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General Introduction

The content of these notes is the mathematics that is generally taught in grades

6–8. This is a no frills, bare essentials course for helping you to teach mathematics

in the middle school classroom, and is not designed to show you how mathematics,

deep down, is just lots of fun. We review most of the standard topics of the middle

school mathematics curriculum. However, the presentation of this material in the

standard textbooks, be they traditional or reform, is riddled with mathematical errors.

What is presented in this institute, while bearing superficial resemblances to what

you normally find in textbooks, will likely be very different in terms of precision,

sequencing, and reasoning. You will probably have to rethink some of this material

even if you believe you already know them very well.

Let us look at the concept of congruence, a main point of emphasis in these

notes. Most textbooks would have you believe that it means same size and same

shape. As mathematics, this is totally unacceptable, because “same size” and “same

shape” are words that mean different things to different people, whereas mathematics

only deals with clear and unambiguous information. I will therefore suggest that you

approach the teaching of this concept completely differently. First make sure that you

know what reflections, translations and rotations are, then devise hands-on activities

for your students to familiarize them with these concepts, and finally, teach them

that two sets are congruent if one can carry one set onto the other by use of a finite

number of reflections, translations and rotations.

You see right away that we will be doing standard middle school mathematics,

but for a change, we will do it in a way that is consistent with how mathematics

is supposed to be done. The hope is that by the time you are finished with these

notes, you will begin to recognize school mathematics as a coherent subject with

every concept and skill placed in a logically correct hierarchy. If I may express this

idea by use of an analogy, it would be like bringing bookshelves to a roomful of

books scattered all over the floor and trying to put the books on the shelves using a

well-understood organizing principle. Once arranged this way, any book in the room

can be easily accessed in the future. Likewise, if we can re-organize mathematical

thoughts logically in our mind, we can much more easily access and make use of them.

But why? An obvious reason is that if we want students to see mathematics as a
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tool to help solve problems, the different parts of this tool must be freely accessible.

This cannot happen if we as teachers do not have free access to these parts ourselves.

A less obvious, but perhaps more compelling reason is that teaching mathematics

merely as a jumbled collection of tasks has led our nation to a severe mathematics

education crisis.1 It would be reasonable to attribute a good deal of students’ non-

learning of mathematics to their being fed such jumbled information all the way from

kindergarten to grade 12.2 These notes are dedicated to making improvements in

mathematics instructions, one classroom at a time.

The main goal of these notes is to provide the necessary background for the teach-

ing of algebra. Getting all students to take algebra around grade 8 is at present a

national goal. For an in-depth discussion, see the National Mathematics Panel’s

Conceptual Knowledge and Skills Task Group Report:

http://www.ed.gov/about/bdscomm/list/mathpanel/report/conceptual-

knowledge.pdf

Currently, most school students are deficient in their knowledge of the two pillars

that support algebra: rational numbers and similar triangles; these two topics are the

subject of five of the seven chapters in these notes. In the current school curriculum,

one does not associate the learning of similar triangles as a pre-requisite to the learning

of algebra. But it is, and this failure to give adequate support to our students’ learning

of algebra is one of the flaws in mathematics instructions that we set out to remedy.

Overall, these notes will strive to improve mathematics teaching by emphasizing,

throughout, the following three principles:

(I) Precise definitions are essential. Definitions are looked upon with something

close to disdain by most teachers because “they are nothing more than something

to be memorized”. Such an attitude stems from poor professional development that

breeds such a misconception of mathematics. First of all, memorizing important facts

1See, for example, Rising Above the Gathering Storm, The National Academies Press, 2007.
Also, http://www.nap.edu/catalog.php?record id=11463. Or Foundations for Success: The Na-
tional Mathematics Advisory Panel Final Report, U.S. Department of Education, 2008. Also,
http://www.ed.gov/about/bdscomm/list/mathpanel/reports.html.

2Such a statement should not be misinterpreted to mean that this is the only reason for students’
non-learning. There is enough blame to go around.
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is an integral part of life (you memorize your name, your home address, your cell

phone, the password of your computer account, etc.), and you will have to memorize

all the definitions we use. No apology will be offered. But the idea that a definition

in mathematics is nothing but “one more thing to memorize” must be eradicated. In

mathematics, precise definitions are the bedrock on which all logical reasoning rests

because mathematics does not deal with vaguely conceived notions. These notes will

respect this fundamental characteristic of mathematics by offering precise definitions

for many concepts in the school curriculum usually used with no definitions: fraction,

decimals, sum of fractions, product of fractions, ratio, percent, polygon, congruence,

similarity, length, area, etc.

(II) Every statement should be supported by reasoning. There are no unexplained

assertions in these notes. If something is true, a reason will be given. Although it

takes some effort to learn the logical language used in mathematical reasoning, in the

long run, the presence of reasoning in all we do eases the strain of learning and dis-

arms disbelief. It also has the salutary effect of putting the learner and the teacher on

the same footing, because the ultimate arbiter of truth will no longer be the teacher’s

authority but the compelling rigor of the reasoning.

(III) Mathematics is coherent. You will see that these notes unfold logically and

naturally rather than by fits and starts. On the one hand, each statement follows

logically from the preceding one, and on the other, the various statements form parts

of an unending story rather than a disjointed collection of disparate tricks and fac-

toids. A striking example of the failure of coherence is the common explanation of

the theorem on equivalent fractions, which states that m
n = km

kn for all fractions m
n

and for all positive integer k. Most book would have you believe that this is true

because
m

n
= 1× m

n
=

k

k
× m

n
=

km

kn

Unfortunately, the last step depends on knowing how to multiply fractions. But

the definition of fraction multiplication is the most subtle among the four arithmetic

operations on fractions, whereas the theorem on equivalent fractions should be proved

as soon as fractions are defined. To invoke something not yet explained and technically

more complex to explain something logically simpler and more elementary is a blatant
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violation of the fundamental structure of mathematics. Such violations abound in

current textbooks.

An example of the interconnections among seemingly different topics that hold

the subject together is the fact that the concept of similarity in Chapter 6 relies on

a knowledge of dividing fractions (Chapter 1) and congruence (Chapter 5). Another

example is the key role played by congruence in the considerations of length, area,

and volume (Chapter 7). And as a final example, you will notice that the division

of whole numbers, of fractions (Chapter 1), and of rational numbers (Chapter 2) are

conceptually identical.

I hope you find that these notes make more sense of the mathematics you know

because they observe these basic principles. As far as this institute is concerned, how-

ever, what matters is that you can translate this new-found knowledge into better

teaching in your classroom. I am counting on you to make this next step.

I am very grateful to Larry Francis for correcting a large number of linguistic infelicities

and misprints.
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Suggestions on How to Read These Notes

The major conclusions in these notes, as in all mathematics books, are summarized

into theorems; depending on the author’s (and other mathematicians’) whims, theorems

are sometimes called propositions, lemmas, or corollaries as a way of indicating which

theorems are deemed more important than others (note that a formula or an algorithm is

just a theorem). This idiosyncratic classification of theorems started with Euclid around

300 B.C. and it is too late to change now. The main concepts of mathematics are codified

into definitions. Definitions are set in boldface in these notes when they appear for the

first time. A few truly basic ones among the definitions are even individually displayed in

a separate paragraph, but most of the definitions are embedded in the text itself. Be sure

to watch out for them.

The statements of the theorems as well as their proofs depend on the definitions, and

proofs (= reasoning) are the guts of mathematics.

A preliminary suggestion to help you master the content of these notes is for you to

copy out the statements of every definition, theorem, proposition, lemma, and

corollary, along with page references so that they can be examined in detail

if necessary,

and also to

summarize the main idea of each proof.

These are good study habits. When it is your turn to teach your students, be sure to pass

on these suggestions to them. A further suggestion is that you might consider posting

some of these theorems and definitions in your classroom.

You should also be aware that reading mathematics is not the same as reading a gossip

magazine. You can probably flip through such a magazine in an hour, if not less. But

in these notes, there will be many passages that require careful reading and re-reading,

perhaps many times. I cannot single out those passages for you because they will be

different for different people. We don’t all learn the same way. What is true under all

circumstances is that you should accept as a given that mathematics books make for
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exceedingly slow reading. I learned this very early in my career. On my very first day as

a graduate student many years ago, a professor, who was eventually to become my thesis

advisor, was lecturing on a particular theorem in a newly published volume. He mentioned

casually that in the proof he was going to present, there were two lines in that book that

took him fourteen hours to understand and he was going to tell us what he found out in

those long hours. That comment greatly emboldened me not to be afraid to spend a lot

of time on any passage in my own reading.

If you ever get stuck in any passage of these notes, take heart, because that is nothing

but par for the course.
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In this and the next chapter, we are going to develop a theory of fractions and

rational numbers (positive and negative fractions) that is suitable for use in upper

elementary and middle school. Every teacher must have a firm grasp of fractions and

rational numbers, because school mathematics as a whole is about rational

numbers. These two chapters give an exposition of rational numbers that is suitable

for use in a classroom of grades 5–7.

In reading these two chapters, please keep in mind that the emphasis here will

not be on individual facts or skills. This is not to say that facts and skills are not

important, — they are — but, assuming that you are somewhat familiar with them,

we will be more concerned with the reorganization of these facts and skills so that

they form a logical and coherent whole that is compatible with the learning processes

of upper elementary and middle school students. The hope is that, with this reorga-

nization, you as a teacher will be able to explain fractions to your students in a way

that makes sense to them and to you yourself. This is the first step toward estab-

lishing mathematical communication between you and your students. For example,

it may come as a surprise to you that it is possible to develop the concept of adding

fractions without once mentioning “the least common denominator”, and that the

invert-and-multiply rule for the division of fractions is a theorem that can be proved

on the basis of a precise definition of fraction division.

The teaching of fractions is the most problematic part of school mathematics

because, in the usual way it is done, there are hardly any valid definitions offered

and almost nothing is ever explained. The resulting non-learning of fractions is not

only a national scandal within the state of mathematics education, but also a major

stumbling block in students’ learning of algebra. The critical importance of fractions

to the learning of algebra is beginning to be recognized. See, for example, the report

of the National Mathematics Panel (2008),

http://www.ed.gov/about/bdscomm/list/mathpanel/report/conceptual-knowledge.pdf

See also the article, H. Wu, From arithmetic to algebra,

http://math.berkeley.edu/~wu/C57Eugene 2.pdf

For example, can you recall from your own K-12 experience if you were ever told

what it means to multiply 5
4
× 3

7
and, moreover, why that is equal to 5×3

4×7? If not,
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then it should give you incentive to do better when it is your turn to teach. What

you will learn in these two chapters, and perhaps all through these notes, will be a

reorganization of the bits and pieces that you learned haphazardly in K–12 into a

coherent body of knowledge. Your job will be to make this re-organized knowledge

accessible to your students. You are being asked to become an advocate of teaching

school mathematics the way mathematics should be taught: giving precise definitions

to all the concepts and explaining every algorithm and every skill. The purpose of

these notes is to optimize your chances of success in this undertaking.

1 Definition of a fraction

Mise-en-scène

The formal definition

Some special features

Decimals

Mise-en-scène

Mathematics rests on precise definitions. We need a definition of a fraction, not

only because this is what mathematics demands, but also because children need a

precise mental image for fractions to replace the mental image of their fingers for

whole numbers.

We begin with the number line. On a line which is (usually chosen to be) horizon-

tal, we pick a point and designate it as 0. We then choose another point to the right

of 0 and, by reproducing the distance between 0 and this point, we get an infinite

sequence of equi-spaced points to the right of 0. Think of this as an infinite ruler.

Next we label all these points by the nonzero whole numbers 1, 2, 3, . . . in the usual

manner. Thus all the whole numbers N = {0, 1, 2, 3, . . .} are now displayed on the

line as equi-spaced points increasing to the right of 0, as shown:

0 1 2 3 4
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A horizontal line with an infinite sequence of equi-spaced points identified with

N on its right side is called the number line. By definition, a number is just a

point on the number line. Note that except for the original sequence of equi-spaced

points which we have chosen to denote by 1, 2, 3, etc., most numbers do not have

recognizable names as yet. The next order of business will be to name more numbers,

namely, the fractions.

Now fractions have already been introduced to students in the primary grades,

and their basic understanding of fractions is that they are “parts of a whole”. The

transition from “parts of a whole” to “a point on the number line” has to be handled

with care. This is because this transition, which should occur in the fifth or sixth

grade, is students’ first serious introduction to abstract thinking in mathematics, and

it is anything but natural to them. After all, “parts of a whole” is an object, e.g.,

an area, a part of a pizza, an amount of water in a glass, or a certain line segment,

but not a point on a line. Therefore, the following informal discussion is intended

to smooth out this transition as well as prepare you for the contingency of having to

convince your students to accept a fraction as a certain point on the number line.

We begin the informal discussion by considering a special case: how the fractions

with denominator equal to 3, i.e., 1
3
, 2

3
, 3

3
, 4

3
, etc., come to be thought of as a certain

collection of points on the number line. We take as our “whole” the unit segment

[0, 1]. (We will denote the segment from c to d, with c < d, by [c, d].) The fraction 1
3

is therefore one-third of the whole, i.e., if we divide [0, 1] into 3 equal parts, 1
3

stands

for one of the parts. One obvious example is the thickened segment below:

0 1 2 3

Of course this particular thickened segment is not the only example of “a part

when the whole is divided into 3 equal parts”. Let us divide, not just [0, 1], but every

segment between two consecutive whole numbers — [0, 1], [1, 2], [2, 3], [3, 4], etc. —

into three equal parts. Then these division points, together with the whole numbers,

form an infinite sequence of equi-spaced points, to be called the sequence of thirds:
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0 1 2 3

For convenience, we call any segment between consecutive points in the sequence

of thirds a short segment. Then any of the following thickened short segments is

“one part when the whole is divided into 3 equal parts” and is therefore a legitimate

representation of 1
3
:

0 1 2 3

The existence of these multiple representations of 1
3

complicates life and prompts

the introduction of the following standard representation of 1
3
, namely, the short

segment whose left endpoint is 0 (see the very first example above of a thickened

short segment). With respect to the standard representation of 1
3
, we observe that this

short segment determines its right endpoint, and vice versa: knowing this segment

means knowing its right endpoint, and knowing the right endpoint means knowing

this segment. In other words, we may as well identify the standard representation of
1
3

with its right endpoint. It is then natural to denote this right endpoint by 1
3
:

0 1 2 3

1
3

In like manner, by referring to the sequence of thirds and its associated short

segments, the fraction 5
3
, being 5 of these short segments, can be represented by any

of the following collections of thickened short segments:

0 1 2 3

0 1 2 3
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Again, our standard representation of 5
3

is the first one, which consists of

5 adjoining short segments abutting 0. This standard representation is completely

determined by its right endpoint, and vice versa. Thus to specify the standard repre-

sentation of 5
3

is to specify its right endpoint. For this reason, we identify the standard

representation of 5
3

with its right endpoint, and proceed to denote the latter by 5
3
, as

shown.

0 1 2 3

5
3

In general then, a fraction m
3 (where m is some whole number) has the standard

representation consisting of m adjoining short segments abutting 0, where “short

segment” refers to a segment between consecutive points in the sequence of thirds.

Since we may identify this standard representation of m
3

with its right endpoint, we

denote the latter simply by m
3

. The case of m = 10 is shown below:

0 1 2 3

10
3

We note that in case m = 0, 0
3 is just 0.

Having identified each standard representation of m
3

with its right endpoint, each

point in the sequence of thirds now acquires a name, as shown below. These are

exactly the fractions with denominator equal to 3.

0 1 2 3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

11
3

In terms of the sequence of thirds, each fraction m
3 is easily located: the point m

3
is the m-th point to the right of 0. Thus if we ignore the denominator, which is 3,

then the naming of the points in the sequence of thirds is no different from the naming
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of the whole numbers.

Of course the consideration of fractions with denominator equal to 3 extends to

fractions with other denominators. For example, replacing 3 by 5, then we get the se-

quence of fifths, which is a sequence of equi-spaced points obtained by dividing each

of [0, 1], [1, 2], [2, 3], . . . , into 5 equal parts. The first 11 fractions with denominator

equal to 5 are now displayed as shown:

0 1 2

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

10
5

11
5

Finally, if we consider all the fractions with denominator equal to n, then we

would be led to the sequence of n-ths, which is the sequence of equi-spaced points

resulting from dividing each of [0, 1], [1, 2], [2, 3], . . . , into n equal parts. The fraction
m
n is then the m-th point to the right of 0 in this sequence.

This ends the informal discussion.

The formal definition

We now turn to the formal definition of a fraction.

We will begin by making precise the common notion of “equal parts”. A segment

[a, b] is said to be of length k for a number k if, when we slide [a, b] along the number

line until a is at 0, the right endpoint b lies over the number k. 3 In particular, the

unit segment has length 1. We say a segment [a, b] is divided into m equal parts

if [a, b] is expressed as the union of m adjoining, nonoverlapping segments of equal

length. A sequence of points is said to be equi-spaced if the segments between

consecutive points in the sequence are all of the same length.

Divide each of the line segments [0, 1], [1, 2], [2, 3], [3, 4], . . . , into 3 equal parts.

The totality of division points, which include the whole numbers, form a sequence

3It will be observed that, insofar as the only numbers (i.e., points on the number line) which
have been given names thus far are the whole numbers, this length k may not have any names we
recognize. But as we proceed to name the fractions, there will be more lengths that we will recognize
as fractions.
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of equi-spaced points, to be called the sequence of thirds. By definition, the

fraction 1
3

is the first point in the sequence to the right of 0, 2
3

is the second point,
3
3

is the third point, and in general, m
3

is the m-th point in the sequence to the right

of 0, for any nonzero whole number m. By convention, we also write 0 for 0
3
. Note

that 3
3

coincides with 1, 6
3

coincides with 2, 9
3

coincides with 3, and in general, 3m
3

coincides with m for any whole number m. Here is the picture:

0 1 2 3 etc.

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

The fraction m
3

is called the m-th multiple of 1
3
. Note that the way we have

just introduced the multiples of 1
3

on the number line is exactly the same way that

the multiples of 1 (i.e., the whole numbers) were introduced on the number line. In

other words, if we do to 1
3

exactly what we did to the number 1 in putting the whole

numbers on the number line, then we would also obtain every m
3

for a whole number

m.

In general, if a nonzero n ∈ N is given, we introduce a new collection of points on

the number line in the following way: Divide each of the line segments [0, 1], [1, 2],

[2, 3], [3, 4], . . . into n equal parts, then these division points (which include the whole

numbers) form an infinite sequence of equi-spaced points on the number line, to be

called the sequence of nths. The first point in the sequence to the right of 0 is

denoted by 1
n
, the second point by 2

n
, the third by 3

n
, etc., and the mth point in the

sequence to the right of 0 is denoted by m
n

. By convention, 0
n

is 0.

Definition The collection of all the sequences of nths, as n runs through the

nonzero whole numbers 1, 2, 3, . . . , is called the fractions. The mth point to the

right of 0 in the sequence of nths is denoted by m
n

. The number m is called the nu-

merator and n, the denominator of the symbol m
n

. By the traditional abuse of

language, it is common to say that m and n are the numerator and denomina-

tor, respectively, of the fraction m
n

. 4 By definition, 0 is denoted by 0
n

for any n.

4The correct statement is of course that “m is the numerator of the symbol which denotes the
fraction that is the mth point of the sequence of nths, and n is the denominator of this symbol.”
(Needless to say, it takes talent far above the norm to talk like this.)
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Remark All the care that goes into this definition of a fraction is not an empty

exercise in formalism, much less “another fact to memorize”, which is a common

misconception of what a definition is. What this definition does is to set in motion

how the rest of this chapter will unfold, namely, if any assertion is made about frac-

tions, that assertion must be explained (i.e., proved) by referring to this meaning of

a fraction, no more and no less. This is how seriously you must take this and any

other definition. So memorize the definition of a fraction any way you can ,

because you must have instant recall of this definition at all times.

By tradition, a fraction m
n so that m < n is called proper, whereas it is improper

if m ≥ n. As before, we shall refer to m
n

as the mth multiple of 1
n
. In the future, we

will relieve the tedium of always saying the denominator n of a fraction m
n

is nonzero

by simply not mentioning it.

Some special features

A few remarks about the definition of a fraction are in order:

(A) In general, if m is a multiple of n, say m = kn,5 then it is self-evident that
n
n

= 1, 2n
n

= 2, 3n
n

= 3, 4n
n

= 4, and in general,

kn

n
= k, for all whole numbers k, n, where n > 0.

In particular,
m

1
= m and

m

m
= 1

for any whole number m.

(B) For the study of fractions, the unit is of extreme importance. On the num-

ber line, it is impossible to say which point is what fraction until the

number 1 has been fixed. This means that in the classroom, students need to be

reminded that every fraction has to refer to a unit: does 1
3

mean a third of the volume

of the liquid in a conical container or a third of this liquid by height? Or, a fraction

5We follow the standard convention of suppressing the multiplication symbol × between two
letter symbols.
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5
7

could be five-sevenths of a bucket of water by volume or five-sevenths in dollars of

your life-savings.

(C) A unit must be described with precision. An example of a common error is

to refer to a pizza as the unit (“the whole”), and ask what fraction is represented by

putting one of the four pieces on the left together with one of the eight pieces on the

right:

&%
'$

&%
'$

��

��

@@

@@

Many students will not come up with the expected answer of 3
8
, because they take

1 to be the shape of the pizza and they don’t know how to put two shapes together

to get a fraction. Better to tell them that 1 represents the area of the pizza.

(D) We have been talking about the number line, but in a literal sense this is

wrong. A different choice of the line or even a different choice of the positions of the

number 0 and 1 would lead to a different number line. What is true, however, is that

anything done on one number line can be done on any other in exactly the same way.

In technical language, all number lines are isomorphic,6 and therefore we identify all

of them. Now it makes sense to speak of the number line.

(E) Although a fraction is formally a point on the number line, the informal

discussion above makes it clear that on an intuitive level, a fraction m
n

is just the

segment [0, m
n

]. So in the back of our minds, the segment image never goes away

completely, and this fact is reflected in the language we now introduce. First, a

definition: the concatenation of two segments L1 and L2 on the number line is the

line segment obtained by putting L1 and L2 along the number line so that the right

endpoint of L1 coincides with the left endpoint of L2:

L1 L2

6Corresponding to the fact that all complete ordered fields are isomorphic.
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Thus the segment [0, m
n

] is the concatenation of exactly m segments each of length 1
n
,

to wit, [0, 1
n
], [ 1

n
, 2
n
], . . . , [m−1

n
, m
n

]. Because we identify [0, m
n

] with the point m
n

, and

[0, 1
n
] with 1

n
, it is natural to adopt the following suggestive terminology to express

the fact that the segment [0, m
n

] is the concatenation of exactly m segments each of

length 1
n
:

m
n

is m copies of
1
n

(F) In education research, the meaning of the equal sign is a subject that is

much discussed, mainly because the meaning of equality is never made clear in school

mathematics. For this reason, we make explicit the fact that two fractions (which

are two points on the number line) are said to be equal if they are the same point.

If the given fractions are denoted by k
` and m

n , then we denote the equality by the

usual symbol:

k
`

=
m
n

We have already seen above, for example, that kn
n

= k
1

= k for any n, k ∈ N.

(G) The definition of a fraction as a point on the number line allows us to make

precise the common concept of one fraction being bigger than another. First consider

the case of whole numbers. The way we put the whole numbers on the number line,

a whole number m is smaller than another whole number n (in symbols: m < n )

if m is to the left of n. We expand on this fact by defining a fraction A to be smaller

than another fraction B, (in symbols: A < B ) if A is to the left of B on the number

line:

A B

Note that in the standard education literature, the concept of A < B between frac-

tions is never defined, one reason being that if the concept of a fraction is not defined,

it is difficult to say one unknown object is smaller than another unknown object.

