76]), so that assumption Ro3 makes sense.

Ultimately, we have to make the same assumptions about not just rotations, but
also reflections and translations as well. Therefore, instead of giving a formal status

to Rol, Ro2, and Ro3, we make the following comprehensive assumption about all

132



basic rigid motions that subsumes Rol-Ro3.

(A7) The basic rigid motions (rotations, reflections, and translations) have the

following properties:

(1) A basic rigid motion maps a line to a line, a ray to a ray, and a

segment to a segment.

(13) A basic rigid motion is distance-preserving and degree-preserving.

Finally, the next assumption has to do with the intuitive fact that the angle bi-
sector of ZA in a triangle ABC' must intersect side BC'. Although your gut reaction
may be “how can it be otherwise?”, it is well to also recognize that, gut feelings
notwithstanding, there is no way we can explain, logically using what we know thus
far, why this must be the case. If we want to claim that this is true, the way to do

so is to add another assumption, which will be our last.

(A8) (Crossbar axiom) Given a convex angle AOB, then for any point C in
LAOB, the ray Roc intersects the segment AB (at the point D in the following
figure).

It is now clear that (A8) implies that the angle bisector of an angle in a triangle must

intersect the opposite side.
2. Proofs of the first theorems
The main goal of this section is to prove the Theorem on page [131] using only

assumptions Rol-Ro3 on page In the process, we will also justify the definition

of a translation. The following theorem is a critical first step toward this goal.
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Theorem 1. Let L be a line and O be a point not lying on L. Let R be the 180
degree rotation around O. Then R maps L to a line parallel to L itself.

Because a rotation of 180 degrees will be the main tool for the proofs of the first
few theorems, we describe it explicitly. Let the center of rotation be O and let R be
the 180 degree rotation around O. Given a point P distinct from O, let P’ denote the
image R(P) of P by R (see page[127]). Then P’ is the point on the ray Rpo so that
|P'O| = |PO|. This is because ZPOP' is a straight angle (R is a 180 degree rotation)
and a rotation is distance-preserving (assumption Ro2 on page ) Similarly, for
any other point (), the image @’ of @ by R is the point on Rgo so that |Q'O| = |QO|.

Q
P C/ P
Q'/

The truth of Theorem 1 depends on the simple observation that follows imme-
diately from assumption (A1) on page , to the effect that two distinct lines are

either parallel or intersect at exactly at one point. (Recall: two lines are said to be

distinct if there is one point on one that does not lie in the other.) Now consider the
situation of Theorem 1 where a line L and a point O are given and O does not lie on

L. Let a line ¢ pass through O and intersect L at a point @), as shown.

14
O.

P

Q

Now we make a second observation: if P is any point on the line { not equal to @,
then P does not lie on L. This is because L and ¢, being distinct lines, already have
one point () in common and so the preceding observation says no other point can
be common to both lines. In particular, P does not lie on L, and the observation is

proved.
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With this second observation in place, we can now prove Theorem 1.

Proof of Theorem 1. First of all, we know that rotations map a line to another line
(assumption Rol on page m), so that with assumptions and notation as in Theorem
1, R maps the line L to a line to be denoted by R(L). We have to show that R(L)
and L have no point in common. Thus, if P is any point on R(L), we must show
that P does not lie on L. By definition of R(L), there is a point @ of L so that P is
the rotated image of () by R and, R being a 180° rotation, P, O, @ lie on a line ¢
(see (i) of Assumption (AG) on page [124]).

L

Q

The preceding observation now tells us that P—being a point of the line ¢ containing

O and @ but not equal to )—does not lie on L. This then proves Theorem 1.

Theorem 1 has an unexpected consequence. The Parallel Postulate assures us
that, if P is a point which does not lie on a given line L, there is at most one line
passing through P and parallel to L, but it leaves open the possibility that there may
not be any line passing through P and parallel to L. With Theorem 1 at our disposal,
we now see that there is such a line because the said existence already follows from

Theorem 1:

Corollary. Given a line L and point P not on L, there is a line parallel to L and

passing through P.

Proof. Indeed, referring to the preceding picture, we take a point ) on L and let O
be the midpoint of the segment PQ). If R is the 180 degree rotation around O, then
Theorem 1 says the rotated image R(L) of L is parallel to L. But since a rotation
preserves length (assumption Rol, page[132))), R maps Q to P, so that R(L) in fact
passes through P. The Corollary is proved.
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As noted previously, this Corollary shows that our definition of translation is com-
pletely sound.