Sometimes the symbol B > A is used in place of A < B. Then we say B is

bigger than A.
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This definition of smaller than may seem innocuous, but it is easy to overlook its

significance. The concept of “bigger” or “smaller” is such a basic part of the human

experience that any definition of either one would likely make no impression whatso-

ever on our psyche because we would immediately wave it off and revert to our naive

conceptions. More explicitly, the inherent danger is that you would completely ignore

the preceding definition of “smaller than” the next time you are called upon to decide

whether A < B for two fractions A and B, and would try instead to “prove” A < B

entirely by appealing to gut feelings. So just remember: if you want to prove that a

fraction A is smaller than a fraction B, you will have to locate the position of A and

the position of B on the number line, and prove that A is to the left of B. There is

no other way.

(H) There is a pedagogical issue related to the notation of a fraction: k
`
. Students

have been known to raise the question of why we use three symbols (k, `, and the

fraction bar “–”) to denote one concept. With a precise definition of what a fraction

is, we can easily answer this question. Remember that a fraction is a special point on

the number line, no more and no less, and the symbols employed serve the purpose

of telling us where the fraction is located. Thus the symbol 14
5

says precisely that, if

we look at the sequence of 5ths, then 14
5

is the 14th point of the sequence to the right

of 0. We need every part of the symbol 14
5

for this purpose: the need of 5 and 14 is

obvious, and the role of the fraction bar “–” is to separate 5 from 14 so that one does

not confuse 14
5

with 145, for example.

(I) We now face the practical question of how to locate a fraction, at least ap-

proximately, on the number line. For something as simple as 4
3
, almost no work is

involved: just divide the number line into thirds and go to the fourth point in the

sequence of thirds. It is a little beyond 1.

0 1

6 6 6 666 6

4
3

Activity Can you locate the fraction 20
15

? How is it related to 4
3

?
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However, how to locate a fraction such as 84
17 , approximately, on the number line?

That is, roughly, where should 84
17 be placed on the following line?

0 1 2 3 4 5 6 7 8

Because we are trying to find out how big 84 is compared with 17, it is natural to

think of division-with-remainder and divide 84 by 17. We have 84 = (4× 17) + 16,7

so

84

17
=

(4× 17) + 16

17

So if each step we take is of length 1
17

, going another 16 steps to the right of 4 will

get us to 84
17

. If we go 17 steps instead, we will get to 5. Therefore 84
17

should be quite

near 5, as shown:

6
84
17

0 1 2 3 4 5 6 7 8

In general, if m
n is a fraction and division-with-remainder gives m = qn + k,

where q and k are whole numbers and 0 ≤ k < n, then

m

n
=
qn+ k

n
,

and the position of m
n on the number line would be between q (=

qn
n ) and q + 1

(=
(q+1)n

n , which is
qn+n
n ).

Decimals

There is an important class of fractions that deserves to be singled out at the

outset: those fractions whose denominators are all positive powers of 10, e.g.,

1489

102
,

24

105
,

58900

104

7This is the correct way to say “84 divided by 17 has quotient 4 and remainder 16”, NOT
“84 ÷ 17 = 4 R 16”! Please help to get rid of this piece of mathematical illiteracy from school
classrooms.
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(Recall the exponential notation: 102 = 10× 10, 104 = 10× 10× 10× 10, etc.) These

are called decimal fractions, for obvious reasons, but they are better known in a

more common notation under a slightly different name, to be described presently.

Decimal fractions were understood and used in China by about 400 A.D., but they

were transmitted to Europe as part of the so-called Hindu-Arabic numeral system

only around the twelfth century. In 1593, the German Jesuit priest (and Vatican

astronomer) C. Clavius introduced the idea8 of writing a decimal fraction without

the fraction symbol: just use the numerator and then keep track of the number of

zeros in the denominator (2 in the first decimal fraction, 5 in the second, and 4 in the

third of the above examples) by the use of a dot, the so-called decimal point, thus:

14.89, 0.00024, 5.8900,

respectively. The rationale of the notation is clear: the number of digits to the right

of the decimal point, the so-called decimal digits, keeps track of the power of 10

in the respective denominators, 2 in 14.89, 5 in 0.00024, and 4 in 5.8900. In this

notation, these numbers are called finite or terminating decimals. In context, we

usually omit any mention of “finite” or “terminating” and just say decimals. Notice

the convention that, in order to keep track of the power 5 in 24
105

, three zeros are added

to the left of 24 to make sure that there are 5 digits to the right of the decimal point

in 0.00024. Note also that the 0 in front of the decimal point is only for the purpose

of clarity and is optional.

Activity Explain why 3.15 > 3.14. (Caution: Remember what was said above

about definitions, and be very careful with your explanation.)

You may be struck by the odd looking number 5.8900, because you have been told

that that it is ok to omit the zeros at the right end of the decimal point and just

write 5.89. But why? In other words, why are the following two fractions equal?

58900

104
and

589

102

They are, but your job is not finished until you can prove it. It is time to remember

what we said earlier: if something is asserted about fractions, then we must prove it

8See J. Ginsburg, On the early history of the decimal point, American Mathematical Monthly,
35 (1928), 347–349.
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on the basis of the definition of a fraction as a point on the number line. Just that.

Nothing more and nothing less. So why are the two points denoted by these fractions

the same point on the number line? Think about it now and we will do it in the next

section.

Exercises 1.1

In doing these and subsequent exercises, please observe the following basic

rules:

(a) Use only what you have learned so far in this course (this is

the situation you face when you teach).

(b) Show your work; the explanation is as important as the answer.

(c) Be clear. Get used to the idea that everything you say has to be

understood.

1. A text on professional development claims that students’ conception of “equal

parts” is fragile and is prone to errors. As an example, it says that when a circle is

presented this way to students

&%
'$
�� QQ

they have no trouble shading 2
3
, but when these same students

are asked to construct their own picture of 2
3, we often see them create

pictures with unequal pieces:

&%
'$

(a) What kind of faulty mathematical instruction might have promoted this kind of

misunderstanding on the part of students? (b) What would you do to correct this
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kind of mistake by students?

2. Indicate the approximate position of each of the following on the number line, and

briefly explain why. (a) 186
7

. (b) 457
13

. (c) 39
350

. (d) 5.127.

3. Suppose the unit 1 on the number line is the area of the following shaded re-

gion obtained from a division of a given square into eight congruent rectangles (and

therefore eight parts of equal area).9
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Write down the fraction of that unit representing the shaded area of each of the

following divisions of the same square and give a brief explanation of your answer.

(In the picture on the right, two copies of the same square share a common side and

the square on the right is divided into two halves.)
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4. With the unit as in problem 3 above, write down the fraction representing the area

of the following shaded region (assume that the top and bottom sides of the square

are each divided into three segments of equal length):

9We will give a precise definition of congruence in Chapter 5, and will formally discuss area
in Chapter 7. In this chapter, we only make use of both concepts in the context of triangles
and rectangles, and then only in the most superficial way. For the purpose of understanding this
chapter, you may therefore take both concepts in the intuitive sense. If anything more than intuitive
knowledge is needed, it will be supplied on the spot, e.g., in §4 of this chapter.
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5. Ellen ate 1
3

of a large pizza with a 1-foot diameter and Kate ate 1
2

of a small pizza

with a 6-inch diameter. (Assume that all pizzas have the same thickness and that

the fractions of a pizza are measured in terms of area.) Ellen told Kate that since

she had eaten more pizza than Kate, 1
3
> 1

2
. Discuss all the mathematical mistakes

in Ellen’s assertion.

6. Take a pair of opposite sides of a unit square (a square whose sides have length 1)

and divide each side into 478 equal parts. Join the corresponding points of division

to obtain 478 thin rectangles (we will assume that these are rectangles). For the

remaining pair of opposite sides, divide each into 2043 equal parts and also join the

corresponding points of division; these lines are perpendicular to the other 479 lines.

The intersections of these 479 and 2044 lines create 478 × 2043 small rectangles

which are congruent to each other (we will assume that too). What is the area of

each such small rectangle, and why ? (This problem is important for §4 below.)

7. [Review remark (B) in the sub-section Some special features on the importance of

the unit before doing this problem. Also make sure that you do it by a careful use of

the definition of a fraction rather than by some transcendental intuition you possess

but which cannot be explained to your students.]

(a) After driving 148 miles, we have done only two-thirds of the driving for the

day. How many miles did we plan to drive for the day? Explain.

(b) After reading 180 pages of a book, I am exactly four-fifths of the way through.

How many pages are in the book? Explain.

(c) Alexandra was three quarters of the way to school after having walked 0.78

mile from home. How far is her home from school? Explain.

8. Three segments (thickened) are on the number line, as shown:
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3 4 5 6 7

A B C
137
25

It is known that the length of the left segment is 11
16 , that of the middle segment is 8

17 ,

and that of the right segment is 23
25 . What are the fractions A, B, and C? (Caution:

Remember that you have to explain your answers, and that you know nothing about

“mixed numbers” until we come to this concept in §3.)

9. The following is found in a certain third-grade workbook:

Each of the following figures represents a fraction:
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Point to two figures that have the same fractions shaded.

If you are the third grade teacher teaching from this workbook, how would you change

this problem to make it suitable for classroom use?

10. A textbook for professional development defines a fraction as follows:

A fraction has three distinct meanings.

Part-whole The part-whole interpretation of a fraction such as
2
3 indicates that a whole has been partitioned into three equal parts

and two of those parts are being considered.

Quotient The fraction 2
3 may also be considered as a quotient,

2÷3. This interpretation also arises from a partitioning situation.

Suppose you have some big cookies to give to three people. You could

give each person one cookie, then another, and so on until you had

distributed the same amount to each. If you have six cookies, then

you could represent this process mathematically by 6÷ 3, and each

person would get two cookies. But if you only have two cookies, one

way to solve the problem is to divide each cookie into three equal
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parts and give each person 1
3 of each cookie so that at the end, each

person gets 1
3 + 1

3 or 2
3 cookies. So 2÷ 3 = 2

3.

Ratio The fraction 2
3 may also represent a ratio situation, such

as there are two boys for every three girls.

Write down your reaction to this definition, including whether you believe it helps

the reader see what a fraction is, and whether it makes mathematical sense. Be as

precise as you can.

2 Equivalent fractions

Then fundamental theorem

How to compare fractions

The mathematics of “of ”

Fraction as division

A little reflection

The fundamental theorem

Recall that two fractions are equal if they are the same point on the number line.

We observed above that for all nonzero whole numbers n and k, nk
n

= k
1
, as both are

equal to k. The following generalizes this simple fact.

Theorem 1 Given two fractions m
n and k

` , suppose there is a nonzero whole

number c so that k = cm and ` = cn. Then

m

n
=
k

`

Proof First look at a special case: why is 4
3 equal to 5×4

5×3 ? We have as usual the

following picture:
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0 1

6 6 6 6 666 6

4
3

Now suppose we further divide each of the segments between consecutive points in

the sequence of thirds into 5 equal parts. Then each of the segments [0, 1], [1, 2],

[2, 3], . . . is now divided into 5× 3 = 15 equal parts and, in an obvious way, we have

obtained the sequence of fifteenths on the number line:

0 1

6 6 6 6 6 666

4
3

The point 4
3 , being the 4th point in the sequence of thirds, is now the 20th point in

the sequence of fifteenths because 20 = 5× 4. The latter is by definition the fraction
20
15 , i.e., 5×4

5×3 . Thus 4
3 = 5×4

5×3 .

The preceding reasoning is enough to prove the general case. Thus let k = cm

and ` = cn for whole numbers c, k, `, m, and n. We will prove that m
n = k

` . In other

words, we will prove:
m

n
=
cm

cn

The fraction m
n is the m-th point in the sequence of n-ths. Now divide each of the

segments between consecutive points in the sequence of n-ths into c equal parts. Thus

each of [0, 1], [1, 2], [2, 3], . . . is now divided into cn equal parts. Thus the sequence of

n-ths together with the new division points become the sequence of cn-ths. A simple

reasoning shows that the m-th point in the sequence of n-ths must be the cm-th

point in the sequence of cn-ths. This is another way of saying m
n = cm

cn . The proof

is complete.

It is a tradition in school mathematics to say that two fraction (symbols) k
` and

m
n are equivalent if they are equal, i.e., if k

` and m
n are the same point. For this

reason, the content of Theorem 1 is generically called the theorem on equivalent

fractions. Thus Theorem 1 gives a sufficient condition for two fractions k
`

and m
n

to

be equivalent, namely, if we can find a whole number c so that k = cm and ` = cn.
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For brevity, Theorem 1 is usually stated as

m

n
=

cm

cn

for all fractions m
n and all whole numbers c 6= 0. In this form, Theorem 1 is called the

cancellation law for fractions: one “cancels” the c from numerator and denominator.

This is the justification for the usual method of reducing fractions, i.e., canceling a

common divisor of the numerator and the denominator of a fraction. Thus, 51
34 = 3

2
because 51 = 17 × 3 and 34 = 17 × 2. A much more substantive application of the

cancellation law is to bring closure to the discussion started in §1, to the effect that

the decimal 5.8900 is equal to 5.89. Recall that we had, by definition,

58900

104
= 5.8900

We now show that 5.8900 = 5.89 and, more generally, one can add zeros to or delete

zeros from the right end of the decimal point without changing the decimal. Indeed,

5.8900 =
58900

104
=

589× 102

102 × 102
=

589

102
= 5.89,

where the middle equality makes use of Theorem 1. The reasoning is of course valid

in general, e.g.,

12.7 =
127

10
=

127× 104

10× 104
=

1270000

105
= 12.70000

How to compare fractions

Theorem 1 is the fundamental fact about fractions, and the reason can be easily

seen in almost all subsequent discussions in this chapter. We give one illustration

right away.

Given two fractions k
` and m

n , we want to know if they are equal or if one is bigger

than the other. For definiteness, consider the fractions 7
9 and 4

5 ; are they equal or

not? Here we are talking about 7 copies of 1
9 versus 4 copies of 1

5 , and the difficulty

is immediately apparent: we don’t know how to compare 1
9 with 1

5 .
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This is no different from asking: which is longer, 3500 yards or 3.2 km? We won’t

know until we find out how a yard compares with a kilometer. It is well-known that

in this situation, we have to find a common unit for a yard and a kilometer; it turns

out that a meter would do fine, because

1 yard = 0.9144 meters (exactly).

1 km = 1000 meters.

Therefore 3500 yards = 3200.4 meters and 3.2 km = 3200 meters. Now we can do

the comparison: 3500 yards is slightly longer than 3.2 km.

To return to our initial problem, we need to find a common unit for 1
9 and 1

5 . The

theorem on equivalent fractions suggests that the fraction 1
9×5 would serve very well

as a common unit for both 1
9 and 1

5 because

1
9 = 5

9×5 = 5
45 = 5 copies of 1

45

1
5 = 9

9×5 = 9
45 = 9 copies of 1

45

Therefore we get:

7
9 is 7 copies of 5

45 , is therefore 7× 5 copies of 1
45 , i.e., 7

9 = 35
45

Similarly, 4
5 is 4× 9 copies of 1

45 , i.e., 4
5 = 36

45 .

It is very tempting to say at this point that since 35 < 36, 7
9 < 4

5 , but this is a

non sequitur. Why? Because to say 7
9 <

4
5 is to say, by definition (!), that the point

7
9 is to the left of the point 4

5 on the number line. Yet nowhere in this argument

is this conclusion to be found. Fortunately, our argument is already 99% complete

— all we need to do is to exercise a little care by dotting the i’s and crossing the

t’s. More precisely, if we consider the sequence of 45ths on the number line, then 7
9

(which is equal to 35
45) is the 35th point of the sequence, while 4

5 (which is equal to
36
45) is the 36th point of the sequence. Since we count the point in the sequence from

left to right, starting with 0, we see that the 35th point is to the left of the 36th point,

i.e., 7
9 is to the left of 4

5 . Thus
7

9
<

4

5

29



The general case of k
` and m

n is entirely similar. Indeed, by Theorem 1,

k

`
=

nk

n`
and

m

n
=

`m

n`
(1)

We have therefore obtained new fraction symbols nk
n` and `m

n` to denote the points

previously denoted by k
` and m

n , respectively. In particular, the (point denoted by

the) fraction k
` is the nk-th point in the sequence of n`-ths while the (point denoted

by the) fraction m
n is the `m-th point of the sequence. Hence we have proved:

if kn = `m, then k
` = m

n (2)

if kn < `m, then k
` < m

n (3)

Consider assertion (2): we wish to point out that it already goes beyond Theorem

1. Let us see why this is so. Suppose we have two fractions, m
n and cm

cn , where

c is a nonzero whole number, we want to prove that cm
cn = m

n . Since obviously

(cm)n = (cn)m, (2) guarantees that the fractions in question are equal, and this is

exactly the conclusion of Theorem 1. However we don’t want to stop here because

more can be said along this line. We are going to show that the converse of each of

(2) and (3) is also true. (The converse of an assertion “if P is true then Q is true”

is the assertion “if Q is true then P is also true”.) Thus we claim:

if k
` = m

n , then kn = `m,

if k
` < m

n , then kn < `m.

Let us deal with the case of equality (the first assertion), as the case of inequality is

similar. If indeed if k
` = m

n , then by equation (1), we have

nk

n`
=

`m

n`

This says the nk-th point in the sequence of n`-ths is equal to the `m-th point of the

same sequence. So nk = `m, as desired.

Let us summarize our discussion thus far. First we introduce a standard piece of

mathematical terminology. A standard way to express the fact that a statement “if

P is true then Q is also true” and its converse, “if Q is true then P is also true”, are

both true is to say that
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P is true if and only if Q is true.

Another way to say this is:

A necessary and sufficient condition for P to be true is that Q is true.

Yet another way is:

P being true is equivalent to Q being true.

We will also use a symbolic expression for the same purpose:

P is true ⇐⇒ Q is true.

With this understood, then we have proved:

Theorem 2 (Cross-Multiplication Algorithm) Given fractions k
` and m

n .

Then

(a) k
` = m

n if and only if kn = `m.

(b) k
` <

m
n if and only if kn < `m.

This theorem, one of the most maligned in elementary school mathematics, de-

serves an extended commentary.

(A) We call attention to the relationship between Theorem 1 and part (a) of

Theorem 2. Theorem 1 gives a sufficient condition for two fractions to be equal:

if k = cm and ` = cn, then k
` = m

n . On the other hand, this is not a necessary

condition, in the sense that the equality k
` = m

n does not necessarily imply k = cm

and ` = cn for some whole number c. For example, Theorem 1 shows that 3
2 = 21

14

(as 21 = 7× 3 and 14 = 7× 2), so that coupled with the previous remark about 51
34 ,

we have
21

14
=

51

34

In this case, there is clearly no whole number c so that c times 21 yields 51 and that

the same c times 14 yields 34.

Part of the significance of part (a) of Theorem 2 is that it gives a correct formu-

lation of a necessary and sufficient condition for two fractions k
` and m

n to be equal.
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To continue with the previous example, what we can conclude from 21
14 = 51

34 is that

21× 34 = 14× 51.

Activity If two fractions 238
153 and 406

n are equal, where n is a whole number.

What is n?

(B) On a practical level, i.e., in terms of everyday engagement in mathematics,

Theorem 2 is an indispensable tool and you should be as comfortable in using it as

as you are with 3 × 4 = 12. In particular, it provides the only easy way to decide if

two fractions are equal, e.g., 551
247 and 203

91 are equal because 551× 91 = 203× 247.

(C) The education literature often mistakes Theorem 2 for a rote-learning skill;

there is as yet (2010) little or no recognition that once a fraction has been clearly

defined and the equality and the concept of “less than” between two fractions has

also been clearly defined, Theorem 2 has an unambiguous proof. As a result of this

misunderstanding, many students have been taught to avoid using this theorem, or

worse, are not taught this theorem altogether. This does gross injury to students’

opportunity to learn. In these notes, we explicitly ask you to learn the proof of this

theorem and make ample use of this result anytime two fractions are discussed in

your teaching. We give one example:

For two nonzero whole numbers ` and n, ` > n is equivalent to 1
` <

1
n .

This is just a special case of part (b) of Theorem 2 where k = m = 1.

For beginners, there may be a pedagogical need to give a more transparent proof,

as follows. If ` > n, then `
`n > n

`n (the `-th multiple of 1
`n is to the right of the

n-th multiple of the same), which, by the theorem on equivalent fractions (Theorem

1), is equivalent to 1
n >

1
` . To prove the converse, we essentially run the argument

backwards: if 1
n >

1
` , then `

`n >
n
`n , which then implies ` > n.

It is common practice to dismiss the need for any proof of this statement, the

thinking being that, for small values of ` and n, e.g., 3 and 2, then 3 > 2 implies
1
3
< 1

2
, as the following picture clearly shows:
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1
3

1
20 1

2
3

Therefore, the thinking is that we can now extrapolate this intuitive argument based

on picture drawing to include the general statement, to the effect that, if ` > n, then

dividing [0, 1] into ` segments of equal length would give a segment shorter than a

segment obtained by dividing [0, 1] into a smaller number of segments of equal length,

namely, n. This kind of intuitive argument is valuable for guiding students to the

correct conclusion but should not be mistaken for correct mathematical reasoning. A

teacher must be always aware of the crucial distinction between the two. For example,

how can this intuitive argument bring conviction to the following assertion?

1

8594276
>

1

8594277

This is why we should teach students the intuitive argument using small values of ` and

n in addition to, but not in place of, the correct proof using the cross-multiplication

algorithm. Students in sixth or seventh grade should begin to learn how to reason

mathematically using the available facts and not rely solely on intuitive arguments.

There will be many opportunities for you to apply both parts of Theorem 2.

(D) Last but not least, we point out that, as important as Theorem 2 is, the basic

idea of its proof is even more important, namely, we can regard any two fractions as

two fractions with equal denominators so that their relationship can be understood

at a glance. For future references, we formulate this idea as the Fundamental Fact

of Fraction-Pairs (FFFP):

Any two fractions may be symbolically represented as two fractions with the

same denominator.

This is no more than a restatement of equation (1). We can paraphrase FFFP this

way: any two fractions can be put on an equal footing.

The mathematics of “of ”

The power of Theorem 1 on equivalent fractions has not been fully exploited in

the school mathematics literature, but it should be. We give one illustration of this
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fact. First, we have to give a precise meaning to a common expression, “two-thirds

of something”, or more generally, “m
n

of something”. For example, what is meant

by “I ate two-thirds of a pie”? Most would probably agree that this means if we

look at the pie as a circular disk and cut it into 3 parts of equal area, then I ate 2

parts. Another example: what is meant by “he gave three-fifths of a bag of rice to his

roommate”? Most likely, he measured his bag of rice by weight and, after dividing

the bag of rice into 5 equal parts by weight, he gave away 3 parts. In each case, the

choice of the unit (area in the first and weight in the second) is implicit and depends

on the reader’s common sense. While the choice in each of these two cases is not

controversial, one can imagine that such good fortune may not hold out in general.

Consider the following example from real life10. A man obtained a construction loan

from a bank for his house, and it stipulated that he should be at such a percentage

of completion of the project at a certain point. When that time came, the bank said

he had not met his obligation. Whereupon, he wrote to the bank: “Percentage of

completion by what measure?” He explained that if it is computed by, say, volume of

materials used, then the bank might have been correct, but if it is computed by the

amount of sheer labor, then he was way ahead of schedule. The bank was flummoxed

by his response.

These examples illustrate the fact that statements about “a fraction of something”

could be ambiguous and, for the purpose of doing mathematics, the choice of the unit

of measurement must be made explicit at the outset. It is for this reason that we are

obligated to give a formal definition of “a fraction of something”. If we fix a unit of

measurement, then we will use the informal language of a quantity, understood to

be relative to the unit, to mean a number on the number line where the number 1 is

the given unit.

Definition Suppose a unit of measurement has been chosen and k
` is a fraction.

Then
k
`

of a quantity means the totality (relative to this unit) of k parts when that

quantity is partitioned into ` equal parts according to this unit.

The simplest quantity in the present context is that of the length of a segment,

so that “the totality of m parts” would be the length of the concatenation of m of

10As related to me by my friend David Collins.
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such parts. In this case, the unit of measurement will always be understood to be the

length. The definition in this case then reads:

Let A and k
` be fractions. Then k

` of A is the length of the concatenation

of k parts when the segment [0, A] is partitioned into ` parts of equal length.

We consider some example. First, a simple one.

1
3 of 24

7

This is then the length of 1 part when the segment [0, 24
7

] is divided into 3 parts of

equal length. Now, 24
7

is 24 copies of 1
7
, and since 24 = 3 × 8, clearly [0, 24

7
] can be

divided into 3 equal parts so that each part is the concatenation of 8 copies of 1
7
.

Thus 1
3 of 24

7 is 8
7 . The key point here is that the numerator of 24

7 is divisible by 3.

We can perhaps understand the answer a little better if we note that 8
7 = 3×8

3×7 , which

can be written as 1×24
3×7 . Therefore, 1

3 of 24
7 is equal to 1×24

3×7 .

Next, suppose we want

2
5 of 8

7

Now we have to divide [0, 8
7
] into 5 equal parts and then measure the length of 2 of

those parts. But first thing first: we have to divide 8
7

into 5 equal parts. Noting that 8

is not divisible by 5, the key idea here is that we can make use of equivalent fractions

to force the numerator of 8
7

to be divisible by 5: we have 8
7 = 5×8

5×7 . The numerator

5× 8 is now divisible by 5, and so by retracing the preceding steps, we conclude that

if [0, 8
7
] is divided into 5 equal parts, each part would be the concatenation of 8 copies

of 1
5×7 . The length of two of these parts is then 2× 8 copies of 1

5×7 . Thus, 2
5 of 8

7

is 2×8
5×7 . Pictorially, what we did was to sub-divide the segments between consecutive

points of the sequence of sevenths into 5 equal parts:, as shown,

0 1
8
7

The unit segment is now divided into 5×7 = 35 equal parts, so that the new division

points furnish the sequence of 35ths. The segment [0, 8
7
] is now divided into 40 equal
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parts by this sequence of 35ths. Taking every 8th division point (in this sequence of

35ths) then gives a division of [0, 8
7
] into 5 equal parts. So the length of a part in the

latter division is 8
35

and the length of 2 of those is of course 16
35

. (Of course, what we

have done is merely to re-prove the theorem on equivalent fractions in this particular

case of 8
7

= 5×8
5×7 .)

As a last example, let us compute 3
17 of 11

15 . By Theorem 1, we have

11

15
=

17× 11

17× 15

Therefore if we divide [0, 11
15

] into 17 equal parts, the length of one part is 11
17×15 , i.e.,

11 copies of 1
17×15 . If want 3 parts, then it would be the concatenation of 3 × 11

segments of length 1
17×15 . Thus, by definition,

3
17 of 11

15 = 3×11
17×15

It should be clear at this point why the following general theorem is true:

Theorem 3 If k
` and m

n are fractions, then

k
` of m

n = km
`n (4)

Proof Because m
n = `m

`n , we see that [0, m
n

] is `m copies of 1
`n . Therefore if

we divide [0, m
n

] into ` equal parts, each part will be m copies of 1
`n . Therefore if

we concatenate k of these parts, we get km copies of 1
`n , i.e., the length is km

`n . By

the definition of k
` of m

n , we have proved equation (4), and therewith also Theorem 3.

This way of exploiting equivalent fractions will be seen to clarify many aspects

of fractions, such as the interpretation of a fraction as a division or the concept of

multiplication (see below). It also allows us to solve word problems of the following

type.

Example Kate walked 2
5

of the distance from home to school, and there was still
4
9

of a mile to go. How far is her home to school?
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We can draw the distance from home to school on the number line, with 0 being

home, the unit 1 being a mile, and S being the distance of the school from home.

Then it is given that, when the segment from 0 to S is partitioned into 5 equal parts,

Kate was at the second division point after 0:

0 SKate

4
9

mi
︸ ︷︷ ︸

If we can find the length of one of these five segments, which for convenience will be

called the short segments, then the total distance from home to school would be 5

times that length. We are given that the distance from where Kate stands to S is 4
9

of a mile, and this distance comprises 3 short segments. If we can find out how long

a third of 4
9

of a mile is, then we would know the length of a short segment and the

problem would be solved. By the theorem on equivalent fractions,

4

9
=

3× 4

3× 9
=

3× 4

27
,

and this exhibits 4
9

as (3 × 4) copies of 1
27

. Therefore 4 copies of 1
27

(i.e., 4
27

) is the

length of one third of 4
9
. The total distance from 0 to S is thus (5× 4) copies of 1

27
,

which is 20
27

. The distance from Kate’s home to school is 20
27 miles.

Remark This is one of the standard problems on fractions which is usually given

after the multiplication of fractions has been introduced and the solution method is

given out as an algorithm (“flip over (1 − 2
5
) to multiply 4

9
”). We see plainly that

there is no need to use multiplication of fractions for the solution, and moreover, no

need to memorize any solution template. The present method of solution makes the

reasoning very clear.

Fraction as division

The reasoning of the preceding sub-section leads to a completely different inter-

pretation of a fraction. We will prove:
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Theorem 4 For any fraction m
n ,

m

n
= the length of one part when a segment of

length m is partitioned into n equal parts

(To avoid the possibly confusing appearance of the word “divide” at this juncture,

we have intentionally used “partition” instead.) Recall that the original definition of
m
n

is m copies of 1
n
, which means to locate m

n
, it suffices to consider the unit segment

[0, 1], divide it into n equal parts and concatenate m of these parts. The above state-

ment, on the contrary, says that to locate m
n

, one should divide, not [0, 1], but [0,m]

into n equal parts and take the first division point to the right of 0. So the two are

quite different statements.

Proof The proof is simplicity itself, but we start with a special case, say 5
3 , to fix

our bearing. We want to prove that 5
3 is the length of one part when [0, 5] is divided

into 3 equal parts. By the reasoning earlier in the preceding sub-section,

5 =
5

1
=

3× 5

3

Thus [0, 5] is the concatenation of 15 copies of 1
3 , and is therefore also the concatena-

tion of 3 segments, each being the concatenation of 5 copies of 1
3 . Thus one of these

3 segments has length equal to 5 copies of 1
3 , which is 5

3 .

In pictures, we divide each of [0, 1], . . . , [4, 5] into 3 equal parts, resulting in a

division of [0, 5] into 3 × 5 equal parts. So the 5th and 10th division points give a

division of [0, 5] into 3 equal parts. But the 5th division point is exactly 5
3 because

each part is, by construction, 1
3 .

0 1 2 3 4 5

6 6

Now the proof in general. To divide [0,m] into n equal parts, we express m as m
1

,

so that by Theorem 1,

m =
nm

n

That is, [0,m] is nothing but nm copies of 1
n
. So one part out of the n equal parts

into which [0,m] has been divided is just m copies of 1
n
, i.e., m

n . Theorem 4 is proved.
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The full significance of Theorem 4 will emerge only after we re-examine the mean-

ing of division among whole numbers. This we proceed to do. Let m, n be whole

numbers and let m be a multiple of n, let us say m = kn for some whole number k.

Then m÷ n is the number of objects in a group when m objects are partitioned into

n equal groups; clearly, there are k objects in each group, and therefore, m÷ n = k.

In other words, m÷ n is

the length of one part when a segment of length m is partitioned into n

equal parts.

(This is the so-called partitive meaning of division.) This assertion about m ÷ n
requires that m be a multiple of n at the outset, because we are doing division among

whole numbers and must make sure that m ÷ n comes out to be a whole number

(i.e., the number k above). Now if we are allowed to use fractions, then for any m

and n, the preceding indented, italicized statement (i.e., the length of one part when

a segment of length m is partitioned into n equal parts) continues to make sense.11

With this in mind, we now define for two arbitrary whole numbers m and n, the

general concept of the division m÷ n of two whole numbers m and n:

m÷ n is the length of one part when a segment

of length m is partitioned into n equal parts.

Theorem 4 can now be rephrased as a

Theorem 5 For any two whole numbers m and n, n 6= 0,

m

n
= m÷ n

This is called the division interpretation of a fraction in school texts and

in the education literature, but in that context, the subtlety of the need to define

m÷ n when m is not a multiple of n is not clearly brought out and, moreover, such

an “interpretation” is offered as another meaning of a fraction that students must

memorize without benefit of explanation. We bring this fact to your attention so

that, when you teach, you will make a point of giving a clear definition for m÷n and

also giving a clear explanation of the statement that the two numbers m
n

and m÷ n
are equal. In mathematics, everything must be explained logically.

11In fact, m could even be a fraction.
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As a result of the division interpretation of a fraction, we will retire the

division symbol “ ÷” from now on and use fractions to stand for the di-

vision among whole numbers.

A little reflection

Looking back at the material of this section, you recognize that you have encoun-

tered no new facts. You have known since your school days every single statement

that was put forth; in particular, you knew all of Theorems 1 through 5. So what

have you learned after all?

If you are stumped by this (seemingly dumb) question, let me see if I can help you

out. I would guess that whereas, before, all the things known to you were probably

known to you as isolated facts, you are now made aware that they are all related to

each other. For example, it may be a surprise to you that Theorem 1, the theorem on

equivalent fractions — something you use to reduce fractions — is considered to be

the most important single fact in fractions. Perhaps you have not given any thought

to the central role it plays in the development of fractions, for example, the fact that

it is the foundation that supports Theorems 2 to 5. You may have been familiar with

equation (4) because you were told this is how fractions are supposed to be multiplied,

but to be able to prove it, step by step, with not a trace of doubt? That is unheard

of. In fact, nothing you ever read said that the phrase “k
` of m

n ” requires a precise

definition. Isn’t it enough that everybody sort of knows what it is? Well, actually

no. In mathematics, if something is what everybody should know, then it must be

made explicit, i.e., it must be given a clear definition. And so on.

But you may very well ask, “what is the point of getting to know all these con-

nections and precise concepts?” The simple answer is that facts that hang together

to tell a story are much easier to remember than unrelated, isolated ones. But there

is a more substantive answer. Mathematics is, in one sense, nothing but an unending

journey going from one point to the next, and the only mode of transportation is the

vehicle of known facts propelled by logical reasoning. For example, one half of part

(a) of Theorem 2 may be described as follows: Given

Point A: Two fractions k
` and m

n are equal.
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Point B: kn = `m.

How can we go from Point A to Point B by use of only the facts known at the

time of Point A plus logical reasoning? That was the problem we had to solve, and

all the connections we established above were, in like manner, nothing but a living

demonstration of problem-solving. Consider another example, problem 9 of Exercises

1.2 below:

I was on a hiking trail, and after walking 7
12

of a mile, I was 5
9

of the way

to the end. How long is the trail?

In this case, Point A and Point B are, respectively,

Point A: 5
9

of a certain length of d miles is 7
12

of a mile.

Point B: Exact determination of the value of d.

Again, the problem you will have to solve is how to go from Point A to Point B by use

of all the facts known about fractions up to Point A plus logical reasoning. Let me

emphasize: these notes or any correctly presented mathematics book will be nothing

but a series of repetitions of this routine: Going from Point A to Point B. When we

say we want students to learn to solve problems, what we mean is that they must

learn how to go from Point A to Point B in the sense described.

The substantive answer to the above question is, therefore, that if we want students

to be proficient at problem solving, we cannot treat mathematics as an electric circuit

in which the problem-solving switch can be turned on and off at will. Students will

not learn how to solve problems if we feed them isolated facts for memorization and

rambling discussions in place of precise logical reasoning and yet, when the need

arises, tell them to start devising strategies to go from Point A to Point B, i.e.,

to solve problems. Unless problem-solving is part of the daily routine of learning

mathematics, students will not learn it just because we tell them it is important.

Mathematics learning cannot be achieved by a decree.

But to solve problems, the language we use in mathematics must be clear (hence

the need for precise concepts) so that Point A and Point B can be precisely identified,

and the use of logical reasoning must be ever present (hence the need for constantly

making connections). These notes are a mathematics text, and therefore necessarily
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engage in problem-solving at every step. The hope is that you will learn from it

and engage your students in the same manner. We do not talk about problem-

solving in these notes, for the same reason that we do not mention that

these notes are written in English. There is no need. We simply solve

problems from beginning to end.

There is of course a higher level of learning mathematics, which is to make up

Point A and Point B for yourself instead of being told what they are. But one thing

at a time. Let us learn the basics first, and then we can aspire to the higher learning.

At this point, you probably have a better idea now about the statement made

in the General Introduction, that the main goal of these notes is to “re-organize the

standard materials . . . so that you will begin to recognize school mathematics as a

coherent subject with every concept and skill placed in a logically correct hierarchy.”

The rest of the notes will just be more of the same.

Exercises 1.2

[Reminder] In doing these and subsequent exercises, please observe the

following basic rules:

(a) Use only what you have learned so far in this course (this is

the situation you face when you teach).

(b) Show your work; the explanation is as important as the answer.

(c) Be clear. Get used to the idea that everything you say has to be

understood.

1. Reduce the following fractions to lowest terms, i.e., until the numerator and

denominator have no common divisor > 1. (You may use a four-function calculator

to test the divisibility of the given numbers by various whole numbers.)

42

91
,

52

195
,

204

85
,

414

529
,

1197

1273
.

2. Explain each of the following to an eighth-grader, directly and without using The-

orem 1 or Theorem 2, by drawing pictures using the number line:

6

14
=

3

7
,

28

24
=

7

6
, and

12

27
=

4

9
.
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3. School textbooks usually present the cancellation law for fractions as follows.

Given a fraction m
n . Suppose a nonzero whole number k divides both m

and n. Then m
n = m÷k

n÷k .

Explain as if to a seventh grader why this is true.

4. The following points on the number line have the property that the thickened

segments [A, 1], [B, 2.7], [3, C], [D, 4], [13
3
, E], all have the same length:

0 1 2 6

2.7
3 4 6

13
3

5

A B C D E

If A = 4
7
, what are the values of B, C, D, E ? Be careful with your explanations: we

don’t know how to add or subtract fractions yet. (Rest assured that on the basis of

what has been discussed in this section, you can do this problem.)

5. (a) 7
3

is 8
11

of which number? (b) I was on a hiking trail, and after walking 7
10

of

a mile, I was 5
9

of the way to the end. How long is the trail? (c) After driving 18.5

miles, I am exactly three-fifths of the way to my destination. How far away is my

destination?

6. Explain to a sixth grade student how to do the following problem: Nine students

chip in to buy a 50-pound sack of rice. They are to share the rice equally by weight.

How many pounds should each person get? (If you just say, “divide 50 by 9”, that

won’t be good enough. You must explain what is meant by “50 divided by 9”, and

why the answer is 55
9
.)

7. (a) A wire 314 feet long is only four-fifths of the length between two posts. How

far apart are the posts? (b) Helena was three quarters of the way to school after

having walked 8
9

miles from home. How far is her home from school?
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8. (a) 3
7

of a fraction is equal to 5
6
. What is this fraction? (b) m

n
of a fraction is equal

to k
`

. What is this fraction?

9. James gave a riddle to his friends: “I was on a hiking trail, and after walking 7
12

of

a mile, I was 5
9

of the way to the end. How long is the trail?” Help his friends solve

the riddle.

10. Prove that the following three statements are equivalent for any four whole

numbers a, b, c, and d, with b 6= 0 and d 6= 0:

(a)
a

b
=

c

d
. (b)

a

a+ b
=

c

c+ d
. (c)

a+ b

b
=

c+ d

d
.

(One way is to prove that (a) implies (b) and (b) implies (a). Then prove (a) implies

(c) and (c) implies (a).)

11. Compare the following pairs of fractions.

4

9
and

3

7
,

9

29
and

4

13
,

13

17
and 0.76,

12

23
and

53

102
.

(You may use a calculator to do the multiplications of the last item.)

12. Place the three fractions 13
6 , 11

5 , and 9
4 on the number line and explain how

they get to where they are.

13. Suppose a, b are whole numbers so that 1 < a < b. Which is bigger: a−1
a or

b−1
b ? Can you tell by inspection? What about a+1

a and b+1
b ?

14. (a) For which fraction m
n is it true that m

n = m+1
n+1 ? (b) For which fraction m

n

is it true that m
n = m+b

n+b , where b is a positive whole number?

15. Prove that between 23
123 and 24

123 , there is a fraction.
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3 Adding and subtracting fractions

The meaning of adding fractions

Adding decimals

Mixed numbers

Final thoughts on fraction addition

Subtracting fractions

The meaning of adding fractions

What does it mean to add 5
7 to 3

8 ?

This simple question, incredibly, is almost never answered in school mathematics.

We will provide the necessary corrective measure by defining the addition of fractions

as a direct extension of the addition of whole numbers. This is a point that will be

stressed all through the discussion of the arithmetic operation on fractions: They are

very similar to the operations on whole numbers. We will then prove the formula for

adding fractions without once mentioning “the least common denominator”. Contrary

to what you have been told, the latter has never been an integral part of the concept

of fraction addition.

Consider, for example, the addition of 4 to 7. In terms of the number line, this

is just the total length of the concatenation of two segments, one of length 4 and the

other of length 7, which is of course 11, as shown.

︸ ︷︷ ︸
7

0 4 11

Similarly, if we have two whole numbers m and n, then m+n is simply the length

of the concatenation of the two segments of length m and n:

m n

m+ n
︸ ︷︷ ︸
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Remembering that whole numbers and fractions are on equal footing on the number

line, we are therefore led to the following definition of the sum of two fractions:

Definition Given fractions k
` and m

n , we define their sum or addition
k
`

+ m
n

as follows:

k

`
+
m

n
= the length of two concatenated segments, one

of length k
` , followed by one of length m

n

k
`

m
n

k
` + m

n

︸ ︷︷ ︸

It follows directly from this definition that the addition of fractions satisfies the

associative and commutative laws. (Cf. the Appendix at the end of this chapter for

a summary of these laws.)

Observe that, a priori, the sum of two fractions may be a number that is not a

fraction. However, we will remove any such suspense right away by proving that the

sum of two fractions is always a fraction. First, it follows from the definition that

k

`
+
m

`
=

k +m

`

because both sides are equal to the length of k +m copies of 1
`
. More explicitly, the

left side is the length of k copies of 1
`

combined with m copies of 1
`
, and is therefore

the length of k + m copies of 1
`
, which is exactly the right side. This tells us that,

to compute the sum of two fractions with the same denominator `, one adds them as

if they are whole numbers, with the only difference being that instead of adding so

many copies of 1, we now add so many copies of 1
` , as above.

Because of FFFP, the general case of adding two fractions with unequal denomi-

nators is immediately reduced to the case of equal denominators, i.e., to add

k

`
+
m

n
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where ` 6= n, we use FFFP to rewrite k
` as kn

`n and m
n as `m

`n . Then

k

`
+
m

n
=
kn

`n
+
`m

`n
=
kn+ `m

`n

It will be observed that kn+`m
`n is a fraction.

In a middle school classroom, it may not be a good idea to use FFFP in this

peremptory fashion. One may proceed instead as follows. The reason it is not obvious

how to compute the exact value of k
` + m

n is that we are asked to add k copies of 1
`

to m copies of 1
n , which is similar to adding 5 inches to 3 meters. We cannot get an

exact answer to the latter until we can express inch and meter in terms of a common

unit such as centimeters, for instance. We know 1 in. = 2.54 cm. and of course 1

m. = 100 cm. Therefore

5 in. + 3 m. = (12.7 + 300) cm. = 312.7 cm.

So in the same way, we will do the addition of k
` + m

n by first expressing both 1
` and

1
n in terms of a common unit, and the most obvious such unit is 1

`n . Then 1
` = n

`n

(which is n copies of 1
`n), and 1

n = `
`n (which is ` copies of the same). Consequently,

k
`

is k copies of 1
`
, and is therefore kn copies of 1

`n
,

m
n

is m copies of 1
n
, and is therefore `m copies of 1

`n
.

Thus, k
` + m

n is kn+`m copies of 1
`n , i.e., kn+`m

`n , which is the same result as before.

It is clear, by the same reasoning, that if given m
n and k

` , there is a whole number D

that is a common multiple of both n and `, say D = `1` = n1n, then the computation

of the sum k
` + m

n can proceed as follows:

k

`
+
m

n
=
k`1
D

+
mn1

D
=
k`1 +mn1

D

Such a D is called a common denominator of the denominators n and `. For

example, if we are given 3
4
+ 7

8
, then using 8 rather than 4×8 as a common denominator

for the addition visibly leads to a simpler computation:

3

4
+

7

8
=

6

8
+

7

8
=

13

8
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A more interesting example to illustrate the advantage of using a simpler common

denominator can be found in problem 10 of Exercises 1.3 at the end of this section.

We add the perhaps superfluous comment that the most obvious common denom-

inator is the product of the denominators (of the two fractions in question), and this

is the one we use automatically.

Adding decimals

The first application of fraction addition is the explanation of the addition al-

gorithm for (finite) decimals. For example, consider

4.0451 + 7.28

This algorithm calls for

(i) lining up 4.0451 and 7.28 by their decimal point,

(ii) adding the two numbers as if they are whole numbers and getting a

whole number, to be called N , and

(iii) putting the decimal point back in N to get the answer of 4.0451+7.28.

We now supply the reasoning for the algorithm. First of all, we use FFFP. Because

by definition

4.0451 =
40451

104
and 7.28 =

728

102
,

it is obvious what common denominator to use: 104. So we write

7.28 =
72800

104
= 7.2800

We now have two decimals with the same number of decimal digits, i.e., 4.0451+7.28 =

4.0451 + 7.2800. This corresponds to (i). Then,

4.0451 + 7.28 =
40451 + 72800

104

=
113251

104
(corresponds to (ii))

= 11.3251 (corresponds to (iii))
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The reasoning is of course completely general and is applicable to any other pair of

decimals.

A second application of fraction addition is to get the so-called complete expanded

form of a (finite) decimal. For example, given 4.1297, we know it is the fraction

41297

104

But we have the expanded form of the whole number 41297:

41297 = (4× 104) + (1× 103) + (2× 102) + (9× 101) + (7× 100)

We also know that, by equivalent fractions, 4×104

104 = 4, 1×103

104 = 1
10 , etc. Thus

4.1297 = 4 +
1

10
+

2

102
+

9

103
+

7

104

This expression of 4.1297 as a sum of descending powers12 of 10, where the coefficients

of these powers are the digits of the number itself (i.e., 4, 1, 2, 9, and 7), is called the

complete expanded form of 4.1297. Incidentally, the latter can also be written as

4.1297 = 4 + 0.1 + 0.02 + 0.009 + 0.0007

You may have been told that this is true, but perhaps not the fact that it should be

proved. In any case, here is the proof.

In the same way, a decimal 0.d1d2 · · · dn,13 where each dj is a single-digit number,

has the following complete expanded form:

0.d1d2 · · · dn =
d1
10

+
d2
102

+ · · ·+ dn
10n

Mixed numbers

With the availability of the concept of fraction addition, we can now introduce

the concept of mixed numbers.14 We have seen that, in order to locate fractions

12“Descending” if you think of 1
10 as 10−1, etc.