Theorem 1 is deceptive because it is not obvious how it can be put to use. We
will see that it is in fact a central theorem with numerous interesting consequences,
including the very fact we are after, namely, the Theorem on page [I31]. The following
is a first step toward this goal.

Theorem 2. Two lines perpendicular to the same line are either identical or parallel
to each other.

Proof. Let L; and Ly be two lines perpendicular to a line £ at A; and As, respectively.
We have noted in an observation on page that the line passing through a given
point of a line and perpendicular to that line is unique. Thus if A; = Ay, L1 and Lo
are identical. So suppose A; # Ay. We need to prove that L; || Ly. Let R be the
rotation of 180 degrees around the midpoint M of A;A,. If we can show that the
image of Ly by R is Lo, then we know Ly || L; by virtue of Theorem 1.

Ly Lo| [R(L4)

A As

To this end, note that R(L;) contains A, because R(A;) = As. We are given that
Ly L ¢ Since R(A;) = Ay and R(As) = Ay, we see that R(¢) = ¢ (because of
assumption (A1l)). By assumption Ro3 on page , rotations map perpendicular
lines to perpendicular lines. Thus we have R(L;) L ¢. It follows that each of R(L1)
and Lo is a line that passes through A, and perpendicular to /. By the preceding
observation about the uniqueness of the line perpendicular to a line £ at a given point
of ¢, we see that, indeed, R(L1) = Ly and therefore L; || Ly. Theorem 2 is proved.
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Corollary 1. Through a point P not lying on a line passes at most one line L

perpendicular to the given line.

| P

—

L
r—

Proof. Suppose in addition to L, there is another line L’ passing through P and also
perpendicular to the given line. Since these lines are not parallel (they already have
P in common), they have to be identical, by Theorem 2. Thus L = L’. Corollary 1

is proved.

We will make a digression. Recall that earlier we introduced the concept of a
rectangle as a quadrilateral whose adjacent sides are all perpendicular to each other.

As a result of Theorem 2, we now have:
Corollary 2. A rectangle is a parallelogram.

Corollary 1 addresses one half of the concern about a reflection being well-defined.

Now we prove the other half as well.

Theorem 3. Given a point not lying on a line ¢, there is a line that passes through

the point and perpendicular to £.

Proof. Let P be the point not lying on ¢. We have to show that there is a line
passing through P and perpendicular to /. Take any point A € ¢ and let L’ be the
line passing through A and perpendicular to ¢ (see the observation on page m) If
L’ contains P, we are done, so we may assume that L’ does not contain P. By the
Corollary to Theorem 1, there exists a line L passing through P and parallel to L'.
Let L intersect ¢ at B.
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L L

There is a line passing through B and perpendicular to ¢ (see page again); by
Theorem 2, this line is parallel to L’ and must therefore coincide with L, by the
Parallel Postulate. Thus L | ¢. This proves Theorem 3.

Theorem 3 and Corollary 1 to Theorem 2 together show that the Theorem on
page is valid, i.e., from a point outside a given line L, there is one and only one
line passing through P and perpendicular to L. As we pointed out above, this shows

that the concept of reflection is well-defined.

At this point, we know that our definitions of all the basic rigid motions are well-
defined. Thus assumption (A7) on page now makes sense and we will assume it
forthwith.

We note that (A7) is not a very useful assumption if there are not “plenty” of
basic rigid motions, and we proceed to address this concern. First, rotations. As a
result of assumption (A6) (i) and the definition of a rotation, there are “plenty” of

rotations in the following sense:

Lemma 2. Given a point and a degree t so that —360 < t < 360, there is a rotation
of degree t around the point.

Analogously, the same can be said about reflections as a result of Theorem 3 and

the definition of a reflection:
Lemma 3. Given a line in the plane, there is a reflection across that line.

Finally, because we know that given a line L and a point not on L, there is always

a line passing through that point and parallel to L (Corollary to Theorem 1, page
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135(), the definition of the translation along any vector is well-defined. Thus there

are also “plenty” of translations:
Lemma 4. Given any vector, there is a translation along that vector.

In summary, Lemmas 2, 3, and 4 guarantee that, indeed, there are “plenty” of
basic rigid motions for any occasion. They will be the main tools for proving theorems

in plane geometry.

We end this section by making an interesting observation about the concept of
a translation 7' along a given vector 7. Recall the definition: suppose the vector
¥ has starting point A and endpoint B, then if C' does not lie on L g, the image
D = T(C) is by definition the intersection of the line ¢ that is parallel to Lap and
the line passing through B parallel to L 4¢.