13The notation here is unfortunate: “d1d2 · · · dn” is not the product of d1, d2, . . . , dn.
14Caution: Most textbooks introduce mixed numbers before defining what it means to add two

fractions. Don’t follow these books.
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on the number line, it is an effective method to use division-with-remainder on the

numerator. With the availability of the concept of addition between fractions, we are

now in a position to go further than before, e.g.,

187

14
=

(13× 14) + 5

14
=

(13× 14)

14
+

5

14
= 13 +

5

14

Thus the sum 13 + 5
14

, as a concatenation of two segments of lengths 13 and 5
14

,

clearly exhibits the fraction 187
14

as a point on the number line about one-third beyond

the number 13. The sum 13 + 5
14

is usually abbreviated to 13 5
14

by omitting the +

sign and, as such, it is called a mixed number. More generally, a mixed number

is a sum n + k
` , where n is a whole number and k

` is a proper fraction, and it is

usually abbreviated to just n
k
`

. 15 The justification for this concept is that the

whole-number part of the notation gives a clear indication of the approximate location

of the fraction.

This concept causes terror among students probably because it is usually intro-

duced in textbooks before the concept of the addition of fractions is in place, with

the result that deep confusion is built into the concept itself. It is for the reason of

avoiding this pitfall that we have postponed the introduction of this concept until

now. So just remember: a mixed number is a sum of a whole number and a proper

fraction. No more, and no less.

Activity Given a mixed number qmn , where as usual q is a whole number.

Explain why qmn < q + 1.

Final thoughts on adding fractions

Before leaving the topic of adding fractions, it is time to bring closure to the

comment at the beginning of this section about the mathematical inappropriateness

of the usual formula for the addition of fractions in terms of their least common

denominator. Given k
` and m

n , one is told how to add k
` + m

n by first finding the

lowest common denominator of the fractions, which is by definition the LCM16 of the

15The discussion of fractions and decimals seems to be rife with notational problems: please note
that nk

` is not the product of n and k
` .

16Least common multiple. For a precise definition, see Chapter 3, problem 3 of Exercises 3.2.
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denominators. For example, suppose we want to compute 5
4 + 7

6 . The LCM of 4 and

6 is 12, and 12 = 3 × 4 = 2 × 6. So this method says

5

4
+

7

6
=

3 × 5

12
+

2 × 7

12
=

15 + 14

12
=

29

12

The general case is similar: if the LCM of ` and n is B, then letting B = `′` = n′n

for some whole numbers `′ and n′, the sum of these two fractions is given as

k

`
+
m

n
=

`′k

`′`
+
n′m

n′n
=

`′k + n′m

B

In some books, this formula serves as a definition of the sum of the fractions k
`

and m
n . Such a definition is almost guaranteed to turn off most elementary students

because it bears no resemblance to the intuitive notion of addition as “combining

things”. But even as a formula for addition, it is no less pedagogically objectionable

because there is no reason to use the LCM of ` and n when the obvious multiple of

both denominators, `n, is both adequate and natural.17

Please help spread the information that using the least common denominator to

define the sum of fractions is unacceptable from every conceivable angle.

It remains to point out that we are not trying to remove the concept of least

common denominator from school mathematics. Once students have a firm mastery

of the concept of addition, if the least common denominator happens to give a shortcut

in an addition problem, why not use it? However, the compulsory pursuit of the least

common denominator under any circumstance is not recommended.

Subtracting fractions

We next wish to discuss the subtraction of fractions. We are handicapped by not

having negative fractions at our disposal, however, so that to compute k
` −

m
n , we

must first make sure that m
n
< k

`
. Recall that the cross-multiplication algorithm (part

17Mathematical aside: The mathematical objection from the point of view of abstract algebra is
that the requirement that we always find the LCM of the denominators is too restrictive.
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(b) of Theorem 2 in §2) gives a comprehensive method to decide if one fraction is

bigger than another.

The subtraction of fractions is now defined as follows: Suppose k
`
> m

n
, then a

segment of length k
`

is longer than a segment of length m
n

.

Definition If k
` >

m
n , then the subtraction or difference

k
`
− m

n
is by

definition the length of the remaining segment when a segment of length m
n is taken

from one end of a segment of length k
` .

The segments [0, k
`
] and [0, m

n
] have lengths k

` and m
n , of course. Therefore k

` −
m
n

is just the length of the segment [m
n
, k
`
]:

0
m
n

k
`

Again as in the case of addition, the difference of two fractions is a priori not

necessarily a fraction. However, we lay such doubts to rest immediately by showing

that it is a fraction. Indeed, the same reasoning as in the case of addition, using

FFFP, yields
k

`
− m

n
=

kn− `m
`n

It is to be noted that this formula makes implicit use of the cross-multiplication al-

gorithm in the following way: the subtraction of whole numbers in the numerator of

the right side, kn − `m, does not make sense unless we know kn > `m, but this is

guaranteed by the fact that k
`
> m

n
.

We wish to bring out the fact that subtraction can be expressed in terms of addi-

tion. to see this, the definition of k
` −

m
n implies that the concatenation of a segment

of length k
` −

m
n and a segment of length m

n has length k
` :

(
k

`
− m

n
) +

m

n
=
k

`

In other words, assuming k
` >

m
n , then a fraction A satisfies k

` −
m
n = A if and

only if it satisfies A + m
n = k

` . Thus we may regard k
` −

m
n as the fraction A that

satisfies the equation A + m
n = k

` , and this equation involves only + .
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Although this alternate view seems to add nothing to the concept of subtraction,

the more abstract perspective does serve as a bridge to the definition of the division

of fractions (see §5).

The subtraction of mixed numbers reveals a sidelight about subtraction that may

not be entirely devoid of interest. Consider the subtraction of 172
5
− 73

4
. One can do

this routinely by converting the mixed numbers into fractions:

17
2

5
− 7

3

4
=

85 + 2

5
− 28 + 3

4
=

87

5
− 31

4
=

87× 4− 31× 5

5× 4
=

193

20
.

However, there is another way to do the computation:

17
2

5
− 7

3

4
= (17 +

2

5
)− (7 +

3

4
).

Anticipating a reasoning that will be made routine when we come to the study of ra-

tional numbers (§3 of Chapter 2), we rewrite the right side as (17−7) + (2
5−

3
4). Now

we are stuck because 2
5 <

3
4 so that the subtraction on the right cannot be performed

according to the present definition of subtraction. Using an idea that is reminiscent

of the “trading” technique in the subtraction algorithm for whole numbers, we get

around this difficulty by computing as follows:

17
2

5
− 7

3

4
= (16 + 1

2

5
)− (7 +

3

4
)

= (16− 7) + (1
2

5
− 3

4
)

= 9 +

(
7

5
− 3

4

)
= 9 +

13

20
= 9

13

20

The whole computation looks longer than it actually is because we interrupted it

with explanations. Normally, we would have done it the following way:

17
2

5
− 7

3

4
= (16− 7) + (1

2

5
− 3

4
) = 9 + (

7

5
− 3

4
) = 9 +

13

20
= 9

13

20

exactly the same as before.
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Finally, there is a similar subtraction algorithm for finite decimals that

allows finite decimals to be subtracted as if they were whole numbers provided they

are aligned by the decimal points, and then the decimal point is restored at the

end. The reasoning is exactly the same as the case of addition (of decimals) and will

therefore be left as a problem.

Exercises 1.3

1. (a) We have an algorithm for adding two fractions: k
` + m

n = kn+`m
`n . Now ex-

plain as if to an eighth grader how to obtain an algorithm for adding three fractions
k
` + m

n + p
q . Make sure you can justify the algorithm. (b) If a, b, c are nonzero whole

numbers, what is 1
ab + 1

bc + 1
ac ? Simplify your answer as much as possible.

2. Show a sixth grader how to do the following problem by using the number line:

I have two fractions whose sum is 17
12 and whose difference (i.e., the larger one mi-

nus the smaller one) is 1
4 . What are the fractions? (We emphasize that no solution

of simultaneous linear equations need be used. The purpose of this problem is to

demonstrate the power of the number line in the teaching of school mathematics.)

3. Explain as if to a sixth grader how to get 5.09 + 7.9287 = 13.0187.

4. Compute 78 3
54 −

67
14 in two different ways, and check that both give the same

result. (Large numbers are used on purpose. You may use a four-function calculator

to do the calculations with whole numbers, and only for that purpose.)

5. (a) Which is closer to 2
7 , 1

3 or 5
21? (b) Which is closer to 2

3 , 12
19 or 9

13?

(c) Which whole number is closest to the following sum?

12987

13005
+

114

51

(Don’t forget to prove it!)

6. State the subtraction algorithm for finite decimals, and explain why it is true. (See

the discussion of the addition algorithm for finite decimals near the beginning of this
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section.)

7. (a) 2
5 + 7

12 =? (b) Laura worked on a math problem for 35 minutes without

success. She came back and re-focused and got it done in 24 minutes. How much time

did she spend on this problem altogether, and what does this have to do with part (a)?

8. Explain as if to a fifth grader why 1.92 is bigger than 1.91987. (Caution: What

is a decimal?)

9. (a) We want to make some red liquid. One proposal is to mix 18 fluid ounces of

liquid red dye in a pail of 230 fluid ounces of water, and the other proposal is to mix

12 fluid ounces of red dye in a smaller pail of 160 fluid ounces of water. The question:

which would produce a redder liquid? Do this problem in two different ways. (b)

An alcohol solution mixes 5 parts water with 23 parts alcohol. Then 3 parts water

and 14 parts alcohol are added to the solution. Which has a higher concentration of

alcohol, the old solution or the new?

10. If n is a whole number, we define n! (read: n factorial) to be the product of all

the whole numbers from 1 through n. Thus 5! = 1× 2× 3× 4× 5. We also define 0!

to be 1. Define the so-called binomial coefficients
(

n
k

)
for any whole number k

satisfying 0 ≤ k ≤ n as (
n
k

)
=

n!

(n− k)! k!

Then prove: (
n
k

)
=

(
n− 1
k

)
+

(
n− 1
k − 1

)
(For those who remember Pascal’s triangle, this formula describes the usual rule for

generating Pascal’s triangle: add two consecutive numbers in the (n − 1)-th row to

get the number right below them in the n-th row.)

11. Prove that the following statements are equivalent for fractions A, B, C, and D:

(1) A < B ⇐⇒ there is a fraction C so that A+ C = B.

(2) A < B implies A+ C < B + C for every fraction C.
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(3) A < B and C < D implies A+ C < B +D.

12. Let a
b

be a nonzero fraction, with a 6= b. Order the following (infinite number

of) fractions: a
b ,

a+1
b+1 , a+2

b+2 , a+3
b+3 , . . . (Caution: it makes a difference whether

a < b, or a > b.)

13. In the notation of problem 11, observe that each fraction n!
j , where n, j are

whole numbers and 1 ≤ j ≤ n, is actually a whole number. Find the following sum

and simplify your answer as much as possible:

1
100!
1

+
1

100!
2

+
1

100!
3

+ · · ·+ 1
100!
98

+
1

100!
99

+
1

100!
100

14. On April 30, 2009, Cape Cod Times reported that in the town of Truro, MA,

officials declared that voters had “narrowly approved one of four zoning amendments”

by meeting the legal requirement of a two-thirds vote. It turned out that the precise

vote was 136 to 70, and the officials said since the calculator gave a value of 136 to

0.66×206 when rounded to the nearest whole number, 136 was two-thirds of the total

vote count of 206.

Discuss whether the town officials were right in saying 136 is two-thirds of 206

only using what we have learned thus far.

4 Multiplying fractions

The definition and the product formula

A mathematical comment

Area of a rectangle

Multiplication of decimals

The definition and the product formula

In the context of school mathematics, it is of vital importance that we give a defi-

nition of fraction multiplication. The reason is that this concept is one of those whose
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precise meaning seems to elude school textbook authors and education researchers.

Recall that for whole numbers, multiplication is, by definition, just repeated addition:

3× 5 means 5 + 5 + 5 and 4× 17 means 17 + 17 + 17 + 17. Such a definition cannot

be literally extended to fractions, e.g., it makes little sense to define 4
7
× 1

2
as “adding

1
2

to itself 4
7

times”. Consequently, the presentation of fraction multiplication in

school mathematics is usually evasive, and coincidentally, education researchers have

resorted to advocating extreme measures to achieve any kind of understanding of this

concept.18

We will do mathematics the way mathematics is normally done by giving a precise

definition and drawing precise consequences. Notice once again that this definition

of fraction multiplication is a direct extension of the definition of whole number mul-

tiplication.

Definition The product or multiplication of two fractions
k
`
× m

n
is by

definition

the length of the concatenation of k of the parts

when [0, m
n

] is partitioned into ` equal parts.

Note that, according to the definition in §2 of “m
n of a quantity”, we may rephrase

the definition as:

k

`
× m

n
=

k

`
of a segment of length

m

n

Or, more simply, when the unit is understood to be the unit of length:

k

`
× m

n
=

k

`
of

m

n

If ` = n = 1, then this definition says k
1 ×

m
1 is

the length of the concatenation of k of the parts

when [0,m] is partitioned into 1 equal part.

18For example, some suggest that one must rethink this concept by finding “multiplicative rela-
tionships between multiplicative structures” without saying what this means. This is not helpful.
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In other words, it is the length of the concatenation of k copies of [0,m]. But this is ex-

actly the usual meaning of the whole number multiplication k×m, i.e., m+m+· · ·+m
(k times).

This definition of fraction multiplication is also consistent with everyday practice.

Indeed, suppose we want to give away two-fifths of a ham (by weight), and the ham

weighs 147
8

lbs. Without thinking, we would calculate the amount of ham to be given

away as
2

5
× 14

7

8
pounds

On the other hand, two-fifths of a ham by weight is (by the definition of “of” in §2)

the total weight of 2 parts when we cut the ham into 5 parts of equal weight. In terms

of the number line whose unit 1 represents 1 lb. of ham, the ham is represented by

the number 147
8
. Cutting the ham into five parts of equal weight is then the same as

partitioning the segment [0, 147
8
] into 5 segments of the same length. Therefore the

weight of two-fifths of 147
8

lbs. of ham is exactly the length of 2 of these concatenated

parts. Thus the above definition of fraction multiplication is a faithful, and precise,

reflection of what is done in our daily life. At the risk of harping on the obvious, the

precision comes from the precise definition of “of” given in §2.

There are two immediate consequences of the definition of fraction multiplication.

The first one is a new way to look at division by a whole number. Recall that we

defined k ÷ ` for whole numbers k and ` (` 6= 0) to mean the length of one part

when [0, k] is partitioned into ` equal parts. (See Theorem 4 in §2.) Thus from the

definition of fraction multiplication, we have

k ÷ ` =
1

`
× k

More generally, we may define, as a direct extension of the partitive interpretation of

division among whole numbers, the division of a fraction A by ` to be the length

of one part when [0, A] is partitioned into ` equal parts. Then it follows from the

definition of fraction multiplication that 1
` ×A is equal to “A divided by ` ”.

Division by a whole number ` will henceforth be replaced by multiplication by 1
` .
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A second immediate consequence of fraction multiplication is that, if k is a whole

number, then k× m
n = k

1 ×
m
n , so that

k × m

n
=
m

n
+ · · ·+ m

n︸ ︷︷ ︸
k

In other words, the multiplication k× m
n retains the meaning of repeated addition: it

is just k copies of m
n .

It is by no means obvious from the definition of the multiplication of fractions

that k
` ×

m
n = m

n ×
k
` , i.e., it is by no means clear from the definition that, for

instance, 11
7

of 4
5

is equal to 4
5

of 11
7

. In other words, we cannot take for granted

that multiplication is commutative among fractions. However, this property follows

immediately from the following product formula.

Theorem 1 (Product Formula)
k

`
× m

n
=

km

`n

Since k
` ×

m
n equals k

` of m
n , Theorem 1 is an immediate consequence of The-

orem 3 (equation (4)) in §2.

This formula, which is usually presented, in one fashion or another, as the defini-

tion of the product k
`
× m

n
in school textbooks or professional development materials,

is in fact the central theorem about fraction multiplication in school mathematics.

As an immediate corollary, we have:

Corollary The multiplication of fractions is associative, commutative, and dis-

tributive.

(See the Appendix for a summary of these laws.) We will leave the detailed proof

of the Corollary to a problem at the end of the section.

As is well-known, the product formula has numerous applications. One of the

simplest may be the explanation of the usual cancellation rule for fractions. For
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example, we have
135

28
× 49

9
=

105

4

because we can “cancel” the 9’s and 7’s in the numerators and denominators. The

precise reasoning is the following:

135

28
× 49

9
=

135× 49

28× 9
(product formula)

=
15× 9× 7× 7

4× 7× 9

=
15× 7

4
(theorem on equivalent fractions)

=
105

4

The same reasoning of course proves that if we multiply the fractions ma
n and k

` a
(where a, m, n, k ` are whole numbers), we can cancel the a’s to get

ma

n
× k

` a
=
mk

n `

A mathematical comment

This definition of fraction multiplication poses a potential problem: does it make

sense? Before we explain what it means, let us say right away that, while this may not

be the kind of problem you want to discuss in detail in every seventh grade classroom,

you might at least mention it. We could have brought it up right after the definition

was given, but we didn’t, because we wanted to make sure that you got the main ideas

about multiplication first. Keep in mind, though, that this discussion is supposed to

take place right after the definition is given, so that no result or concept that follows

from the definition can be used. In particular, no product formula, because if the

definition makes no sense, then the product formula won’t either.

Let us illustrate what the problem is with a simple example. Consider 1
2 ×

3
4 . We

know that 1
2 = 2

4 and 3
4 = 15

20 . Therefore, if the definition is to make sense, we must

have the equality of
1

2
× 3

4
and

2

4
× 15

20,
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where each product is computed according to the definition. This is so because

1
2 ×

3
4 is 1

2 of 3
4 , which by Theorem 3 of §2 is equal to 3

8 , and

2
4 ×

15
20 is 2

4 of 15
20 , which by Theorem 3 of §2 is equal to 30

80 .

And of course, 3
8 = 30

80 by the theorem on equivalent fractions. Thus there is no crisis

at least for this special case.

The general case turns out to be not much different. Let the following equalities

between fractions be given:

k

`
=
K

L
and

m

n
=
M

N

Then we need to prove that, according to the preceding definition of a product,

k

`
× m

n
=

K

L
× M

N

In other words, we have to prove:

k

`
of

m

n
=

K

L
of

M

N

By Theorem 3 of §2, we have

k

`
of

m

n
=

km

`n

In like manner, we have

K

L
of

M

N
=

KM

LN

Hence, we must prove km
`n = KM

LN . According to Theorem 2 in §2 (cross-multiplication

algorithm), this would be the case if we can prove kmLN = `nKM . In other

words, we have to prove:

(kL)(mN) = (`K)(nM)

By the assumption that k
` = K

L and by Theorem 2 of §2 again, we have kL = `K.

Similarly, by the assumption that m
n = M

N , we also have mN = nM . Therefore

(kL)(mN) = (`K)(nM), as claimed.
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We have therefore proved that the above definition of fraction multiplication makes

sense. The mathematical terminology to express this fact is that the above definition

of fraction multiplication is well-defined.

Area of a rectangle

A significant application of the product formula is the following well-known inter-

pretation of fraction multiplication in terms of area;19 this interpretation is as basic

as the definition (of fraction multiplication) itself. We will prove that the area of a

rectangle is equal to the product of (the lengths of) its sides. Let us first review some

basic properties of area. We fix a unit square, i.e., a square whose sides all have

length 1. The area of the unit square is by definition equal to 1. Congruent figures

have the same area. Therefore, if the unit square is partitioned into n congruent

pieces, then all these pieces have equal areas. This partition is then a division of the

unit (area of the unit square) into n equal parts; by the definition of the fraction
1
n , the area of each of these pieces is 1

n
. For example, each of the following shaded

regions of the unit square has area equal to 1
4
:

�
�
�
�
�
�

@
@

@
@

@
@

For each n = 1, 2, 3, 4, . . ., it is straightforward to get subsets of the unit square

with areas equal to 1, 1
2
, 1
3
, 1
4
, . . . Any of these subsets will be referred to as fractions

of the unit square. The area of a geometric figure which is paved by a finite number

19See footnote 8 in Exercises 1.1 after §1 concerning the concepts of area and congruence. You
may take both in the naive sense in the present discussion.
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of fractions of the unit square (where “pave” is used to mean the pieces overlap only

at their boundaries or not at all, and their union is the figure itself) is just the sum

of the areas of the latter.

The interpretation in question is now given in the following theorem.

Theorem 2 The area of a rectangle with sides of lengths k
` and m

n is equal to

k

`
× m

n

In school mathematics, this theorem has to serve as the complete statement of

“area = length times width”, i.e., we go only as far as fractions for the lengths of the

sides of the rectangle, but nothing more. See the discussion of FASM in §7.

We first prove a simple case so as to get our bearings: the area of a rectangle whose

sides have length 1
`

and 1
n

is 1
`
× 1

n
. If ` = 2 and n = 3, we take a unit square and divide

one side into 2 halves and the other into 3 parts of equal length. Joining corresponding

points of the division then partitions the square into 6 congruent rectangles:

1
3

1
2

Each of the 2× 3 (= 6) rectangles therefore has area equal to 1
2×3 . In particular,

the shaded rectangle has sides of length 1
2

and 1
3
, and its area is 1

2×3 , which is equal

to 1
2
× 1

3
, by the product formula.

We can now give the proof of the Theorem. We first prove it for the special

case that k = m = 1. Divide the two sides of a unit square into ` equal parts and n

equal parts, respectively. Joining the corresponding division points creates a partition

of the unit square into `n congruent rectangles (` columns with n in each row), and

therefore `n rectangles with the same area.
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1
n

1
`

6

?

` copies

� -n copies

The area of the shaded rectangle is therefore 1
`n

, which is 1
`
× 1

n
, by the product

formula. Since 1
`

and 1
n

are the lengths of the sides of the shaded rectangle, the proof

of the special case is complete.

The area of a general rectangle with sides of length k
`

and m
n

can now be computed.

One side of such a rectangle consists of k concatenated segments each of length 1
`
, and

the other consists ofm concatenated segments each of length 1
n
. Joining corresponding

division points on opposite sides leads to a partition of the big rectangle into km small

rectangles each of which has sides of length 1
`

and 1
n
.

1
n

1
`

6

?

k copies

� -m copies

We have just seen that each of these small rectangles has area equal to 1
`n

. Since the

big rectangle is paved by km of these congruent small rectangles, the area of the big

rectangle is the sum of the areas of these small rectangles, and is therefore equal to

1

`n
+ · · ·+ 1

`n︸ ︷︷ ︸
km

=
km

`n

Thus we have proved that the area of a rectangle with sides of length k
`

and m
n

is km
`n

.

But by the product formula, the product k
`
× m

n
is also equal to km

`n
. The proof of
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Theorem 2 is now complete.

Multiplication of decimals

We round off the discussion of the multiplication of fractions with two remarks.

The first is the explanation of the usual multiplication algorithm for finite dec-

imals. Consider for example

1.25× 0.0067

The algorithm calls for

(i) multiply the two numbers as if they are whole numbers by ignoring

the decimal points,

(ii) count the total number of decimal digits of the two decimal numbers,

say p, and

(iii) put the decimal point back in the whole number obtained in (i) so

that it has p decimal digits.

We now justify the algorithm using this example, noting at the same time that the

reasoning in the general case is the same:

1.25× 0.0067 =
125

102
× 67

104

=
125× 67

102 × 104
(product formula)

=
8375

102 × 104
(corresponding to (i))

=
8375

102+4
(corresponding to (ii))

= 0.008375 (corresponding to (iii))

A second remark is that there are two standard inequalities concerning multipli-

cation that should be mentioned: If A, B, C, and D are fractions, then:
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(A) If A > 0, then AB < AC is equivalent to B < C.

(B) A < B and C < D imply AC < BD.

Both are obvious when we interpret fraction multiplication as the area of a rectangle.

See problem 2 immediately following.

Exercises 1.4

1. Do each of the following without calculators. (a) (122
3
× 122

3
× 122

3
)× (2 1

19
× 2 1

19
×

2 1
19

)× 1
26

= ? (b) ( 7
18
× 42

3
) + (21

6
× 7

18
) + ( 7

18
× 31

6
) = ? (c) 8 2

50
× 12501

2
= ?

2. Give detailed proofs of the following for fractions A, B, C, and D:

(A) If A > 0, then AB < AC is equivalent to B < C.

(B) A < B and C < D imply AC < BD.

3. Give a detailed proof of the Corollary to Theorem 1.

4. Compute 22
5 × 33

4 in two different ways.

5. (a) Find a fraction q so that 281
2

= q × 51
4
. Do the same for 2181

7
= q × 191

2
.

(b) Make up a word problem for each situation, and make sure that the problems are

not the same for both.

6. The perimeter of a rectangle is by definition the sum of the lengths of its four

sides. Show that given a fraction A and a fraction L, (a) there is a rectangle with area

equal to A but with a perimeter that is bigger than L, and (b) there is a rectangle

with perimeter equal to L but with an area that is less than A.

7. (a) 161
2

cups of liquid would fill a punch bowl. If the capacity of the cup is 91
3

fluid ounces, what is the capacity of the punch bowl? Explain carefully. (b) A rod

can be cut into 185
8

short pieces each of which is 31
4

inches long. How long is the rod?
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Explain in a way that you expect will appeal to students.

8. How many buckets of water would fill a container if the the capacity of the bucket

is 31
3 gallons and that of the container is 71

2 gallons? (Caution: Getting an answer

for this problem is easy, but explaining it logically is not.)

9. Give a proof of the distributive law for the division of whole numbers. Namely, let

k, m, n, be whole numbers, and let n > 0. Then

(m÷ n) + (k ÷ n) = (m+ k)÷ n

10. (This is problem 9 in Exercises 1.2. Now do it again using the concept of fraction

multiplication.) James gave a riddle to his friends: “I was on a hiking trail, and after

walking 7
12 of a mile, I was 5

9 of the way to the end. How long is the trail?” Help his

friends solve the riddle.

11. Explain as if to a seventh grader how to multiply 2.005× 0.36, and why.

12. Given two fractions. Their difference is 4
5 of the smaller one, while their sum is

equal to 28
15 . What are the fractions? (Hint: Use the number line.)

5 Dividing fractions

Background

Definition and invert-and-multiply

Some observations

An application

Division of finite decimals

Background
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The study of the concept of division among fractions begins, as usual, with the

correct formulation of a definition of division. School mathematics as a whole consid-

ers the concepts of such operations as somehow known to every student and all that a

teacher has to do is draw out this knowledge. This is one reason why these operations

are never defined precisely, whether it is for whole numbers or fractions or numbers

in general. This is not how mathematics is done. There must be precise definitions,

and this need is nowhere greater than in the case of division.

Because whole numbers and fractions are on equal footing on the number line,

we first take a broad look at division among whole numbers for guidance. We teach

children that the division 36
9

is equal to 4 because 4 × 9 = 36. This then is the

statement that 36 divided by 9 is the whole number which, when multiplied by 9,

gives 36. In symbols, we may express the foregoing as follows:

36
9

is by definition the number k which satisfies k × 9 = 36.

Similarly, 72 divided by 24 is the whole number n which, when multiplied by 24, gives

72, i.e., n×24 = 72. Likewise, 84
7

is the whole number m which satisfies m×7 = 84,

etc. In general, given any two whole numbers a and b with b 6= 0, we always want the

division a
b

to be the whole number c so that cb = a. This suggests, broadly, that the

concept of division among whole numbers is this:

(*) Given whole numbers a and b, then the division of a by b, in symbols
a
b , is the whole number c so that the equality cb = a holds.20

Notice the abstract nature of this definition: we no longer say directly what a
b is, but

rather that it is number c that satisfies an equation cb = a. Compare this with the

direct, and explicit, definition that k
` + m

n is the length of the concatenation of a

segment of length k
` and one of length m

n . Moreover, if we use the definition in (*)

as a guide for the concept of fraction division, a literal translation of (*) to fractions

would give us the following tentative definition of fraction division:

(**) Given fractions A and B, then the division of A by B, in symbols
A
B , is the fraction C so that the equality A = CB holds.

20This precise definition of division explains why division by 0 has no meaning, because if it had,
then for a nonzero whole number a, a

0 is the whole number k so that k × 0 = a. But the last
equation make no sense because the left side is 0 while the right side a is nonzero to start with.
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It is not usually realized, but guidance for the definition of fraction division also

comes from another source: subtraction of fractions. This is because, in a naive

sense, subtraction reverse what addition does, the same way that division reverses

what multiplication does — at least we have seen it among whole numbers. For

example, we have

(36− 9) + 9 = 36,

and if we replace − by ÷ and + by ×, then the preceding statement becomes the

equally valid statement that

(36÷ 9)× 9 = 36

Now consider the broader context of fractions. Here the concept of subtracting

fractions is well understood, but the concept of division is yet-to-be formulated. Near

the end of §3, we defined the concept of fraction subtraction and then pointed out

that if fractions k
` and m

n are given, then the subtraction statement k
` −

m
n = C for

some fraction C is equivalent to the addition statement k
` = C + m

n . The equivalence

is immediately seen from the following picture:

︸ ︷︷ ︸
k
`

C︷ ︸︸ ︷ m
n︷ ︸︸ ︷

In view of this equivalence, it would be legitimate to define subtraction of fractions

in the following way:

Given fractions k
` and m

n . Then the difference k
` −

m
n is the fraction C

so that k
` = C + m

n .

Again, notice that subtraction defined this way has an abstract flavor: we no longer

say directly what the difference k
` −

m
n is, but we say, instead, that it has to be a

number that satisfies an equation. Moreover, if we push the above analogy of +,

− with ×, ÷, and translate this definition of subtraction literally into one about

division, what we get is this:

Given fractions A and B. Then the division A
B is the fraction C so that

A = CB.
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Note that this is identical to the definition given in (**) above. This gives us

confidence that the division of fractions should be defined in this manner.

Definition and invert-and-multiply

The preceding sub-section gave a freewheeling discussion that motivates how the

division of fractions should be defined. Now is the time for a formal definition, and

for this purpose, we have to be more careful with our language. In this and the next

sub-section, we will attend to this need.

Definition If A, B, are fractions (B 6= 0), then the division of A by B, or

the quotient of A by B, denoted by
A
B

, is the unique fraction C so that CB = A.

Because the “uniqueness” statement is used explicitly for the first time, let us first

make sure that you know what it means and why it is correct. We are defining A
B

to be the fraction C so that CB = A, and clearly it would be a disaster if there were

also another fraction C0 so that C0B = A and C 6= C0. Were this the case, what

would A
B be, C or C0? We therefore must clear this up before going any further, and

fortunately this is easy to do. For, if CB = A = C0B, then CB −C0B = A−A = 0.

By the distributive law of fraction multiplication, we get (C − C0)B = 0. We are

given B 6= 0, so if C −C0 6= 0, then also (C −C0)B 6= 0; the simplest way to see this

is to use the interpretation of multiplication as area of a rectangle (Theorem 2 of §4).

So we have a contradiction if we assume C 6= C0. Therefore C = C0, and the fraction

C that satisfies CB = A is unique and we are now guaranteed that A
B has one and

only one meaning.

The other possible issue with the definition is whether, with A and B given, B 6= 0,

there is a fraction C so that A = CB. The answer is affirmative, because if A = k
`

and B = m
n , then the fraction C = kn

`m clearly satisfies

A = C B, i.e.,
k

`
=

kn

`m
× m

n

So finally, the definition of fraction division is well-defined.

For a later reference, we summarize the preceding reasoning into a theorem.
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Theorem 1 Given fractions A and B (B 6= 0), there is a unique (one and only

one) fraction C, so that A = CB.

According to the preceding discussion, if A = k
` and B = m

n , then C is equal to:

C =
k

`
× n

m
(\)

Therefore, according to the definition:

k
`
m
n

=
k

`
× n

m

This is the famous invert and multiply rule for the division of fractions. We see

that there is nothing mysterious to this rule provided we make the effort to find out

what it means to divide fractions. The well-known limerick, “Ours not to reason why;

just invert and multiply”, gets it all wrong: the problem is not the reasoning. Rather,

it is a matter of whether we do mathematics according to the basic requirement of

mathematics: every concept that is used must be clearly defined.

Some observations

In this sub-section, we are going to address some subtle issues surrounding the

definition of division.

Despite the simplicity of the statement of Theorem 1, the theorem is conceptually

sophisticated and may take some getting used to. It says, for example, that if a

fraction B is nonzero, then every fraction A is a fractional multiple of B, in the

sense that A = CB for some fraction C. (Note that, since we are no longer dealing

exclusively with whole numbers, the meaning of multiple has to be suitably modified.

In the future, if we want to indicate that there is a whole number C so that A = CB,

we will say explicitly that A is a whole number multiple of B.) Taking A = 1,

the theorem implies that there is exactly one fraction, which we will denote by B−1,

so that B−1B = 1. We call this B−1 the inverse (or multiplicative inverse, to be

precise) of B. If B = m
n

, then the proof of the theorem shows that B−1 = n
m

. For

this reason, B−1 is also called the reciprocal of B in the context of fractions. Using
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this notation, the expression of C in (\) above can be rewritten as C = AB−1. For

example, if A = 11
5

and B = 23
8

, then the C that satisfies CB = A is

C = AB−1 =
11

5
× 8

23
=

88

115

The overriding fact concerning the concept of division is that it is defined to be

is an alternate, but equivalent way of writing multiplication. This statement is more

delicate than most people realize because something quite similar to it, but no longer

correct, usually makes its way into most school textbooks, namely, “division and

multiplication are inverse operations”. Because it is a classroom issue that you must

face, let us make sure you see the distinction between the two.

The statement that division is defined to be is an alternate, but equivalent way

of writing multiplication can be made more explicit. Consider the following two

statements about fractions A, B and C, with B 6= 0: .

(i) A
B

= C

(ii) A = CB.

The assertion is that (i) ⇐⇒ (ii). Let us prove this, no matter how simple it may

be. If (i) is true, then by the definition of division, C is the fraction that satisfies

A = CB, so that (ii) is true. Conversely, suppose (ii) is true, so A = CB. Since

B 6= 0, the division A
B makes sense, and according to the definition, A

B is the fraction

so that A = A
B × B. But Theorem 1 says such a fraction is unique, and since we

already know A = CB, we conclude that A
B = C. This (i) is proved.

The virtue of actually writing down the proof of the equivalence is that you get

to see how much it depends on having a precise definition of division and having

Theorem 1 available. With this fresh in our minds, we now take a look at the usual

statement in school textbooks that “multiplication and division are inverse opera-

tions”. Recall that this statement is usually made at the beginning of the discussion

of fraction division as a way of explaining what the latter concept means. In other

words, this is the statement that serves to define fraction division in terms of fraction

multiplication. As such, the only way it can make sense is if the concept of “inverse
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operation” makes sense. Now, as an operation on fractions, multiplication associates

to any two fractions A and B a unique fraction AB. So what would an “inverse

operation” be? Don’t forget that division is itself an operation, and it must associate

to a pair of fractions A and B a unique fraction A
B . So once again, what could be the

“inverse operation” of multiplication? Is it is not clear to us here, how could it be

clear to students? We must improve our textbooks.

Let us clear up another subtle point about fraction division. For a fraction such as
7
5 , we have explained in what sense it is a division of 7 by 5 as whole numbers at the

end of §2. Yet 7
5 may also be regarded as the division of the fraction 7

1 by the fraction
5
1 . Are these two concepts of division the same? We now show that they are. Indeed,

let us denote the division of 7 by 5 as whole numbers by the old notation 7 ÷ 5 to

avoid confusion. Then 7÷ 5 is the length of one part when [0, 7] is partitioned into

5 equal parts (see the end of §2). It follows that the concatenation of 5 such parts

would be [0, 7] and therefore (7÷ 5) + (7÷ 5) + (7÷ 5) + (7÷ 5) + (7÷ 5) = 7. In

other words,
7

1
= 5× (7÷ 5) = (7÷ 5)× 5

1

But according to the definition of fraction division, this says

7
1
5
1

= 7÷ 5,

which is what we set out to prove. The same reasoning serves equally well to show

that if m, n are two whole numbers (n 6= 0), then the meaning of m divided by n as

whole numbers as defined at the end of §2 is the same as the meaning of m
1 divided

by n
1 as fractions.

An application

The following is a typical application of the concept of fraction division in school

mathematics. Notice the difference between the usual presentation in school text-

books and the one given here: we give the explicit reason why division has to be used,

and we also explain on purely mathematical grounds, without resorting to any kind
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of bogus “conceptual understanding”, the true meaning of the fractional part of the

answer (i.e., the fraction 1
40 below).

Example A rod 433
8

inches long is cut into pieces which are 5
3

inches long. How

many such pieces can we get out of the rod?

If we change the numbers in this example to “if a rod 48 inches long is cut into

pieces which are 2 inches long, how many such pieces can we get out of the rod?”,

then there would be no question that we do the problem by dividing 48 by 2. So we

will begin the discussion by following this analogy and simply divide 433
8

by 5
3

and

see what we get:
433

8
5
3

=
1041

40
= 26

1

40

We have used invert and multiply for the computation, of course. Now what does the

answer 26 1
40

mean? Remembering the definition of division, we see that the preceding

division is equivalent to

43
3

8
= 26

1

40
× 5

3

=

(
26 +

1

40

)
× 5

3

=

(
26× 5

3

)
+

(
1

40
× 5

3

)
(distributive law)

In other words, we have

43
3

8
=

(
26× 5

3

)
+

(
1

40
× 5

3

)
The first term on the right, 26× 5

3
, is the length of the concatenation of 26 segments

each of length 5
3
, and the second term on the right, 1

40
× 5

3
, is the length of a segment

which is 1
40

of 5
3
, by the definition of fraction multiplication. Thus the rod can be cut

into 26 pieces each of 5
3

inches in length, plus a piece that is only 1
40

of 5
3

inches. This

then provides the complete answer to the problem, and retroactively justifies the use

of division to do the problem.

Notice that the key to getting the correct answer is knowing the precise definition

of division (which allows us to convert the division into a multiplication) and know-

ing the distributive law (which allows us to arrive at a correct interpretation of the
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answer 26 1
40

from the division).

You may find such an after-the-fact justification of the use of division to do
the problem to be unsatisfactory. There is in fact a logical reasoning that leads
inexorably to the conclusion that division should be used. We now present this
reasoning.

Let there be a maximum of K copies of 5
3 in 433

8 , where K is a whole number.
Then 433

8 −K × 5
3 is less than 5

3 (as otherwise K would not be the maximum
number of such copies). Denote 433

8 − K × 5
3 by r, then we may rewrite the

definition of r as

43
3

8
= (K × 5

3
) + r, where 0 ≤ r < 5

3

Now, by the theorem at the beginning of this section, we may express r as a
multiple of 5

3 , i.e., there is a fraction m
n so that

r =
m

n
× 5

3

We notice that m
n must be a proper fraction in the sense that m < n, because

r < 5
3 and r is m

n of 5
3 . Therefore substituting this value of r into the above

equation gives:

43
3

8
= (K × 5

3
) + (

m

n
× 5

3
)

= (K +
m

n
)× 5

3

Note that K + m
n is a mixed number (because m

n is a proper fraction), so we
have

43
3

8
= (K

m

n
)× 5

3

By the definition of division, we see that

K
m

n
=

433
8

5
3

Of course if we know the mixed number Km
n , then we would know the answer

to the problem, which is K. Therefore, the import of the preceding equation is
that, in order to find the maximum number of copies of 5

3 in 433
8 , we should do

the division:
433

8
5
3
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Recall that, by the above calculation, K = 26 and m
n = 1

40 .

We have thus explained how one can give an a priori justification for the use
of division to solve this problem.

Division of finite decimals

We now bring closure to the discussion of the arithmetic of finite decimals by tak-

ing up the division of decimals. The main observation is that the division of decimals

is reduced to the division of whole numbers. The following example is sufficient to

illustrate the general case:
2.18

0.625

becomes, upon using invert and multiply,

2.180

0.625
=

2180
103

625
103

=
2180

625

This reasoning is naturally valid for the division of any two finite decimals. According

to Theorem 5 of §2, the division of two whole numbers is just a fraction. Therefore

the general conclusion is that the division of any two finite decimals is equal to a

fraction.

The next step is to convert a fraction to a decimal. It turns out that in almost

all cases, a fraction is equal to an infinite decimal. Referring to Theorem 2 in §2 of

Chapter 3 for the precise statement, we will be content here to explain, in the special

case of fractions whose denominators are a product of 2’s or 5’s or both, why one can

convert these fractions to finite decimals by the long division of the numerator by the

denominator. This is one of the most mysterious procedures in school mathematics,

almost always taught by rote without any explanation. It suffices to give two examples

because they already embody the general reasoning.

Consider the fraction 2180
625 above. By the cancellation rule for the product of

fractions (see §4), we know that for any whole number k,

2180

625
=

(
2180× 10k

625

)
× 1

10k
(])
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Because 625 = 54, the exponent 4 suggests that for k = 4, the fraction on the right

side of (]), (
2180× 104

625

)
, ([)

is a whole number. The reason is that 104 = 24× 54, so that by the cancellation law

(§2),
2180× 104

625
=

2180× 24 × 54

54
= 2180× 24 = 34880

Therefore with k = 4 in (]), we get

2180

625
= 34880× 1

104
=

34880

104
= 3.4880

where the last step is by the definition of a finite decimal.

We pause to reflect on the above reasoning. First of all, the case of k > 4 in (])

is immediately reduced to the case of k = 4, because(
2180× 10k

625

)
× 1

10k
=

2180× 104

625
× 10k−4

10k

Now the numerator of 10k−4/10k is 10 times itself k − 4 times (don’t forget k > 4)

while the denominator is 10 times itself k times, which is 4 more 10’s than what is in

the numerator. Therefore
10k−4

10k
=

1

104

so that (
2180× 10k

625

)
× 1

10k
=

(
2180× 104

625

)
× 1

104

This proves our claim.

A second comment is that if k > 4, the fraction in ([) with the exponent 4 replaced

by k will continue to be a whole number, because

2180× 10k

625
=

2180× 104 × 10k−4

625
=

2180× 104

625
× 10k−4 = 34880× 10k−4

By (]), we see that with any whole number k ≥ 4, we have

2180

625
=

K

10k
(†)
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where K is the whole number

K =

(
2180× 10k

625

)
In practice, the explicit determination of the value of the whole number K is not

done by factoring 104 as in the argument below (β) but by the use of long division,

as follows. For k = 4, the long division of 2180× 104 by 625 gives

21800000 = (34880× 625) + 0,

where the remainder is 0. Thus,

K =

(
34880× 625

625

)
= 34880,

so that, (on account of (])), when a decimal point is placed 4 digits from the right of

34880, we get the decimal 3.4880 that is equal to 2180
625 . We have thus retrieved the

traditional algorithm for converting a fraction to a decimal by long division,

at least for the special case where the denominator is a product of 2’s and 5’s.

We will quickly go through another example to firm up the ideas. Consider 15
32 .

Because 32 = 25, we let
15

32
=

(
15× 105

32

)
× 1

105

Using long division, we obtain 1500000 = (46875× 32) + 0 so that

15

32
=

46875

105
= 0.46875

The fact that we know at the outset that 15×105

32 is a whole number is because

15× 105

32
=

15× 55 × 25

25
= 15× 55 = 46875

Moreover, as before, for any whole number k > 5,

15

32
=

(
15× 10k

32

)
× 1

10k
=

(
15× 105

32

)
× 1

105

This then leads to the usual statement that we can convert 15
32 to a finite decimal by

performing the long division (15× 10k) ÷ 32 and then placing the decimal point k
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digits from the right. The same reasoning proves the following

Theorem 2 Let m
n be a fraction so that n is a product of 2’s and 5’s. Then for

a sufficiently large whole number k, the division of m · 10k by n, i.e.,

m · 10k

n

is a whole number q, and m
n is equal to the finite decimal

q
10k

.

To give a glimpse into the use of long division in general, consider, for example,

the decimal conversion of 2
7 . Let us say we want 8 digits after the decimal point.

Then
2

7
=

2× 108

7
× 1

108

By the long division of 2× 108 by 7, we get the division-with-remainder

2× 108 = (28571428× 7) + 5

Thus,

2

7
=

(28571428× 7) + 5

7
× 1

108

=
28571428

108
+

(
5

7
× 1

108

)

= 0.28571428 +

(
5

7
× 1

108

)
What should be emphasized here is that this shows why the usual “long division

of 2 by 7” (which is actually the long division of 2 × 108 by 7) yields the decimal

0.28571428, and that if we use 0.28571428 to represent 2
7 , then the error is at most

1
108 (because 5

7 is smaller than 1). What is left unsaid is how to make sense of this

“infinite decimal” and why it is equal to the fraction 2
7 itself, and why the decimal

must be “repeating”. Of course the “repeating” phenomenon is already making itself

known through the repetition of the two-digit block “28” in 0.28571428.
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Exercises 1.5

1. You want to cut pieces that are 11
3

inches long from a rod whose length is 851
2

inches. Explain as if to a sixth grader what is the maximum number of such pieces

you can get, and how many inches of the rod are left behind.

2. It takes 2 tablespoons of a chemical to de-chlorinate 120 gallons of water. Given

that 3 teaspoons make up a tablespoon, how many teaspoons of this chemical are

needed to de-chlorinate x gallons of water? (Assume that the amount of water, di-

vided by the amount of chemical needed to de-chlorinate this amount of water, is a

constant.) Caution: Don’t even think about using “proportions” to do this problem.

3. Let a, d be whole numbers, and let q and r be the quotient and remainder of a

divided by d. Let also Q be the fraction so that a = Qd. Determine the relationship

among Q, q, and r. (Those who are unsure of the meaning of division with remainder

can look up §1 of Chapter 3 below.)

4. The following is an approach to the division of fractions found in some textbooks:

We try to find out what
k/`
m/n could mean. Using equivalent fractions,

we get
k
`
m
n

=
k
` × `n
m
n × `n

=
k`n
`

m`n
n

=
kn

`m
,

and therefore
k
`
m
n

=
kn

`m
.

Is this correct?

5. The following is another approach to the division of fractions found in some

textbooks:

We try to find out what
k/`
m/n could mean. Using equivalent fractions,

we get
k
`
m
n

=
k
` × 1
m
n × 1

=
k
` ×

n
n

m
n ×

`
`

=
kn
`n
`m
`n

=
kn

`m
,
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and therefore
k
`
m
n

=
kn

`m
.

Is this correct?

6. (a) How many 11
3 ’s are there in 952

7? (b) How many blocks of 18 minutes are

there in 81
2 hours? Do it in terms of minutes, and then do it in terms of hours.

Compare.

7. Prove that if B is a nonzero fraction and C is a fraction so that CB = 0, then

C = 0. Find a proof that does not use Theorem 2 of §4.