B \D

’ \C

14
We are going to prove that |CD| = |AB|. Granting this for the moment, we now
observe that the translation 74p along the vector 1@ has the following intuitive
interpretation: it moves every point the same distance as that from A to B and “in

the same direction” as 1@

The fact that |CD| = |AB| follows from a general theorem: opposite sides of a
parallelogram are equal. This is because, by construction, the opposite sides of the
quadrilateral BAC'D are parallel: Lpy || Lep and Lpp || Lac. Thus BACD is a

parallelogram and |C'D| = |AB|. It remains therefore to prove the following theorem.
Theorem 4. Opposite sides of a parallelogram are equal.

Theorem 4 together with the Corollary 2 to Theorem 2 imply:
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Opposite sides of a rectangle are equal.

This reconciles the usual definition in school mathematics of a rectangle (a quadrilat-
eral with four right angles and equal opposite sides) with our definition of a rectangle
(a quadrilateral with four right angles).

The idea of the proof of Theorem 4 is to exploit Theorem 1, for the most practical
of reasons: at this point, what other tools have we got? Of course, the presence
of parallel lines in a parallelogram already suggests that something like Theorem 1
should be relevant. It will be obvious from the proof of Theorem 4 below why the

following lemma is needed.

Lemma 5. Let F' be a transformation of the plane that maps lines to lines. Suppose
two distinct lines Ly and Lo intersect at P and the image lines F(L1) and F(Ls)
intersect at a single point @, then F(P) = Q.

Q

\ F(Ly)

Ly

LQ\P F(Ly) /

Proof of Lemma 5. Since P is a point in L;, we see that F'(P) is a point on F'(L,),
by the definition of the image of L; by F. Similarly, F'(P) lies on the line F'(Ls).
Therefore F(P) lies in the intersection of F'(L;) and F'(Ly). But by hypothesis, the
latter intersection is exactly the point ). So F(P) = @ and Lemma 5 is proved.

Proof of Theorem 4. Given parallelogram ABCD, we have to prove that |[AD| =
|BC| and |AB| = |CD|. It suffices to prove the former as the proof of the latter is
similar. Let M be the midpoint of the diagonal AC' and we will use Theorem 1 to
explore the implications of the 180 degree rotation R around M.

A D
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Because |MA| = |MC| and rotations preserve distance (assumption (A7) on page
133]), we have R(C) = A so that R(Lp¢) is a line passing through A and parallel
to Lpc (by Theorem 1). Since the line Lap has exactly the same two properties by
assumption, the Parallel Postulate implies that R(Lpc) = Lap. Similarly, R(Lag) =
Lep. Thus, using the usual symbol N to denote intersection (for two sets A and B,
AN B denotes all the elements belonging to both A and B), we have:

R(Lpc) NR(Lap) = Lap N Lcp ={D}
On the other hand, Lgc N Lap = {B}. By Lemma 5, we have
R(B) =D

Recall we also have R(C) = A. Therefore R maps the segment BC' to the segment
joining D (which is the image of B) to A (which is the image of C'), by the property
that a rotation maps segments to segments (see assumption (A7) on page m) The
latter segment has to be the segment DA, by (A1) (page[117)). Thus R(BC) = DA,
so that by assumption (A7) that rotations preserve distance (page [L33]), we have
|BC| = |AD|, as desired.

Corollary. The angles of a parallelogram at opposite vertices are equal.

The proof is implicit in the proof of Theorem 4: we already have R(ZABC) =
ZCDA, so simply use (ii) of assumption (A7) on page to conclude the proof.

3. Congruence criteria for triangles

The main concern of this section is the proof of the three basic criteria for triangle
congruence: SAS, ASA, and SSS. We begin by elucidating the concept of congruence.

We need the concept of composing transformations. Let F and G be transforma-
tions of the plane. We define a new transformation F o (G, called the composition
of G and F', to be the rule which assigns to each point P of the plane the point
F(G(P)). Schematically, we have;



i.e., we first let G send P to G(P), and then let F' send the point G(P) to F(G(P)).
(For those familiar with the concept of composite functions, this should be déja
vu.) Notice the peculiar feature of the notation: the symbol F o G suggests that F’
comes before GG if we read from left to right as usual, but in fact the definition itself,
which assigns to P the point F(G(P)), requires that G acts first. There is reason
to be careful about the order of the transformations in a given composition, for the
following reason. We say two transformations F; and F; are equal, in symbols
F; = F,, if for every point P, it is true that Fy(P) = F5(P). Then simple examples
would show that, in general, F' o G # G o F for two transformations F' and G of the
plane.