8. (a) Explain as if to a sixth grader how to use long division to convert 12
3125 to a

decimal. (b) Do the same with 3
64 .

9. Do the following problem using only what we have done thus far: Two fractions x

and y satisfy xy = 3
10 and x

y = 8
15 . What are x and y?

10. (a) 5
12 of a sack of rice is 82

3 the weight of 5 books. Each book weighs 21
2 lbs.

How much (in lbs.) does a sack of rice weigh? (b) A pizza parlor has a Learning

Fractions Special. Normally, it charges m
n × 8 dollars for m

n of a small pizza. During

this special sale, it sells 1
2 of a pizza for the price of 1

3 .21 At the sales price, how much

would 82
3 small pizzas cost?

11. (a)
1

1
2
(1
3

+ 1
4
)

= ?
1

1
2
( 1
2/3

+ 1
5/4

)
= ? (b) If x, y are nonzero fractions, what is

1
1
2
( 1
x

+ 1
y
)

? (This expression for x and y turns up often enough to merit a name: the

harmonic mean of x and y.) (c) If x, y, u, v are nonzero fractions so that x < u

and y < v, prove that
xy

x+ y
<

uv

u+ v

21I got this idea from my friend David Collins. We believe that if all pizza parlors buy into this
idea, the national fractions achievement will improve.
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12. Use the number line to solve the following: If 5
13 of a number N exceeds a third

of N by 8, what is N ?

13. (a) Show that there is a rectangle with area < 1 sq. cm and perimeter equal to

1,000 cm. (b) Given a number A and a number L, show that there is a rectangle with

perimeter equal to L cm but with an area smaller than A sq. cm.

6 Complex fractions

Why complex fractions

Basic formulas

Why complex fractions

Further applications of the concept of division cannot be given without introduc-

ing a certain formalism for computation about complex fractions, which are by

definition the fractions obtained by a division A
B

of two fractions A, B (B > 0).22 We

continue to call A and B the numerator and denominator of A
B

, respectively. Note

that any complex fraction A
B

is just a fraction, more precisely, the fraction AB−1, so

all that we have said about fractions applies to complex fractions, e.g., if A
B

and C
D

are complex fractions, then

A
B ×

C
D is A

B of C
D .

Such being the case, why then do we single out complex fractions for a separate

discussion? For an answer, consider a common example of adding fractions:

1.2

31.5
+

3.7

0.008
22This is a confusing piece of terminology because it suggests that complex numbers are involved,

but they are not. Since this is the terminology in use in school mathematics and the confusion is
tolerable, we will go along. Such compromises are unavoidable.
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Note that this is an addition of complex fractions because 1.2 = 12
10

, 31.5 = 315
10

, etc.

Now, the addition can be handled by the usual procedures for fractions because we

may invert and multiply to obtain

1.2

31.5
+

3.7

0.008
=

12
10
315
10

+
37
10
8

103

=
12

315
+

3700

8

=
1165596

2520

Nevertheless, school students are taught to do the addition by treating the decimals

as if they were whole numbers and directly apply the addition algorithm for fractions

to get the same answer:

(1.2× 0.008) + (3.7× 31.5)

31.5× 0.008
=

116.5596

0.252
=

1165596
10000
2520
10000

=
1165596

2520

What this does is to make use of the formula k
` + m

n = kn+m`
`n , which is valid

up to this point only for whole numbers k, `, m, n by letting k = 1.2, ` = 31.5,

m = 3.7, and n = 0.008, regardless of the fact that 1.2, 31.5, etc., are not whole

numbers. Because the simplicity of such a computation is so attractive, it gives us a

strong incentive to prove that the formula

k

`
+
m

n
=
kn+m`

`n
is also valid when k, `, m, n are fractions.

Similarly, we would like to be able to multiply the following complex fractions as if

they were ordinary fractions by writing

0.21

0.037
× 84.3

2.6
=

0.21× 84.3

0.037× 2.6

regardless of the fact that the product formula k
`
m
n = km

`n has only been proved for

whole numbers k, `, m, n.

We pause to take note of the phenomenon pointed out above, namely, the fact

that school textbooks and professional development materials routinely teach skills
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strictly for ordinary fractions (i.e., numerator and denominator are both whole num-

bers) but go on to use the said skills on the more general complex fractions without

a word of explanation. In one sense, no harm is done because, in view of items (a)

to (e) below, such skills are indeed applicable to complex fractions. In a real sense

though, the damage such practices do to mathematics learning may be irreparable.

Why? Because such practices send multiple messages to students, among them we

can list the following two: (a) If their teachers can apply skills, without comment,

to situations beyond those where the skills are supposed to be applicable, students feel

that they are free to do likewise. Therefore they can make things up as they go along.

(b) Since their teachers do not mean what they say, they consider it likely that all of

mathematics is like that too. Thus following logical arguments closely and precisely

ceases to be a good idea; they are forced to conclude that they must improvise at will

in order to survive in the mathematical jungle. If either idea gets to a student’s head,

we can forget mathematics learning.

So far we have talked about perhaps nothing more than a subjective preference

for formal simplicity in calculations with complex fractions. However, the need for

extending the usual formulas for ordinary fractions to complex fractions is real. For

example, suppose we consider the multiplication of so-called rational expressions in

a number x, e.g.,
x+ 1

x2 − 5
· 7

x3 + 2
=

(x+ 1) · 7
(x2 − 5)(x3 + 2)

This x can take any value; in particular, suppose x = 3
4
. Then the left side becomes

a product of complex fractions:

3
4

+ 1

(3
4
)2 − 5

× 7

(3
4
)3 + 2

The fact that this product is equal to the right side, i.e., equal to

(3
4

+ 1)× 7

((3
4
)2 − 5)((3

4
)3 + 2)

therefore depends on the fact that the product formula k
`
m
n

= km
`n

is valid for complex

fractions, i.e., for fractions k, `, m, n. Similar computations with rational expressions

related to addition or subtraction abound in the study of algebra. In other words, the
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validity of the usual algebraic computations requires an extension of the usual for-

malism in fractions to complex fractions. The need of coming to terms with complex

fractions for the sake of learning algebra, and hence for the sake of learning middle

school mathematics, is thus manifest.

It is considerations of this type that force us to take a serious look at complex

fractions.

Basic formulas

Here is a brief summary of the basic facts about complex fractions that figure

prominently in school mathematics: Let A, . . . , F be fractions, and we assume fur-

ther that they are nonzero where appropriate in the following. Then:

(a) Cancellation law: If C 6= 0, then
AC
BC

= A
B

.

Example:
16
5
× 7

17
2
3
× 7

17

=
16
5
2
3

.

(b)
A
B

= C
D

if and only if AD = BC .

A
B
< C

D
if and only if AD < BC

Example:
4
5
2
3

<
13
2
16
3

because
4

5
× 16

3
<

2

3
× 13

2
.

(c)
A
B
± C

D
= (AD)±(BC)

BD

Example:
1.2

31.5
+

3.7

0.008
=

(1.2× 0.008) + (31.5× 3.7)

31.5× 0.008
.

(d)
A
B
× C

D
= AC

BD

Example:
0.21

0.037
× 84.3

2.6
=

0.21× 84.3

0.037× 2.6
.

(e) Distributive law:
A
B
×
(
C
D
± E

F

)
=
(
A
B
× C

D

)
±
(
A
B
× E

F

)
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Example:
0.5

1.7
×
( 2

3
4
5

+
6
7
8
9

)
=

(
0.5

1.7
×

2
3
4
5

)
+

(
0.5

1.7
×

6
7
8
9

)
.

Formulas (a), (b), and (d) are the generalized versions of the cancellation law, the

cross-multiplication algorithm, and the product formula, respectively, for ordinary

fractions. Formula (e) is nothing more than the usual distributive law stated in the

context of complex fractions, as each of A
B

, C
D

, etc., is just a fraction. We call explicit

attention to the fact that (c) and (d) justify the above computations with 1.2
31.5

+ 3.7
0.008

and 0.21
0.037
× 84.3

2.6
. Note also that it follows immediately from (a) that the cancellation

rule for fractions (see §4) continues to hold for complex fractions: CE
D
× A

BE
= AC

BD
, if

E 6= 0. For example,

8.7× 125

26.1
= 8.7× 125

3× 8.7
=

125

3

One can give algebraic proofs of (a)–(d) that are entirely mechanical: e.g., for (a),

let A = k
`
, B = m

n
, C = p

q
, substitute these values into both sides of (a), invert and

multiply each side separately and verify that the two sides are equal. Do the same

for every other assertion. This way of proving (a)–(d) would be correct, but it would

also not be particularly educational. We now explain a more sophisticated method

of proving (a)–(e); it is one that you would use in a school classroom perhaps only

sparingly, but it is a piece of mathematics that is worth learning.

Let us prove (a), i.e., AC
BC

= A
B

. Let x = AC
BC

and y = A
B

. We have to prove

x = y. Since x = AC
BC

, by the definition of division, AC = xBC. Similarly,

A = yB, so that multiplying both sides by C gives AC = yBC. Comparing this

with AC = xBC, we see that we have expressed AC as a multiple of BC in two

ways. Since BC 6= 0 (it is the denominator of AC
BC

), Theorem 1 in §5 says that these

two ways are the same, i.e., x = y.

The proofs of the others can be safely left as exercises.

There will be no end of examples to illustrate the ubiquity of these formulas in

subsequent computations, but we can give an interesting application right away.

Example 1 Give the approximate location of
82

261
2

on the number line.

What we want to say, intuitively, is that 261
2

is more or less 26, and therefore the
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given complex fraction is roughly 82
26

, which is 3 4
26

, which is a little beyond 3 on the

number line. Here is one way to convert such intuitive feelings into solid mathematics.

(The ability to do such conversions is a basic part of mathematics learning.) We wish

to compare this clumsy complex fraction with an ordinary fraction, and there is no

better way to do that than replacing 261
2

with the whole numbers closest to it: 26

and 27. Clearly, 26 < 261
2
< 27, and since (intuitively) the smaller the denominator,

the bigger the fraction if the numerator is fixed, we expect

82

27
<

82

261
2

<
82

26

Having made this guess, we must prove it. Let us first prove the left inequality. By

(b) above, the inequality
82

27
<

82

261
2

is equivalent to 82× 261
2
< 82× 27, and this is true because 261

2
< 27 and because of

the fact that A < B implies AC < BC (see the end of §4). One proves in a similar

manner the other inequality:
82

261
2

<
82

26

Thus the given complex fraction is trapped between 82
27

and 82
26

, i.e., between 3 1
27

and

3 4
26

. Since both of the latter are less than 3 4
24

= 31
6
, the given complex fraction is

beyond 3 but to the left of 31
6

on the number line.

Exercises 1.6

1. Prove (b)–(d), not by the mechanical procedure, but by employing the reasoning

used in the text to prove (a).

2. Explain, in as simple a manner as possible, approximately where the fraction

163 2
65

54 1
27

is on the number line. (This is a mathematical problem, which means that

you have to be precise even when you make approximations. If you need a model,

look at Example 1 above and learn how to give both an upper and lower bound for
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each approximation.)

3. Let A and B be fractions and B 6= 0. Prove that for any nonzero whole number j,

A

B
+ · · ·+ A

B︸ ︷︷ ︸
j

=
jA

B
.

4. Divide 98 into two parts A and B (i.e., A+B = 98) so that A
B = 6

7 .

5. Divide 2
7 into two parts A and B so that A

B = 4
5 .

7 FASM

In this section, we give a brief indication of the role of fractions, or more generally,

rational numbers (positive and negative fractions), in school mathematics. It is an

informal discussion and if some statements escape you for the moment, you should

just forge ahead and return to them later if necessary.

These notes only treat rational numbers. Real numbers, i.e., all the points

on the number line, are strictly the purview of college mathematics. For example,

consider the following operation with real numbers:

2√
3

+

√
5

4
=

(4× 2) + (
√

3
√

5)

4
√

3

In school mathematics, one does not explain what 2√
3

and
√

5
4 are, much less the

meaning of adding the numbers on the left. By the same token, the meaning of the

product
√

3
√

5 on the right is even more of a mystery. In school mathematics, this

difficulty has never been confronted honestly. Implicitly, however, the way school

mathematics deals with such arithmetic operations is to appeal to what we call the

Fundamental Assumption of School Mathematics (FASM), which states that

if an identity or an inequality “≤” among numbers is valid

for all fractions (respectively, all rational numbers), then it is
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also valid for all nonnegative real numbers (respectively, all

real numbers.)23

The validity of FASM is beyond doubt, but its proof involves considerations of lim-

its. FASM will be a dominant theme throughout these notes. For example, the

above equality is clearly patterned after the following addition formula first proved

for fractions in §3:
a

b
+
c

d
=
ad+ bc

bd
(5)

In §6, we extended this formula to allow a, b, c, d to be fractions, and in §5 of Chapter

2, we will prove that the same equality also holds for all rational numbers a, b, c, d

(bd 6= 0), even though this is rarely done in standard texts. Therefore, by FASM, the

same equality is valid for all real numbers a, b, c, d (bd 6= 0), rational or irrational.

This is how we could let a = 2, b =
√

3, c =
√

5, and d = 4 to get the previous

result, regardless of the fact that
√

3 and
√

5 are not rational. Clearly, FASM makes

it mandatory that every school teacher, regardless of grade level, acquire a firm grasp

of fractions and rational numbers.

We note in passing that this equality reveals why it is important to have a general

formula for the addition of two fractions (as in (5) above), and why the common way

to define the addition of fractions by seeking the least common denominator distorts

what fraction addition means.

As a result of FASM, we can now extend the definition of the division of frac-

tions (in §5) to include the division of any two real numbers. More precisely, FASM

yields a version of Theorem 1 in §5 for real numbers A and B, so that given two

real numbers A and B (rational or irrational), the division of A by B, denoted by A
B

(assuming B 6= 0), is now by definition the real number so that A = (A
B

)B. What is

important for school mathematics is the fact that, on a formal level, FASM together

with the formulas of §6 allow us to treat the division of real numbers operationally as

the division of two fractions. Therefore, the division of real numbers can hardly be

simpler from a computational point of view. With this understood, we are now in a

position to take up the concepts of ratio and rate in the next section.

23You will not see any mention of FASM in the school mathematics literature.
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8 Percent, ratio, and rate problems

Percent

Ratio

Constant rate

Units and dimension analysis

Cooperative work

The concepts of percent, ratio, and rate are among the most troublesome for

students. Concerning this phenomenon, what we know with certainty is that these

concepts have never been clearly explained in the mathematics education literature.

If something is never adequately taught, then it is difficult to even make a guess

about the root cause of the associated learning difficulty. Any hope of improvement

therefore must begin with a mathematically adequate presentation of the material in

the school classroom.

In this section, we supply precise definitions of the first two by making essential

use of complex fractions. We also explain why there is no need for any definition

of the third (rate), but that the concept of complex fractions makes possible a lucid

discussion of so-called “rate problems”.

Percent

A teacher hands out the following problem to his seventh grade class:24

Shade 6 of the small squares in the rectangle shown below.

24M.K. Stein, M.S. Smith,, M.A. Henningsen, E.A. Silver, Implementing Standards-Based Math-
ematics Instruction, Teachers College, Columbia University, 2000. P. 47.
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Using this diagram, explain how to determine the percent of the area

that is shaded.

His goal was for the students to figure out the percent representation of shaded por-

tions of a series of rectangles. In particular, he wanted his students to “use the visual

diagrams to determine their numerical answers rather than relying on the traditional

algorithms” that students had learned. He was hoping that this would help students

develop “conceptual understandings of [this form] of representing fractional quanti-

ties. . . ”. It turned out that, after 30 minutes, his students had no success.

We will come back to this problem after we have given a precise definition of

percent in terms of complex fractions.

Definition A percent is a complex fraction whose denominator is 100.

The importance for a student to be able to think of “percent” as a clearly defined

number — rather than as some ineffable concept vaguely related to “out of 100” —

cannot be overemphasized. Armed with this definition, they can now think of all

problems about percent as just another problem about numbers. This is an improve-

ment over not being able to think about any problem related to percent at all because

they don’t know what a “percent” is. Naturally, the fact that school mathematics

is not fond of clearcut definitions plays a role in the absence of a definition for the

concept of “percent”, but in this case, there is something else that works against the

formulation of a definition. Observe that our definition depends on the availability of

a precise concept of a complex fraction and, by implication, the rules in §6 that govern

the computations with complex fractions. So long as school mathematics continues

to pretend that complex fractions do not exist, no definition of “percent” would be

possible.

By tradition, a percent N
100

, where N is a fraction, is often written as N%. By

regarding N
100

as an ordinary fraction, we see that the usual statement N% of a

quantity m
n

is exactly N% × m
n

(see the discussions at the end of §2 and at the

beginning of §6). Now

N%× m

n
= N ×

(
1

100
× m

n

)
,
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and the expression 1
100 ×

m
n means the length of 1 part when [0, m

n
] is divided into

100 equal parts. Therefore, we have proved the following lemma.

Lemma Let N be a fraction. Then N% of m
n

is equal to N of the number A,

where A is the length of 1 part when [0, m
n

] is divided into 100 equal parts.

When N is a whole number, “N copies of A” would just have the usually meaning

of N copies of a part when [0, m
n

] is divided into 100 equal parts. This is the naive

concept of “percent” that most students are taught. But when N is a fraction (e.g.,
3
17), students are usually not told what “N% of something” means. More sobering

is the fact that students are usually taught the concept of N% where N is a whole

number (“N out of a hundred”), but are then asked to do computations whose answers

are of the form k
`%.

It is therefore worth pointing out that the interpretation in the Lemma for any

fraction N is derived strictly from the mathematics we have done. You have not been

“told” that this is true. Rather, you see for yourself that if you have mastered all

the skills and definitions up to this point, then you will be led to this conclusion by

mathematical reasoning.

Now, the following are examples of the three kinds of standard questions on per-

cents that students traditionally consider to be difficult:

(i) What is 5% of 24?

(ii) 5% of what number is 16?

(iii) What percent of 24 is equal to 9?

The answers are simple consequences of what we have done provided we follow the

precise definitions.25 Thus, (i) 5% of 24 is 5% × 24 = 5
100
× 24 = 6

5
. For (ii), let

us say that 5% of a certain number y is 16, then again strictly from the definition

given above, this translates into (5%)y = 16, i.e., y × 5
100

= 16. By the definition of

division, this says

y =
16
5

100

= 16× 100

5
= 320

25Always remind your students that if they don’t know definitions, they are not in a position to
do mathematics, in the same way that anyone who has no vocabulary is not in a position to write
novels.
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Finally, (iii). Suppose N% of 24 is 9. This translates into N%×24 = 9, or N
100
×24 = 9.

Multiplying both sides by 100
24 , we have

N =
900

24
=

75

2
= 37

1

2

So the answer to (iii) is 371
2
%.

What we can conclude from this short discussion is that, if students have an ade-

quate background in fractions and are at ease with the use of symbols,26 the concept

of percent is straightforward and involves no subtlety. If this kind of instruction

has been implemented in the school classroom, then education research would be

in a position to shed light on what the real learning difficulties are. Until then, we

should concentrate on meeting the minimum requirement of mathematics, which is to

provide clear and precise definitions of all the concepts. Note however that such a def-

inition of percent cannot be given if the concept of a complex fraction is not available.

Let us return to the problem at the beginning. There are 40 squares in the

rectangle, and we must express 6 out of 40 as a percent, i.e.,

if
6

40
=

N

100
, for some fraction N , what is N?

It is simple:

N =
6× 100

40
= 15

So the answer is 15%. The teacher, however, had in mind something like this: There

are 40 squares, so 4 squares constitute 10%. Another 2 would therefore add 5%. As

6 = 4 + 2, 6 squares make up 15%.

Now the teacher’s solution is not superior to the computational solution we pre-

sented above, because while it is cute, it has very limited scope. For example, how

would this solution help you handle the problem of expressing 6 out of 39 squares

as a percent? The computational solution does that and more. Moreover, the com-

putation is in no way lacking in “conceptual understanding”. Think for a second,

and you would agree that it takes more than a little understanding to learn a precise

definition of “percent”, to realize the importance of the formulas (a)–(e) of §6, and

to be able to prove them and use them correctly.

26In case you haven’t noticed, we have freely made use of symbols from the beginning.
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There are obvious reasons why you should learn the precise definition of percent,

and how to use it to get the answers to all the standard questions related to this

concept.

Ratio

Next we take up the concept of ratio, and it is unfortunately one that is encrusted

in excessive verbiage. It would be expedient, therefore, to begin with a short defini-

tion.

Definition Given two fractions A and B. The ratio of A to B, sometimes

denoted by A : B, is the complex fraction A
B

.

In connection with ratio, there are some common expressions that need to be

made explicit. To say that the ratio of boys to girls in a classroom is 3 to 2 is

to say that if B (resp., G) is the number of boys (resp., girls) in the classroom, then

the ratio of B to G is 3
2
. Similarly, in making a fruit punch, the statement that the

ratio of fruit juice to rum is 7 to 2 means that we are comparing the volumes

of the two fluids (when the use of volume as the unit is understood in this situation),

and if the amount of fruit juice is A fluid ounces and the amount of rum is B fluid

ounces, then the ratio of A to B is 7
2
. And so on.

We will now work out some standard problems on ratios strictly using this defini-

tion. The clarity of the ensuing discussion, as well as the ease with which we dispatch

the problems will serve as a persuasive argument for the definition.

Example 1 In a school auditorium with 696 students, the ratio of boys to girls

is 11 to 13. How many are boys and how many are girls?

Let the number of boys be B and the number of girls be G, then we are given

that B
G

= 11
13

. Thus by the cross-multiplication algorithm, 13B = 11G. Let k be this

common number, i.e., 13B = 11G = k, so B = k
13

and G = k
11

. Now we are

also given B + G = 696, so k
13

+ k
11

= 696. This gives 24k
143

= 696, and therefore

24k = 143 × 696, i.e., k = 29 × 143. Since B = k
13

, we get B = 319. The value

of G can be obtained from either B+G = 696, or from G = k
11

. In any case, G = 377.
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The preceding solution is one that will be applicable in all situations. In a middle

school, it would be prudent to also know a more intuitive argument that may serve

as a gentler introduction. From B
G

= 11
13

, we draw instead the conclusion that

B =
11

13
×G

By the definition of multiplication (§4), this says the number B is the totality of 11

groups when the G girls are divided into 13 equal groups. Therefore the 696 stu-

dents are now divided into 11 + 13 equal groups, of which the girls comprise 13 of

these groups and the boys 11. Since the size of one group is 696
24 = 29, we see that

G = 13× 29 = 377 and B = 11× 29 = 319.

A more sophisticated problem is the following.27

Example 2 Divide 88 into two parts so that their ratio is 2
3

to 4
5
.

Let the two parts be A and B. Then we are given that

A

B
=

2
3
4
5

Using invert-and-multiply on the right and simplifying, we get

A

B
=

5

6

By the cross-multiplication algorithm, 6A = 5B. Let s be the common value. Thus

6A = s and 5B = s, leading to A = s
6

and B = s
5
. Because A+ B = 88, we have

s
6

+ s
5

= 88, so that 11s
30

= 88, and therefore s = 240. It follows from 6A = s that

A = 40, and from 5B = s that B = 48. Thus the two parts are 40 and 48.

There are other ways to solve problems such as the two preceding examples. We

leave to an exercise the exploration of other methods of solution.