The composition of more than two transformations is defined similarly. For ex-
ample, if F';, G, H, K are transformations, then the composition Fo Go H o K
is defined to be the rule which assigns to each point P the point F(G(H (K (P)))).

Definition. A congruence in the plane is a transformation of the plane which

15 equal to the composition of a finite number of basic rigid motions.

If S is congruent to &', we write & = &’. The definition of congruence immedi-
ately implies that a composition of congruences is still a congruence. One can also
verify, with a bit more effort, that if S is congruent to &', then also &’ is congruent
to S. This eases the need to be extra careful about whether S is congruent to S" or
the other way around, S’ is congruent to S; the two statements are equivalent.

Because each basic rigid motion is assumed to satisfy the properties of (A7) (page
133]), we would expect that so does a congruence. This is the content of the next

lemma whose proof is straightforward.

Lemma 6. A congruence

(1) maps lines to lines, rays to rays, and segments to segments,

(1) is distance-preserving and degree-preserving.

To demonstrate the usefulness of this definition of congruence, we can now ezxplain

why the three classical criteria for triangle congruence—SAS, ASA, SSS—are true.
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We begin with SAS and ASA,

Theorem 5 (SAS). Given two triangles ABC and AyByCy so that |LA| = |£A],
|AB| = |AoBy|, and |AC|=|A¢Cy|. Then the triangles are congruent.

Theorem 6 (ASA). Given two triangles ABC and AyByCy so that |AB| = |AyBol,
|LA| = |LAy|, and |£B|=|4£By|. Then the triangles are congruent.

The proofs of these two theorems are very similar. Because we have already given
an informal proof of ASA back in grade 8 (page ),m we will only give the proof of
Theorem 5 (SAS) here.

We begin with two simple observations on the behavior of angles under a reflec-
tion. They are nothing more than variations on the theme of Lemma 1 (page .
As we shall see, they will be useful for other purposes as well.

Lemma 7. Given two equal angles ZMAB and Z/NAB, suppose they have one side
AB in common and M and N are on opposite sides of the line Lag. Then the reflec-
tion across the line Lag maps ZNAB to ZMAB (and also maps ZMAB to ZNAB).

M

<L
N

Lemma 8. Suppose two angles ZMAB and /NAB are equal, and they have one

side AB in common. Assume further that the segments AM and AN are equal. Then
either M = N (if M and N are on the same side of Lag) or the reflection across
Lag maps N to M (if M and N are on opposite sides of Lag).

2"That proof is essentially correct. It should also be mentioned that, instead of proving ASA as
on page , one can also prove ASA by invoking SAS.
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For the proof of Lemma 7, observe that the reflection R across L,p maps /NAB
to LNgAB, where Ny = R(N), so that ZNyAB and /M AB are now equal angles
with one side Rsp in common and the other side lying in the same half-plane. So
LNoAB = ZM AB, by Lemma 1 (page . This proves Lemma 7. As to Lemma 8,
suppose M and N are on the same side of L 45. By the same Lemma 1, we know that
the rays AM and AN coincide. But since |AM| = |AN|, necessarily M = N. Now if
M and N are on opposite sides of L 45, then Lemma 7 shows that the reflection across
L g maps the ray Ray to the ray Ry Since a reflection preserves distance, the
reflection maps the segment AN to a segment of length equal to |[AM]|, and therefore
maps N to M by the preceding argument. This proves Lemma 8.

We are now in a position to begin the proof of SAS. Note that Larry Francis
has created an animation for this proof:

Side-Angle-Side Congruence by basic rigid motions

This animation complements the verbal proof below.

A general remark is that throughout the proofs in the remainder of this section, we
will be making implicit use of the fact that there are “plenty” of basic rigid motions
at our disposal in the precise sense of Lemmas 2-4 on page [13§. Suppose we are
given triangles ABC' and AyByCj in the plane so that ZA and £A, are equal, and
furthermore, |AB| = |AgBy| and |AC| = | AoCo|. We have to explain why the triangles

are congruent. Let us say the triangles are like this:

C

N1/

A H B

Ao
By our definition of congruence, this means we must exhibit a sequence of basic

rigid motions so that their composition brings (let us say) AABC' to coincide exactly
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http://youtu.be/30dOn3QARVU

with AAgByCy. For ease of comprehension, we will first prove the theorem for the
pair of triangles in the above picture and leave a discussion of other variations to the
end. We will first move vertex A to Ay by a translation T along the vector from A

—
to Ao, denoted by AAg (shown by the blue vector below).
0

C
A//\B
The effect of T is to slide AABC along AAy. We show the image of two stages of
AABC in transition: AABC'is shown in red and the right blue arrow in each picture

indicates how much further the red triangle has yet to go. Because T also translates
N AyByCy, we show the original position of AAygByCy in dashed lines to remind us of

where we are ultimately heading.

B, B,

\'/ \ T T

Here is the final position of AABC' (shown in red). We use dashed lines to indicate
the original positions of AABC and AAyByC.

Next, we will use a rotation to bring the horizontal side of the red triangle (which
is the translated image of AB by T') to AgBy. If the angle between the horizontal red
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side and AgBy is t degrees (in the picture above, t = 90), then a rotation of ¢ degrees
(in this case counterclockwise) around Ay will map the horizontal ray issuing from A,
to the ray Ra,p,. Call this rotation R. Now it is given that |[AB| = |A¢By|, and we
know a translation preserves lengths (assumption (A7), page[133)). So the horizontal
side of the red triangle has the same length as AyBy and therefore R will map the
horizontal side of the red triangle to the side AygBy of AAyByCy, as shown.

Two of the vertices of the red triangle already coincide with Ay and By of AAgByC.
We claim that after a reflection across line L 4,p, the third vertex of the red triangle
will be equal to Cy. Indeed, the two marked angles with vertex Ay are equal since
basic rigid motions preserve degrees of angles (assumption (A7), page m) and, by
hypothesis, ZCAB and ZCyAgBy are equal. Moreover, the left side of the red tri-
angle with Ay as endpoint has the same length as AyCy because basic rigid motions
preserve length ((A7) again), and by hypothesis |AC| = |A¢Cy|. Therefore our claim
follows from Lemma 8, page[143|. Thus after a reflection across L 4,p,, the red triangle

coincides with AAqByCy, as shown:

B,

Thus the desired congruence for the two triangles ABC' and AgByCy in this par-
ticular picture is the composition of a translation, a rotation, and a reflection.

It remains to address the other possibilities and how they affect the above argu-
ment. If A = Ay to begin with, then the initial translation would be unnecessary. It

can also happen that after the translation 7', the image T'(AB) (which corresponds
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to the horizontal side of the red triangle on page already coincides with Ay B,.
In that case, the rotation R would be unnecessary. Finally, if after the rotation the
image of C' is already on the same side of L,,p, as Cj, then Lemma 1 (page )
implies that the image of C' and C already coincide and the reflection would not be

needed. In any case, Theorem 5 is proved.

We next take up the third major criterion for triangle congruence, S5S. To this
end we prove the following theorem, which is interesting in its own right. If AABC
is an isosceles triangle so that |[AB| = |AC|, then it is common to refer to ZB and
ZC as its base angles, /A as its top angle, and BC as its base.

A

B D C
We will also refer to the line joining the midpoint of a side of a triangle to the
opposite vertex as a median of the side, and the line passing through the opposite
vertex and perpendicular to this side as the altitude on this side. Note that some-
times the segment from the vertex to the point of intersection of this line with the

(line containing the) side is called the median and the altitude, respectively.

Theorem 7. (a) An isosceles triangle has equal base angles. (b) In an isosceles
triangle, the perpendicular bisector of the base, the angle bisector of the top angle, the

median from the top vertexr, and the altitude on the base all coincide.

Proof. Referring to the preceding picture, let |[AB| = |AC| in AABC, and let the
angle bisector of the top angle ZA intersect the base BC' at D.@ Let R be the
reflection across the line Lap. Since |£LBAD| = |ZCAD|, and since |AB| = |AC],
we have R(B) = C by Lemma 8 (page [143]). Now it is also true that R(D) = D
and R(A) = A because D and A lie on the line of reflection of R, so R(BD) = CD
and R(BA) = C'A because a reflection maps a segment to a segment (by assumption
(A7), page[133]). Consequently, R(£B) = ZC. Since a reflection preserves the degree

28The fact that the angle bisector of ZA intersects BC is implied by assumption (A8) on page

33
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of angles (again by assumption (A7), page [133]), we have |£B| = |£C|. This proves
part (a). For part (b), observe that since L4p is the line of reflection and R(B) = C,

R(/ADB) = /ADC and R(BD) = (CD)

Therefore |ZADB| = |[ZADC| = 90°, and |BD| = |CD], so that L4p is the perpen-
dicular bisector of BC'. Since L 4p is, by construction, also the angle bisector of ZA,

every statement in (b) follows. The proof is complete.