27This was a problem in a 1875 California Exam for Teachers, and it was mentioned in the
well-known address of Lee Shulman, “Those who understand: Knowledge growth in teaching,”
Educational Researcher 15 (1986), 4-14.
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The concept of constant rate

In school mathematics, the most substantial application of the concept of division

is to problems related to rate, or more precisely, constant rate. The precise definition

of the general concept of “rate” requires more advanced mathematics, and in any

case, it is irrelevant whether we know what a rate is or not.28 What is relevant is

to know the precise meaning of “constant rate” in specific situations, and the most

common of these situations will be enumerated in due course. Among these, the

“rate” involving motion is what we call speed. Because this concept may be the most

intuitive, we proceed to discuss it in some detail.

Instead of giving, outright, a definition of what constant speed motion is, we begin

with the more basic concept of the average speed over a time interval from time

t1 to time t2, t1 < t2, as

distance traveled from t1 to t2
t2 − t1

What needs to be singled out is the fact that the term “average speed” by

itself carries no information, because we have to know the average speed

from a specific point in time t1 to another point in time t2. In addition,

because the terminology (“average”) stimulates the conditioned reflex of

“add two numbers and divide by 2”, students need to put this conditioned

reflex in check. The added cognitive complexity associated with “average

speed” is thus something your students will not take to kindly when you

teach this concept, but it is nevertheless something you must impress on

them because mastering subtleties of this kind prepares them for higher

mathematics.

We want to show that if a motion has a fixed average speed regardless of the

time interval, then it is, intuitively, what we call “constant speed”. For example, the

intuitive meaning of constant speed is that over time intervals of the same length,

28Students of calculus beware! If you want to be able to teach school mathematics, you still need
to learn how to explain constant rate in an elementary manner without once mentioning “a function
whose derivative is a constant”. This is in fact an excellent example of why, no matter how much
advanced mathematics one knows, one must learn school mathematics in order to be a good teacher.
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the distances traveled are the same. Now if we have a motion with a fixed average

speed v, we are going to prove that it has the same property. Let us say the two time

intervals [t1, t2] and [t3, t4] have the same length so that t2−t1 = t4−t3. Then if d and

d′ are the distances traveled during the time intervals [t1, t2] and [t3, t4], respectively,

by this motion with fixed average speed v, we have

v =
d

t2 − t1
=

d′

t4 − t3

so that

d = v(t2 − t1)
= v(t4 − t3) (because t2 − t1 = t4 − t3)
= d′

as desired. Next, for a motion of constant speed, if the time interval [s1, s2] is 1
n as

long as the time interval [t1, t2], then the distance traveled in [s1, s2], say D, is also

expected to be 1
n of the distance traveled in [t1, t2], say d. We now show that this

is also true of motions with a fixed average speed v. This is because if we divide

[t1, t2] into n equal parts, then the length of each of these parts is just s2 − s1, by

assumption, so that by what we have just proved, the distance traveled during [s1, s2]

is the same as the distance traveled during each of these parts, i.e., D. Since the total

distance traveled in all n parts is exactly the distance traveled in [t1, t2], which is d,

we have:

D +D + · · ·+D︸ ︷︷ ︸
n

= d.

It follows that D = 1
n
d, as claimed.

The following definition is now seen to be entirely reasonable.

Definition A motion is said to have constant speed v if the average speed of

the motion over any time interval is v.

Why do we need a definition of constant speed? After all, is it not enough to

know that, during any one-hour interval (or any one-minute interval), the distance

traveled is always the same? The answer if no. First of all, the perception that no
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definition of constant speed is needed is a reflection of the fact that all constant speed

or constant rate problems are usually done in school classrooms “by common sense”

and without any logical deductions. But what is “common sense” to one person

may not be “common sense” to another, especially if the other person is a beginner

unsure of himself or herself. A solution that depends on some ineffable, and not

necessarily universal, understanding of the situation is not learnable mathematics.

Let us illustrate. The following is a standard problem.

If Ina can walk 32
5 miles in 90 minutes, how long would it take her to walk

half a mile?

A common solution would be like this: Suppose it takes Ina x minutes to walk half a

mile, then proportional reasoning shows that 32
5 is to 1

2 as 90 is to x. So

32
5
1
2

=
90

x

By the cross-multiplication algorithm for complex fractions ((b) of §6),29

x =
1

32
5

×
(

1

2
× 90

)
=

45
17
5

= 13
4

17
minutes

The answer is undoubtedly correct, but how is anyone supposed to explain the

“proportional reasoning” to an eleven-year-old so that she can learns how to form the

proportion with conviction? And constant speed is not even assumed! This solution

is mathematically senseless. Let us do it over again. We begin with a reformulation

of the problem that at least makes sense.

If Ina walks at a constant speed and she walks 32
5 miles in 90 minutes,

how long would it take her to walk half a mile?

Solution Let Ina walk at the constant speed of v mph, and assume that it takes her

x minutes to walk half a mile. Then her average speed over the time interval of 90

minutes and that over the time interval of x minutes are both v mph, by assumption

of constant speed. Thus
32
5

90
= v =

1
2

x
(6)

29Take note of the very natural way a formula about complex fractions in §6 is called upon to
serve a mathematical need.
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So the the cross-multiplication algorithm for complex fractions ((b) of §6) gives

x =
1

32
5

×
(

1

2
× 90

)
= 13

4

17
minutes

It is the same answer, but now every step is logical, and what is more important,

we finally see how the assumption of constant speed becomes an integral part of the

solution. At least, if someone wants to learn it, she can learn it step-by-step, without

appealing to any “supernatural common sense”.

Let us now finish the answer to the question of whether, instead of having a pre-

cise definition of constant speed, it suffices to know that during any one-hour interval

(or any one-minute interval), the distance traveled is always the same. Look at the

preceding solution: the critical step in equation (6) requires that we know that Ina’s

average speed over the time interval x is still v, and we have no idea what x is. So,

no, it is not enough to know that for a motion of constant speed, the speed over a

fixed time interval (regardless of what it is, an hour, a minute, or a second) is a fixed

number. We need the full definition of constant speed.

In the language of school mathematics, speed is the “rate” at which the work of

moving from one place to another is done. There are other standard “rate” problems

which deserve to be mentioned. One of them is painting (the exterior of) a house.

The rate there would be the number of square feet painted per day or per hour. A

second one is mowing a lawn. The rate in question would be the number of square

feet mowed per hour or per minute. A third is the work done by water flowing out

of a faucet, and the rate is the number of gallons of water coming out per minute

or per second. In each case, the concept of constant rate can be precisely defined

as in the case of constant speed. For example, the concept of constant rate of

lawn-mowing can be defined by first defining the average rate of lawn-mowing

from time T1 to time T2 as A′

T2−T1
, where A′ is the area mowed from time T1 to time

T2. Then the lawn is said to be mowed at a constant rate if the average rate of

the lawn being mowed over any time interval [T1, T2] is equal to a fixed constant.

However, textbooks over the years have developed an “abstract” kind of work

problems, which typically read as follows.

It takes Regina 10 hours to do a job, and Eric 12 hours. If they work

together, how long would it take them to get the job done?
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The mathematical defects of such a problem are overwhelming. First, this problem

cannot be solved if Regina and Eric do not each work at a constant rate, yet the

assumption of constant rate is typically not mentioned. A second assumption is that,

somehow, Regina and Eric manage to do different parts of the job, and at the end

the two parts fit together perfectly to get the job done faster. If the nature of the

work is not made explicit, however, such an assumption would sorely tax a student’s

imagination. For example, suppose the job involved is driving from Town A to Town

B, and a student interprets “working together” to mean Regina and Eric sharing the

driving! A third serious defect is that the concept of constant rate becomes difficult

to formulate precisely when the job in question is not clearly specified. Indeed, the

average rate of work from time t1 to time t2 is by definition,

the amount of work done from t1 to t2
t2 − t1

But the numerator has to be a number, and a student would have a hard time asso-

ciating the vague description of “amount of work” with a number. Such vagueness

interferes with the learning of mathematics.

Make sure that you do not damage your students’ learning by teach-

ing them only this kind of generic “work problems”.

It is conceivable that after doing many well formulated work problems, students are

already so familiar with the general reasoning that they can afford to take shortcuts

by engaging in doing such abstract work problems. This is something you as a teacher

has to decide, but certainly, this kind of problems are inappropriate for beginners.

Units and dimension analysis

Many teachers are concerned about getting students to use the correct unit in such

rate problems. As a result of this concern, something called “dimension analysis” has

sprung up to help students learn about changing one unit to another. Dimension

analysis is used extensively in science and engineering as a quick check on the correct

use of units because one can imagine that in physics, for example, all kinds of units

have to be used to fit the occasion. Thus for the study of a motion within the lab
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in a time interval of 3 seconds, one might have second thoughts about using miles

per hour; perhaps feet per second or meters per second would be more appropriate.

But even in physics, dimension analysis cannot replace the knowledge of why a unit

of acceleration is m/sec2 or a unit of momentum is kg-m/sec. There is need for

a basic understanding of the processes involved. Why this is relevant is that, in

school mathematics, dimension analysis is taught as a rote skill. While it is possible

to explain the procedures used in dimension analysis, any minute spent on such an

explanation is a minute taken away from acquiring an understanding the underlying

mathematics of constant rate. Furthermore, if students know the definitions and can

follow the definitions faithfully, then they will see that there is no mystery to changing

units. In this short sub-section, we illustrate this point of view with two examples.

One suggestion for minimizing the distraction of dimension analysis is to agree,

from the beginning, on a single unit of measurement. For example, if a problem in-

volves motion and the data are given in minutes and hours in time, and miles, yards,

and meters in length, then it would make sense to convert everything into hours and

miles only. In the subsequent computations, there would be no need to worry about

unit conversion.

Suppose water comes out of a faucet at a constant rate of 5 gallons per minute.

We show how to express this rate in terms of quarts and seconds. In other words, how

many quarts of water come out of the faucet each second? Recall that the meaning

of constant rate is that the average rate over any time interval is the same number,

so we look at the average rate of the water flow in a time interval of one minute.

We use a one-minute interval because are given that in this time interval, 5 gallons

come out of the faucet. Now one minute is 60 seconds, and each gallon is 4 quarts.

Since 5 gallons is 5× 4 = 20 quarts, we are therefore given that 20 quarts come out

of the faucet every 60 seconds. The average rate in a 60 second time interval is, by

definition, the quotient

20 (quarts)

60 (seconds)
=

20

60
quarts per second =

1

3
quarts/second

Since we are assuming constant rate, we see that this average rate is in fact the

constant rate, i.e., 1
3

qt./sec.

Once we are more used to this reasoning, we would do the conversion directly
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without further ado, as follows:

5 gal./min. =
5× 4 qt.

60 sec.
=

20

60
qt./sec. =

1

3
qt./sec.

As another example, suppose an object travels at a constant speed of 851
5

ft./sec.

What is its speed in terms of mph (miles per hour)? We know 1 mile = 5280 ft., so

85 1
15

ft. = 85 1
15
× 1

5280
mi.= 29

1800
mi. On the other hand, 1 hour is 3600 seconds, so

that 1 second is 1
3600

hour. The object therefore travels 29
1800

mi. in a time interval

of 1
3600

hr. By definition of average rate, the average rate of the motion in a time

interval of 1
3600

hr. is the quotient

29
1800
1

3600

mph = 58 mph

Again, having gone through this process once, we can now compute more simply:

85
1

15
ft./sec. =

85 1
15
× 1

5280

1× 1
3600

mph = 58 mph

Cooperative work

We now revisit the previous example about Reginal and Eric by giving four dif-

ferent reformulations that are all mathematically acceptable:

(P1) Regina drives from Town A to Town B in 10 hours, and Eric in 12. Assuming

that each drives at the same constant speed, Regina from Town A to Town B, and

Eric from Town B to Town A, and that they drive on the same highway, after how

many hours will they meet in between?

(P2) Regina mows a lawn in 10 hours, and Eric in 12. Assuming that each mows

at the same constant rate, how long would it take them to mow the same lawn if they

mow together without interfering with each other?

(P3) Regina paints a house in 10 hours and Eric in 12. Assuming that each paints

at the same constant rate, how long would it take them to paint the same house if

they paint together without interfering with each other?
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(P4) A faucet can fill a tub in 10 minutes, and a second faucet in 12. Assuming

that the rate of the water flow remains constant in each faucet, how long would it

take to fill the same tub if both faucets are turned on at the same time?

It should be recognized that all four problems are the same problem: if you can

solve one, you can solve them all. Let us give a solution of the first, (P1).

︸ ︷︷ ︸
d mi

- �

A B

Regina Eric

We have to determine the speeds of Regina and Eric. We do not know the distance

between Towns A and B, so to facilitate thinking, let us say this distance is d miles.

Therefore Regina’s speed vR satisfies d = 10vR, and we have vR = d
10 mph. Similarly,

Eric’s speed vE is d
12 mph. We have to find out how long it takes Regina and Eric

to meet, but again, to facilitate thinking, let us say Regina and Eric meet after T

hours. At the moment we do not know what T is, but the assumption of constant

speed guarantees that the distance Regina has driven in T hours is vRT = dT
10 miles.

Similarly, the distance Eric has driven after T hours is dT
12 miles. Since they meet

in between the towns, the total distance they have driven together after T hours is

exactly d miles. Therefore we have

dT

10
+
dT

12
= d

By the distributive law (e) for complex fractions in §6, we have

dT

(
1

10
+

1

12

)
= d

Since d is just a number, multiplying both sides by the complex fraction 1
d (and using

rules (a) and (d) of §6) gives ( 1
10 + 1

12)T = 1. By the definition of division. we get

T =
1

1
10

+ 1
12

= 5
5

11
(hours)

It may be instructive if we also solve problem (P2) for comparison.
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Let the area of the lawn be A sq. ft. Because in 10 hours Regina can mow the

whole lawn, i.e., A sq. ft., her (constant) rate of lawn-mowing is, by definition, A
10

sq. ft. per hour. Similarly, Eric’s rate of lawn-mowing is A
12 sq. ft. per hour. Now

suppose the two together can finish mowing the lawn in T hours. If in T hours,

Regina mows R sq. ft., then by definition of constant rate, R
T = A

10 , and therefore,

R = AT
10 . Similarly, in T hours, Eric mows AT

12 sq. ft. Because they mow with no

interference from each other, the sum total of the areas they mow in T hours adds

up exactly to A, i.e.,
AT

10
+
AT

12
= A

By the distributive law, AT ( 1
10 + 1

12) = A. Multiplying both sides by 1
A , we get

T ( 1
10 + 1

12)= 1, so that

T =
1

1
10

+ 1
12

= 5
5

11
(hours),

exactly as before.

The next example is slightly more intricate.

Example 3 Tom and May drive on the same highway at constant speed. May

starts 30 minutes before Tom, and her speed is 45 mph. Tom’s speed is 50 mph. How

many hours after May leaves will Tom catch up with her?

We give two slightly different solutions. Suppose T hours after May leaves, Tom

catches up with May. In those hours, May has driven 45T miles. Since Tom does

not start driving until half an hour after May does, the total distance he travels

in that time duration is 50(T − 1
2
) miles. The two distances being equal, we get

45T = 50(T − 1
2
). By the distributive law, 45T = 50T − 25. Adding 25 to both sides,

we get 45T +25 = 50T , and so we get 25 = 5T after subtracting 45T from both sides.

Thus T = 5, i.e., 5 hours after May leaves, Tom catches up with her.

Another solution is to watch Tom’s car from May’s car. So starting at 1
2

hour

after she leaves, she sees Tom’s car coming from a distance of 45× 1
2

= 22.5 miles.30

Let t measure the number of hours after Tom starts driving. In t hours, Regina’s car

30She has omnidirectional vision.
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travels 45t miles, whereas Tom’s car travels 50t miles. Therefore, after t hours, May’s

observation is that Tom is 50t− 45t = 5t miles closer to her car, which is the same as

saying that, Tom’s car — as observed from May’s car — travels 5t miles in t hours.

By definition of constant speed, Tom’s car is driving at a constant speed of 5 mph

when observed from May’s car. Since May is initially 22.5 miles away, it will take

Tom 22.5
5

= 4.5 hours to catch up. Since Tom starts 0.5 hours after May leaves, it

takes Tom 4.5 + 0.5 = 5 hours after May leaves to catch up with her.

As a final example, we give one that is the kind of brain-teaser that one passes

around in parties. The emphasis will not be in the answer but in the method of

solution: If you are explaining to seventh graders how to solve this, you will not be

trying to “make an impression” in a party but will try instead to teach mathematics.

How can you explain it logically when the obvious, illegal method of solution is so

seductive and so “simple”?

Example 4 If 3 people can paint 4 houses in 5 hours, and if everybody paints at

the same constant rate and all the houses are identical, how long will it take 2 people

to paint 5 houses? (Assume that they don’t interfere with each other’s work.)

First, the illegal solution. One person can paint 4
3 houses in 5 hours, and therefore

can paint 1 house in
5
4
3

=
15

4
hours

So 2 people can paint 1 house in 1
2 ×

15
4 = 15

8 hours. Therefore, to paint 5 houses,

it takes 2 people 2 × 15
8 = 75

8 hours. Again, the answer is correct, but this method

of solution has a fatal flaw: the assumption of “constant rate of painting” is never

explicitly used. Since clearly this assumption is crucial for the solution, your job as

a teacher is to de-construct this glib solution to bring out the constancy assumption.

Only then can you hope that your students will learn from it.

We try again. Let each house have A sq. ft. of surface area for painting, and let

everyone paint at the constant rate of r sq. ft. /hr. We claim that the number of

sq. ft. painted by k people (where k is a positive integer) in t hours is krt sq. ft.
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Indeed, by definition,

# sq. ft. painted by one person in t hrs.

t hrs.
= r sq. ft./hr.,

each person paints rt sq. ft. in t hours. But they all paint at the same rate r, so k

people in t hours will paint (rt+ rt+ · · ·+ rt) (k times) sq. ft., which is krt sq. ft., as

claimed. It follows that the rate at which k people (with k fixed during the discussion)

paint together is a constant, namely, kr sq. ft./hr. This is because, by definition, the

average rate at which k people paint in a given time interval of t hours is

# sq. ft. painted by k people in t hours

t hours
=

krt

t
= kr sq. ft./hr. (7)

This average rate being constant (independent of t), this is exactly what we mean by

constant rate. Now we know that 3 people can paint 4 houses in 5 hours. Therefore

equation (7) gives

#sq. ft. painted by 3 people in 5 hours

5 hours
= 3r sq. ft./hr

But 4 houses have 4A sq. ft. of total area, so

4A

5
= 3r,

and we obtain an explicit value of r:

r =
4A

15
sq. ft./hr.

Let us say it takes T hours for 2 people to paint 5 houses, then by equation (7) again,

# sq. ft. painted by 2 people in T hours

T hours
= 2r sq. ft./hr

which is to say,
5A

T
= 2× 4A

15
,

and we finally get

T =
5
8
15

=
75

8
hours

Exercises 1.7

106



A special word of caution for this set of problems. Most of these problems are

likely known to you, and therefore you have inherited their template solutions

from your school days or from the textbooks you use. Equally likely, these

template solutions don’t make mathematical sense. You should therefore

approach these problems with fresh eyes and make a new beginning. Write

out their solutions the way you are going to teach your students, and then

ask yourself: Do I make sense to my students? Make sure you can answer

this question in the affirmative.

1. A hi-fi store sells a CD player for $225. The owner decides to increase sales by

not charging customers the 8% sales tax. Then he changes his mind and charges

customers $x so that, after they pay the sales tax, the total amount they pay is still

$225. What is x?

2. Helena drives from Town A to Town B at x mph, and drives back at y mph. What

is her average speed for the round trip? If the round trip takes t hours, how far apart

are the towns?

3. A high-tech stock dropped 45% of its value in June to its present value of $N.

A stock broker tells his clients that if the stock were to go up by 60% of its present

value, then it would be back to where it was in June. Is he correct? If so, why? If

not, by what percent must the stock at its present value of $N rise in order to regain

its former value?

4. A fully open faucet (with a constant rate of water flow) takes 25 seconds to fill a

container of 51
2

cubic feet. At the same rate, how long does it take to fill a tank of

121
2

cubic feet? (Be careful with your explanation!)

5. A faucet with a constant rate of water flow fills a tub in 9 minutes. If the rate of

water flow were to increase by 10%, how long would it take to fill the tub?

6. Kate and Laura walk straight toward each other at constant speed. Kate walks

12
3

times as fast as Laura. If they are 2000 feet apart initially, and if they meet after

21
2

minutes, how fast does each walk?
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7. (Sixth-grade Japanese exam question) A train 132 meters long travels at 87 kilo-

meters per hour and another train 118 meters long travels at 93 kilometers per hour.

Both trains are traveling in the same direction on parallel tracks. How many seconds

does it take from the time the front of the locomotive of the faster train reaches the

end of the slower train to the time that the end of the faster train reaches the front

of the locomotive on the slower one?

8. Solve Example 2 of the sub-section on ratio by a method similar to the second solu-

tion of Example 1. Can you find other methods of solution to both Examples 1 and 2?

9. Driving at her usual constant speed of v mph, Stefanie can get from point A to

point B in 5 hours. Today, after driving 1 hour, she decides to speed up to a constant

speed of w mph so that she can finish the whole trip in 41
2

hours instead of 5. By

what percent is w bigger than v (compared with v)?

10. Winnie and Reggie working together can paint a house in 56 hours. If Reggie

paints the same house alone, it takes him 90 hours to get it done. How long does it

take Winnie to paint the house if she works alone? (Assume each paints at a constant

rate, and that when they paint together there is no mutual interference.)

11. Alfred, Bruce, and Chuck mow lawns at a constant rate. It takes them 2 hours,

1.5 hours, and 2.5 hours, respectively, to finish mowing a certain lawn. If they mow

the same lawn at the same time, and if there is no interference in their work, how

long will it take them to get it done?

12. How much money would be in an account at the end of two years if the initial

deposit was $93 and the bank pays an interest of 6% at the end of each year? (This

means, if there are n dollars in the account at the end of the year, then the bank adds

6%× n dollars into the account.) And at the end of n years?

13. If A, B, C are three numbers which satisfy A : B = ` : m and B : C = m : n

for some fractions `, m, n, then we abbreviate by writing A : B : C = ` : m : n to
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express the equality of the two pairs of ratios, and say that A, B, C, are in the ra-

tio ` : m : n. Prove that A, B, C, are in the ratio ` : m : n if and only if A
` = B

m = C
n .

14. Benoit, Carl, and Davida chip in to buy a hi-fi system. The cost is $434, and their

contributions (in the order of Benoit, Carl, and Davida) are in the ratio of 2 : 7 : 4

(see problem 13). How much does each contribute?

15. (a) If 5 people can paint 7 houses in 3 days, how long would it take 2 peo-

ple to paint 9 houses? (b) If 4 people can paint 3 houses in 2 days, how many

houses can 5 people paint in 6 days? (In both cases, assume that everyone paints at

a constant rate, they never interfere with each other, and all the houses are identical.)

16. On June 16, 2009, Reuters made the following report:

MySpace, the social network owned by Rupert Murdoch’s News Corp,

said it will cut 30 percent of its staff to lower costs as it struggles to stay

popular in the face of rising competition.

MySpace will be left with about 1,000 employees, it said in a statement

released on Tuesday. The company declined to say how many people work

at the service, but the percentage suggests that about 400 people will lose

their jobs.

(a) Compute roughly how many people were working at MySpace at the time of the

report. (b) Would you care to make any social commentary on this report? (Subse-

quently, it was revealed that MySpace had 1420 employees at the time.)

Appendix

In this appendix, we briefly recall the commutative and associative laws of addi-

tion and multiplication, and also the distributive law that connects the two. Some

standard consequences will also be discussed.