As an immediate corollary, we have the following useful characterization of the
perpendicular bisector of a segment:

Corollary. A point is on the perpendicular bisector of a segment if and only if it is
equidistant from the endpoints of the segment.

Proof. Let the segment be BC' and let the point be A. If A is on the perpendicular
bisector ¢ of BC, then by the definition of the reflection R across ¢, R(B) = C and
R(A) = A.

B | C

Thus R(AB) = AC, and since reflection is distance-preserving (assumption (A7)
page [133]), |AB| = |AC| and A is equidistant from the endpoints B and C. Con-
versely, suppose |AB| = |AC|. Thus triangle ABC'is isosceles and the angle bisector
of ZA is the perpendicular bisector of BC', by Theorem 7. But the angle bisector of
/A passes through A, so the perpendicular bisector of BC passes through A. The
proof is complete.

We now turn to the third major congruence criterion for triangles: SSS.

Theorem 8 (SSS). Two triangles with three pairs of equal sides are congruent.
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Proof. Suppose triangles ABC and A’B’C" are given so that |AB| = |A'B|, |AC| =
|A’C’|, and |BC| = |B'C"|.

Case 1. We begin by assuming that the triangles satisfy an additional restrictive
assumption: B = B’ and C' = (', and we will prove that there is a basic rigid motion
that maps AA'B'C' to AABC'. Either A and A’ are on the same side of the line
Lpc or on opposite sides; first assume they are on opposite sides. Here are two of the

possibilities, but our proof will be valid in all cases.

A
B'=B @00'

A A

By hypothesis, |AB| = |A’B’|, so B is equidistant from A and A’; by the Corollary
to Theorem 7 (page m), B lies on the perpendicular bisector of AA’. For the same
reason, C' lies on the perpendicular bisector of AA’. Because two points determine a
line ((A1), page [L17]), Lpc is the perpendicular bisector of AA’. Thus the reflection
R across Lpc maps A’ to A, B to B and C to C (see the definition of reflection on
page [129]). Thus R(AA'B'C') = AABC. This then proves the theorem under the
stated restrictions that B = B’ and C' = C” and A, A’ being on opposite sides of Lgc.
Now suppose A, A’ are on the same side of Lpc. Still with R as the reflection across
Lpc, let R(A") = Ay, R(B') = By, and R(C") = Cy. Then R(AA'B'C") = AAgByCy,
and the latter has the property that B = By, C' = Cy, A, Ay are on opposite sides of
Lpe, and |AB| = |AoB|, |AC| = |AoC| (because a reflection preserves distance, by
assumption (A7) on page |133). The preceding argument then shows that

NABC = R(AAyByCy)
In view of AAyByCy = R(AA'B'C") and the fact that R o R is the identity transfor-

mation, we have
AABC = R(AAyByCy) = R(R(AA'B'C')) = AA'B'C’

Thus AA'B'C’ coincides with AABC' in the first place. Therefore the theorem is
true if, in addition to the equality of three pairs of sides, B = B’ and C = (.
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Case 2. Suppose we assume only that B = B’ but C' # C’. Because |BC| =
|B'C’|, a suitable rotation Ro around B will bring B'C” to BC. Then the triangle
Ro(AA'B'C') and AABC share a side BC, so that by Case 1, there is a basic rigid
motion F' (which is either a reflection or the identity) so that F(Ro(AA'B'C")) =

ANABC.
A

B=B C

/

A

Case 3. Finally, we treat the general case. In view of Case 2, we may assume
that triangles ABQ)nd A’B'C" do not even share a vertex. Let T" be the translation
along the vector B’'B. Then T(B’') = B, so that T(AA'B'C’) and AABC share a
vertex B. Depending on whether T(C") is equal to C' or not, we are in either Case 1
or Case 2. Thus there is some basic rigid motion F' and some rotation Ro (Ro would
be the rotation of 0 degrees if T'(C") = C'), we have F(Ro(T(AA'B'C"))) = AABC.

This proves Theorem 8.

Now that we have the three most important criteria for triangle congruence, it
is time to take stock of where we stand in terms of geometry instruction in high
school. It is well to reiterate the philosophy behind the geometry standards in the
CCSSM: whereas the usual geometry curriculum in grades 8-12 is incoherent due to a
sharp break between the recreational study of translations, rotations, and reflections
in middle school and the introduction of axioms and (seemingly) rigorous proofs in
high school, the CCSSM smooth over this break by amplifying on the mathematical
significance of translations, rotations, and reflections and using them to directly ac-
cess high school geometry. In the process, we also bypass the deadly litany of the
proofs of boring elementary theorems that attend the early part of every axiomatic
development. The preceding three sections are devoted to a fairly detailed description
of how this new transition can be accomplished. Now that some basic facts (e.g., par-

allelograms have equal opposite sides, isosceles triangles have equal base angles, etc.)
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together with SAS, ASA, SSS are at our disposal, classroom instruction can turn to
the traditional presentations of theorems in Euclidean geometry if one so wishes. For
details of an alternate approach at this point, please see the reference on page [115|.

It should be clear that the CCSSM do not pursue so-called transfor-
mational geometry as a goal in itself. In the CCSSM, the basic rigid motions
are given a place of prominence only because (1) these rigid motions are already a
time-honored part of the existing middle-school geometry curriculum, (2) they serve
to reveal that “congruence” means more than “same size and same shape”, and (3)
they serve to bridge the transition from middle school to high school. The basic rigid
motions therefore are a means to an end in the CCSSM, but by no means an end in
itself.

Of course, high school geometry is not just about congruences of triangles. There
are two major topics we have not touched on here, similarity and circles, but we hope
that what has been done for congruence is a sufficient indication of the potential of
the CCSSM approach to high school geometry. Once again, we refer to the second
reference on page for more details on these two topics.

4. The number =

The goal of this section is to bring closure to the discussion of why it is peda-
gogically preferable to define the number 7 as the area of the unit disk rather than
as the ratio of the circumference over the diameter (see page ) At this point, we
will slightly extend the intuitive definition of the area of a disk (page [57]) by giving
a general definition of the area of a plane region as the limit of the areas of ap-
proximating polygons that are inside the region (this is a definition that can be made
completely correct by tightening the phrasing). We make use of this fact as follows.
First, by a square grid, we mean a collection of horizontal and vertical lines so that
the distance between any two horizontal lines is equal to the distance between any
two vertical lines, and by a square of the square grid, we mean a square whose
sides are on two adjacent horizontal lines and two adjacent vertical lines of the grid.
The length of a side of the squares in a grid is called the mesh of the grid. When a
circle and a grid G are given, it makes sense to talk about all the squares of G lying

inside the circle; the collection of all such squares is called the inner polygon of G
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when the circle is clearly understood.

We need so much terminology for a reason, as we proceed to explain. Fix a unit
circle. 1f we have a sequence of square grids G,, so that the mesh of G goes to 0 as
n — oo, then it is also intuitively clear that as n — oo, the (region inside the) inner
polygon P, of G, gets closer and closer to the unit disk. Below are two examples
of inner polygons (colored in blue) which indicate why the (region inside an) inner

polygon approximates the unit disk better and better when the mesh of the grid
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By definition, the limit of the area |P,| of the inner polygon P,, as n — oo (thus the

decreases.

mesh of the grid goes down to 0) is the area of the unit disk. Recalling that 7 is

the area of the unit disk, we have:
7 = lim |P,|
n—oo

We will now produce an inner polygon for the unit circle by using graph paper.
We start by drawing a quarter unit circle on a piece of graph paper. In principle, you
should get the best graph paper possible because we are going to use the grid of the
graph paper to directly estimate m. (The squares in the grid of cheap graph paper
are usually not really squares.) So to simplify matters, suppose a quarter of a unit
circle is drawn on a piece of graph paper so that the radius of length 1 is equal to 5
(sides of the) small squares, as shown. (Now as later, we shall use small squares to

refer to the squares of the grid.)

The square of area 1 then contains 52 small squares. We want to estimate how many
small squares are contained in this quarter circle. The shaded polygon consists of 15
small squares of the grid. There are 7 small squares each of which is partially inside
the quarter circle. Let us estimate the best we can how many small squares altogether
are inside the quarter circle. Among the three small squares in the top row, a little

more than 2 small squares seem to be inside the quarter circle; let us say 2.1 small
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squares. By symmetry, the three small squares in the right column also contribute
2.1 small squares. As to the remaining lonely small square near the top right-hand
corner, there is about 0.5 of it inside the quarter circle . Altogether the non-shaded
small squares contribute 2.1+ 2.1+ 0.5 = 4.7 small squares, so that the total number

of small squares inside the quarter circle is, approximately,
15+4.7=19.7
The unit circle therefore contains about
4 x19.7 = 78.8 small squares

Now 7 is the area of the unit circle, and we know that the area of 25 small squares is

equal to 1. So the total area of 78.8 small squares is

78.8
— = 3.152
25
Our estimate of 7 is that it is roughly equal to 3.152. Taking the value of =
to be 3.14159, accurate to 5 decimal digits, the percentage error of this estimate is

approximately equal to
3.152 — 3.14159

3.14159 0.33%

While a relative error of 0.33% is very impressive, this experiment is not convincing
because the amount of guesswork needed to arrive at the final answer is too high.
With a very fine and accurate grid (this is where you spend money to get good graph
paper), one can reasonably get the linear unit 1 to be equal to anywhere between 25

to 50 sides of small squares so that the unit area would consist of between 252 to 502
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small squares. Then the percentage of guesswork needed to estimate what happens
to the small squares near the circle will be greatly reduced (though the counting of
the total number of small squares can get dizzying).

In general, with the unit 1 equal to n small squares, then n? small squares have a
total area of 1. If there are, after some guessing, k small squares in a quarter circle,

then there are 4k small squares in the unit circle. Thus the area of the unit disk is

A 4k
T on?

The relative error rarely exceeds 1%. This should be both impressive and in-
structive to students. This is also the reason it is pedagogically better to define the
number 7 by area, as it is nearly impossible to get such a good estimate of 7 using
the definition of 7 as the ratio of circumference to diameter.

It is recommended that all students do this activity so that they get a firm con-
ception of what 7 is, namely, a number between 3 and 4 whose value they themselves

can approximate closely if they wish.

High school students should also be exposed to an informal derivation of the vol-
ume formula of a sphere of radius r using Cavalieri’s Principle. As is well known, the
volume formula in question is %7?7“3. However, in order not to add to the size of this
already long document, we will simply refer to the second reference on page for

details.
5. Pedagogical implications

One of the problems encountered by beginners in geometry is their inability to
reconcile the chasm between intuition and formalism in the prevailing presentations
of the subject. The two basic concepts of congruence and similarity come across as
either formal and abstract, or intuitive but irrelevant. In the axiomatic presentations,
congruence and similarity are defined precisely but only for polygons and, as such,
they are divorced from the intuitive way these terms are normally used. In the other
extreme, congruence is “same size and same shape”, and similarity is “same shape
but not necessarily the same size”. Because mathematics demands precision, the

informality of these definitions raises the question, never addressed, about what these
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concepts have to do with mathematics. Students cannot use these intuitive definitions
to prove theorems; instead, they are taught to use SAS and SSS for both congruence
and similarity, AA for similarity, etc. At the end, these concepts become synonymous
with rote procedures and, by extension, proving theorems in geometry also becomes
a rote procedure.

The potential benefit of defining congruence using reflections, rotations, and trans-
lations is that they transform an abstract concept into one that is concrete and tactile.
This is the whole point of the eighth grade geometry standards, which ask for the
use of manipulatives, especially transparencies, to model reflections, rotations, and
translations, i.e., to model congruence. It is for this reason that we used reflections,
rotations, and translations to prove all three criteria of triangle congruence—SAS,
ASA, and SSS—even when there is always the option to use SAS to prove ASA and
SSS. We hope that the two earlier sections, Sections 2 and 3, have given a convinc-
ing demonstration that theorem-proving in geometry does not have to be an exercise
in formalism and abstraction. Congruence is something students can relate to in a
tactile manner just by moving a transparency over a piece of paper or a cardboard
geometric figure across the blackboard. In the same way, we can also ground the
learning of similarity in such tactile experiences.

There is an additional advantage in this approach that has been mentioned and
deserves to be mentioned again. In Sections 2 and 3, we have given the complete
logical development of the first few theorems of plane geometry by making strong use
of basic rigid motions. In addition, we have proved in this short space the three basic
congruence criteria for triangle congruence: SAS, ASA, and SSS. Because most of
the theorems in plane geometry before the introduction of similarity depend only on
these three criteria, this fact allows a transition into the traditional way of proving
theorems at this point, without further use of basic rigid motions if so desired. The
use of dilation to treat similarity can likewise be limited to the initial stage, if so

desired; again see the following article for further details:

H. Wu, Teaching Geometry in Grade 8 and High School
According to the Common Core Standards

The professional judgment of the practitioners in geometry is that, at least ini-

tially, geometric intuition is mostly built on tactile experiences rather than abstract
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formalism. The goal of these standards is to provide a sound foundation for the

learning of geometry by maximizing the use of such tactile experiences.
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