In the following, lowercase italic letters will be used to stand for arbitrary num-

bers without further comment. Notice that we are intentionally vague about what
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“numbers” we are talking about. The fact is that Theorems 1 and 2 are valid for

whole numbers, integers, rational numbers, real numbers, and even complex numbers,

and these theorems will be used in such generality without comment for the rest of

these notes. With this understood, the associative and commutative laws for

addition state that for any x, y, z, we always have

x+ (y + z) = (x+ y) + z

and

x+ y = y + x,

respectively. A fairly tedious argument, one that is independent of the specific num-

bers x, y, z involved but is dependent formally only on these two laws, then leads

to the following general theorem. For everyday applications, this theorem is all that

matters as far as these simple laws are concerned:

Theorem 1 For any finite collection of numbers, the sums obtained by adding

them up in any order are all equal.

A similar discussion holds for multiplication. Thus the associative and commu-

tative laws for multiplication state that for any x, y, z, we always have

x(yz) = (xy)z

and

xy = yx,

respectively. And, in like manner, we have:

Theorem 2 For any finite collection of numbers, the products obtained by mul-

tiplying them in any order are all equal.

Finally, the distributive law is the link between addition and multiplication. It

states that, for any x, y, z,

x(y + z) = xy + xz

110



Here it is understood that the multiplications xy and xz are performed before the

products are added. A simple argument then extends this law to allow for any number

of additions other than two. For example, the distributive law for five additions states

that for any x, a, b, c, d, e, we have

x(a+ b+ c+ d+ e) = xa+ xb+ xc+ xd+ xe
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Chapter 2: Rational Numbers

§1 The two-sided number line (p. 113)

§2 Adding rational numbers (p. 115)

§3 Subtracting rational numbers(p. 127)

§4 Multiplying rational numbers (p. 132)

§5 Dividing rational numbers (p. 144)

§6 Comparing rational numbers (p. 153)
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We are going to revisit the number line. Up to now, we have only made use of the

right side of 0. It is time that we make full use of the entire number line, both to the

left and right. Because we already have the fractions to the right of 0, we now look

at the collection of numbers (i.e., points on the number line) to the left of 0 obtained

by reflecting the fractions across 0. The fractions together with their reflected images

will be seen to form a number system, in the sense that we can perform the four

arithmetic operations on them in a way that is consistent with the operations already

defined on the fractions. This number system, called the rational numbers, is the

subject of this chapter.

1 The two-sided number line

Recall that a number is a point on the number line. We now look at all the

numbers as a whole. Take any point p on the number line which is not equal to 0;

such a p could be on either side of 0 and, in particular, does not have to be a fraction.

Denote the mirror reflection of p on the opposite side of 0 by p∗, i.e., p and p∗ are

equi-distant from 0 (i.e., same distance from 0) and are on opposite sides of 0. If

p = 0, let

0∗ = 0

Then for any point p, it is clear that

p∗∗ = p

This is nothing but a succinct way of expressing the fact that reflecting a nonzero

point across 0 twice in succession brings it back to itself (if p = 0, of course 0∗∗ = 0).

Here are the mirror reflections of two points p and q on the number line:

0 pp∗ q∗q

Because the fractions are to the right of 0, the numbers such as 1∗, 2∗, or (9
5
)∗

are to the left of 0. Here are some examples of the mirror reflections of fractions

(remember that fractions include whole numbers):
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3∗ (23
4
)∗ 2∗ 1∗ (2

3
)∗ 0 2

3
1 2 23

4
3

The set of all the fractions and their mirror reflections, i.e., the numbers m
n

and

(k
`
)∗ for all whole numbers k, `, m, n (` 6= 0, n 6= 0), is called the rational numbers,

and is denoted by Q. Recall that the whole numbers, denoted by N, are a sub-set

of the fractions. The set of whole numbers and their mirror reflections,

. . . 3∗, 2∗, 1∗, 0, 1, 2, 3, . . .

is called the integers, and is denoted by Z. If we employ the standard symbol ⊂ to

denote “is contained in”, then we have:

N ⊂ Z ⊂ Q

We now extend the order among numbers from fractions to all numbers: for any

x, y on the number line, x < y means that x is to the left of y. An equivalent

notation is y > x.

x y

Numbers which are to the right of 0 (thus those x satisfying x > 0) are called

positive, and those which are to the left of 0 (thus those that satisfy x < 0) are

negative. So 2∗ and (1
3
)∗ are negative, while all nonzero fractions are positive.

The mirror reflection of a positive number is therefore negative, by definition, but

the mirror reflection of a negative number is positive. The number 0 is, by definition,

neither positive nor negative.

You are undoubtedly accustomed to writing, for example, 2∗ as −2 and (1
3
)∗

as − 1
3

. You also know that the “−” sign in front of −2 is called the negative sign.

So you may wonder why we employ this ∗ notation and have avoided mentioning

the negative sign up to this point. The reason is that the negative sign, having to

do with the operation of subtraction, simply will not figure in our considerations

until we begin to subtract rational numbers. Moreover, the terminology of “negative

sign” carries certain psychological baggage that may interfere with learning rational
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numbers the proper way. For example, if a = −3, then there is nothing “negative”

about −a, which is 3. It is therefore best to hold off introducing the negative sign

until its natural arrival in the context of subtraction in the next section.

Exercises 2.1

1. Show that between any two rational numbers, there is another rational number.

2. Which is bigger? (1.23)∗ or (1.24)∗ ? (1.7)∗ or (12
7 )∗ ? (5871

5)∗ or (587 2
11)∗ ?

( 9
16)∗ or (4

7)∗ ?

3. Which of the following numbers is closest to 0 (on the number line)?

(15
7 )∗, (11

5 )∗, 13
6 , 9

4

2 Adding rational numbers

Why rational numbers?

Vectors and vector addition

Adding rational numbers

Why rational numbers?

Before we proceed to a discussion of the arithmetic operations with rational num-

bers, we should ask why we bother with rational numbers at all. To answer this

question, we first take a backward step and look at the transition from whole num-

bers to fractions: with the whole numbers at our disposal, why did we bother with

fractions? One reason is to consider the problem of solving equations. If we ask which

whole number x has the property that when multiplied by 7 it equals 5, the answer is

obviously “none”. The fraction 5
7
, on the other hand, has exactly this property. One

may therefore say that if we insist on getting a solution to the equation 7x = 5, then
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we would inevitably be led to x = 5
7
. More generally, the solution to the equation

nx = m where m, n are given whole numbers, with n 6= 0, is m
n

. In this sense,

we may regard the fractions as the numbers which are the solutions of the equation

nx = m with n 6= 0, as m and n run through all whole numbers. Once we have these

new numbers, then we introduce the arithmetic operations among them in a way that

is consistent with the original arithmetic operations among whole numbers. Recall

in this connection that we were careful all through Chapter 1 to stress the fact that

each arithmetic operation on fractions is derived directly from the corresponding one

on whole numbers.

We now come back to our present situation. With fractions at our disposal, sup-

pose we want a fraction x so that 2
3

+ x = 0. We would get no solution in this

case. The number (2
3
)∗ is there precisely to provide a solution to this equation. In

the same way, the number (m
n

)∗ will be designated to be the solution of the equation
m
n

+ x = 0, for any whole numbers m and n (n 6= 0). Now that we have the negative

fractions, we are faced with the same problem concerning the rational numbers that

we faced concerning the fractions, namely, how to define the arithmetic operations

among the rational numbers in a way that is consistent with the original arithmetic

operations among fractions. In this section we deal with addition.

We will approach the addition of rational numbers by imitating what we did in

Chapter 1, which is to explicitly define the sum of two rational numbers and then

show that, so defined, it coincides with the usual addition of fractions when the ra-

tional numbers are themselves fractions. This is not the only way to proceed, but

in a middle school classroom, such a concrete approach may be best. We begin by

introducing a new concept.

Vectors and vector addition

By definition, a vector is a segment on the number line together with a designation

of one of its two endpoints as a starting point and the other as an endpoint. We

will continue to refer to the length of the segment as the length of the vector,

and call the vector left-pointing if the endpoint is to the left of the starting point,

right-pointing if the endpoint is to the right of the starting point. The direction
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of a vector refers to whether it is left-pointing or right-pointing.

We denote vectors by placing a bar above the letter, e.g., A, x, etc., and in

pictures we put an arrowhead at the endpoint of a vector to indicate its direction.

For example, the vector K below is left-pointing and has length 1, with a starting

point at 1∗ and an endpoint at 2∗, while the vector L is right-pointing and has length

2, with a starting point at 0 and an endpoint at 2.

3∗ 1 32∗ 1∗ 0 2
� -

K L

For the purpose of discussing the addition of rational numbers, we can further

simplify matters by restricting attention to a special class of vectors. Let x be a

number (a point on the number line), then we define the vector x to be the vector

with starting point at 0 and endpoint at x. It follows from the definition that, if x

is positive, then the segment of the vector x is exactly [0, x].31 Here are two examples

of vectors arising from rational numbers: 3∗ and 1.5.

4∗ 3∗ 12∗ 1∗ 0 2
-�

1.5

1.53∗

In the following, we will concentrate only on vectors of the type x

where x is a number, so that all vectors under discussion will have start-

ing point at 0. We now describe how to add such vectors. Given x and y, where

x and y are two numbers, the sum vector x+ y is, by definition, the vector whose

starting point is 0, and whose endpoint is obtained as follows:

slide the vector y along the number line until its starting point (which is

0 ) is at the endpoint of ~x, then the endpoint of y in this new position is

by definition the endpoint of x+ y.

As an example, suppose we are given the following vectors x and y:

31In contrast with the fact that if x is negative, then the segment of x would be [x, 0].
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0
--

x

y

Then the vertical arrow on the right indicates the endpoint of the sum vector x+ y:

0
-- ?

x

On the other hand, if we are given the following two vectors x and y,

0
� -

x

y

then the endpoint of x+ y is indicated by the vertical arrow on the left:

?
0

� -

x

We want to show that the addition of vectors is commutative, i.e.,

x+ y = y + x for all x, y ∈ Q

Consider the sum of the previous two vectors, 3∗ + 1.5. The endpoint of the sum

vector is indicated by the vertical arrow below the number line.

4∗ 3∗ 12∗ 1∗ 0 2
-�

1.5

66

And here is the sum of the same two vectors, but with order reversed: 1.5 + 3∗. The

endpoint of this sum vector is again indicated by the vertical arrow below the number

line.

4∗ 3∗ 12∗ 1∗ 0 2
-�

1.5

66
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We have to show that the vectors 3∗ + 1.5 and 1.5 + 3∗ are equal. Because the

directions of 3∗ and 1.5 are different, the definition of vector addition implies that

the length of either sum vector has to be the difference of the lengths of 3∗ and 1.5

individually. Thus the two vectors 3∗+ 1.5 and 1.5 + 3∗ must have the same length,

namely, 3− 1.5. Next consider the directions of 3∗ + 1.5 and 1.5 + 3∗. Again from

the definition of vector addition, the direction of either sum vector is the direction of

the longer vector (i.e., 3∗ for the case at hand, therefore left-pointing). So the two

sum vectors also have the same direction. Since two vectors with the same length

and the same direction are equal, we have proved that

3∗ + 1.5 = 1.5 + 3∗

Consider another example, 2 + 1∗. We slide the vector 1∗ until its starting point

(i.e., 0) is at 2, as shown:

3∗ 12∗ 1∗ 0 2

6
� -

The vector 2 +1∗ is therefore 1, the vector that starts at 0 and ends at 1. If we

consider instead the sum with the order of the vectors reversed, 1∗ + 2, then we get:

3∗ 12∗ 1∗ 0 2

6
� -

Pictorially, we see that 1∗ + 2 is again 1, but we can directly prove this as follows.

Because the direction of either sum, 2 + 1∗ or 1∗ + 2, is the direction of the longer

vector (i.e., 2) and the length of either sum is the difference of the lengths of 2 and

1∗ (i.e., 2− 1), we have once more the equality:

2 + 1∗ = 1∗ + 2

In particular, 1 = 1∗ + 2, as before.

The preceding arguments do not depend on the explicit values of 3∗, 1.5, 2,

and 1∗. So the addition of vectors is commutative if the vectors point in different

directions.

Now suppose we have two vectors x and y, and both are right pointing (i.e., x > 0

and y > 0):
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0 1
- -
y

x

Here is x+ y:

0 1
-- x+ yx

and here is y + x:

0 1
- -
y

y + x

Because clearly the segment of either x+ y or y+ x is just the concatenation of the

segments of x and y, and because both x + y and y + x are right-pointing, we have

as expected:

x+ y = y + x

Of course, if both x and y are left-pointing (i.e., x < 0 and y < 0), the reasoning

is entirely the same. So the addition of vectors is also commutative if the vectors

point in the same direction. We have therefore proved the following theorem.

Theorem 1 For any two numbers x and y,

x+ y = y + x

The reasoning used to prove Theorem 1 also proves the following useful result.

Theorem 2 Let x and y be any two numbers. Then:

(i) If both vectors x and y have the same direction, then the sum vector x+ y has

the same direction as x and y and its length is the length of the concatenation of the

segments of x and y, and is therefore the sum of the lengths of x and y.

(ii) If the vectors x and y have different directions, then the direction of the sum

vector x + y is the same as the direction of the longer vector and the length of the
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sum vector x+ y is the difference of the lengths of the vectors x and y.

Because a vector is completely determined by its length and its direction, Theorem

2 tells us how to add x + y for any two numbers x and y. This will be used in the

next sub-section.

Adding rational numbers

We are now in a position to define the addition of rational numbers. The sum

x+ y of any two rational numbers x and y is by definition the endpoint of the

vector x+ y. In other words,

x+ y = the endpoint of x+ y.

Put another way, x + y is defined to be the point on the number line so that its

corresponding vector x+ y satisfies:

x+ y = x+ y.

From Theorem 1, we conclude that the addition of rational numbers is commu-

tative. Moreover, part (i) of Theorem 2 shows that if x and y are fractions, then

x + y is the length of the concatenation of [0, x] and [0, y] and therefore has exactly

the same meaning as the addition in §3 of Chapter 1. It follows that the addition of

rational numbers x+ y, as defined by vector addition, coincides with the addition of

fractions in the sense of §3 of Chapter 1 when x, y are fractions. These observations

are enough for the explicit determination of the sum of any two rational numbers, as

follows.

A rational number is either 0, or a fraction, or the mirror reflection (across 0) of

a fraction. Therefore, if s and t are two fractions, then

s+ t, s+ t∗, s∗ + t, and s∗ + t∗

exhaust all possibilities of the sum of two rational numbers. Knowing further that

addition is commutative, we need only deal with one of s + t∗ and s∗ + t because
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knowing how to compute the value of either one for arbitrary fractions s and t means

knowing how to compute the other. With this understood, the following theorem

tells us how to compute the sum of any two rational numbers.

Theorem 3 For all fractions s and t,

s+ t = the ordinary sum of the fractions s and t

s∗ + t∗ = (s+ t)∗

s+ t∗ = t∗ + s =

{
(s− t) if s ≥ t

(t− s)∗ if s < t

Theorem 3 will seem much more natural once we have computed some explicit

numbers. There is no need to look at s+ t (s and t are understood to be fractions).

Consider next, 7∗ + 6∗. By definition, this is the endpoint of 7∗ + 6∗. By part (i)

of Theorem 2, the sum 7∗ + 6∗ is left-pointing and has length 7 + 6 = 13. Thus the

endpoint of 7∗ + 6∗ is 13∗ = (7 + 6)∗. We have proved that

7∗ + 6∗ = (7 + 6)∗

Next, we look at 101
2

+ 3∗. This is the endpoint of 101
2

+ 3∗ . By Theorem 2 (ii),

this vector sum is right-pointing and has length 101
2
− 3 and therefore its endpoint is

just 101
2
− 3. This we have proved that

10
1

2
+ 3∗ = 10

1

2
− 3

Finally, consider 11.5 + 12.1∗. It is the endpoint of 11.5 + 12.1∗. By part (ii) of

Theorem 2, this vector sum is left-pointing with length equal to 12.1 − 11.5; its

endpoint is therefore (12.1− 11.5)∗, and we have

11.5 + 12.1∗ = (12.1− 11.5)∗

We proceed to give a formal proof of Theorem 3.

Proof of Theorem 3 By the remarks below the definition of x + y, the first

assertion is true. Next, consider s∗ + t∗ , which is, by definition of addition, the
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endpoint of the vector sum s∗+ t∗. By Theorem 2(i), the vector sum is left-pointing

and its length is s+ t; therefore the endpoint is exactly (s+ t)∗. Thus we have proved

the second assertion. Now suppose s ≥ t and we are given s + t∗. By definition of

addition, this is the endpoint of the vector sum s + t∗. Since s ≥ t, s is the longer

vector. Part (ii) of Theorem 2 therefore implies that the vector sum is right-pointing

and has length s − t. Thus the endpoint of s + t∗ is just s − t, which is the first

half of the third assertion in the theorem. Finally, suppose we consider s + t∗ with

s < t. This is the endpoint of the vector sum s + t∗. Since s < t this time around,

the longer vector is now t∗ and the vector sum is left-pointing and the length is t− s.
In other words, the endpoint of s+ t∗ is (t− s)∗. This proves the second half of the

third assertion in the theorem. The proof is complete.

Activity Compute (a) (37
9
)∗ + (2 5

12
)∗, (b) 9.21 + (3.3)∗, (c) (9

7
)∗ + 14

11
.

We conclude this sub-section with a comprehensive statement about the addition

of rational numbers. This will be useful for the discussion of multiplication in §4.

Theorem 4 The addition of rational numbers satisfies the following properties:

(A1) It is associative and commutative, and if x and y are fractions, then x + y

is the same as the usual addition of fractions.

(A2) x+ 0 = x for any rational number x.

(A3) If x is any rational number, then x+ x∗ = 0.

Proof (A2) and (A3) are immediate consequences of the definition of rational

number addition. Of the assertions in (A1), the comments given immediately below

the definition of the addition of rational numbers show that only the associative law

remains to be proved. Thus we have to prove:

(x+ y) + z = x+ (y+ z) for all rational numbers x, y, z (\)

If x, y, z are all positive, this is the associativity of fraction addition, and we already

know that. Suppose x, y, z are all negative. Then we appeal to the following useful

lemma, already used implicitly in the proof of Theorem 3.
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Lemma For all x, y ∈ Q, (x+ y)∗ = x∗ + y∗.

First let us see this Lemma is going to help with the proof of Theorem 4. For

negative x, y, z, the numbers x∗, y∗, z∗ are fractions and therefore

(x∗ + y∗) + z∗ = x∗ + (y∗ + z∗)

Then of course,

( (x∗ + y∗) + z∗)∗ = (x∗ + (y∗ + z∗) )∗

Now use the Lemma to conclude (x∗ + y∗)∗ + z = x+ (y∗ + z∗). Using the Lemma

once more, we get (x+ y) + z = x+ (y + z), which is (\).

Let us prove the Lemma. Clearly the vectors x + y and x∗ + y∗ are mirror

reflections of each other across 0, i.e., their endpoints x + y and x∗ + y∗ are mirror

reflections of each other. But this is exactly the statement the Lemma, so the proof

is complete.

Now we have to complete the proof of (\). Because of the commutativity of

addition, it remains to examine (\) in the following two cases.

Case 1. Exactly one of x, y, z is negative.

Case 2. Exactly two of x, y, z are negative.

Suppose we already know that (\) is true for Case 1. We now prove that Case

2 also follows. This is because, let us say x < 0, y < 0 and z > 0, then the three

numbers x∗, y∗ and z∗ satisfy Case 1 and therefore

(x∗ + y∗) + z∗ = x∗ + (y∗ + z∗)

As before, if we take the * of both sides and apply the Lemma, we get (x+ y) + z =

x+ (y + z), and (\) holds also for Case 2.

It remains to prove (\) for Case 1. Before we embark on the proof, let us test it

with some specific numbers. Let us show:

(17∗ + 5) + 9 = 17∗ + (5 + 9)
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Direct computations using Theorem 3 show that the left side is 12∗+9 = 3∗, whereas

the right side is 17∗ + 14 = 3∗. So they are equal. Can we see any reason behind

the computation? Yes, because if we use Theorem 2, then we see that (17∗ + 5)

is the endpoint of a vector that is left-pointing with length 17 − 5 = 12, so that

(17∗+ 5) + 9 is the endpoint of another vector which is still left-pointing but now has

length (17 − 5) − 9 = 17 − 5 − 9. As to the right side, (5 + 9) is straightforward as

it is the endpoint of a right-pointing vector with length 14, so that 17∗ + (5 + 9) is

the endpoint of a left-pointing vector of length 17− 14 = 17− (5 + 9) = 17− 5− 9.

So both sides are the endpoint of the same vector and must therefore be equal.

Let us try something else by proving

(17∗ + 5) + 15 = 17∗ + (5 + 15)

Again, direct computations using Theorem 3 show that both sides are equal to 3. We

can also look at each side in terms of vectors and make use of Theorem 2. As we have

seen, (17∗ + 5) is the endpoint of a left-pointing vector with length 17 − 5, so that

(17∗ + 5) + 15 is the endpoint of a right-pointing vector with length 15− (17− 5) =

15− 17 + 5. The right side 17∗ + (5 + 9) is the endpoint of a right-pointing vector

with length (5 + 15)− 17 = 5 + 15− 17. Once again, the two sides are equal.

We note that the proof for a different triple of numbers,

(17∗ + 25) + 15 = 17∗ + (25 + 15),

would be qualitatively different from the preceding ones because all the vector sums

associated with the additions — (17∗+25), (17∗+25)+15, (25+15), and 17∗+(25+

15) — are right-pointing. The absence of a uniform pattern therefore presages the

need of a case by case analysis in the general proof, and this turns out to be correct.

The following proof is long and tedious, and should be skipped on first reading.

We may assume x > 0, y > 0 but z < 0, as the other possibilities are similar.

Thus we must prove:

(x+ y) + z = x+ (y+ z) where x > 0, y > 0 but z < 0 (\\)

We will split this proof into yet another two cases. Let us denote the length of a

vector x by |x|.32 Then we have

32If this notation reminds you of absolute value (to be defined later in §6 of this chapter), rest
assured that it is intentional.
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Case A: |x+ y| ≥ |z|, and Case B: |x+ y| < |z|.

Case A. By Theorem 2, the left side of (\\) is a right-pointing vector of length

(|x|+ |y|)− |z|. The right side of (\\) is x+ (y + z). Assume that |y| ≥ |z|. Then by

Theorem 2, y + z is right-pointing of length |y| − |z| or 0. Therefore by part (i) of

Theorem 2, x+ (y + z) is right-pointing with length |x|+ (|y| − |z|), which is equal

to (|x|+ |y|)− |z| by the definition of subtraction, as the following picture shows:

|x|︷ ︸︸ ︷ |y|︷ ︸︸ ︷︸ ︷︷ ︸
|z|

So (\\) is proved for this situation. On the other hand, if instead we assume |y| < |z|,
then by Theorem 2 again, y+ z is left pointing of length |z| − |y|. We claim that x is

longer than y+ z. To prove the claim, recall that we are assuming |x+ y| ≥ |z|, i.e.,

|x|+ |y| > |z|. Therefore |x| > |z| − |y|, as the following picture shows (the thickened

segment has length |z| − |y|):

|x|︷ ︸︸ ︷ |y|︷ ︸︸ ︷︸ ︷︷ ︸
|z|

Thus x is longer than y + z, so that part (ii) of Theorem 2 shows x + (y + z) is

right-pointing and has length |x| − (|z| − |y|). From the definition of subtraction, the

preceding picture also shows |x| − (|z| − |y|) = (|x|+ |y|)− |z|, so (\\) is completely

proved for Case A..

Case B. We now assume |x + y| < |z|. The left side of (\\), which is (x + y) + z,

is now a left-pointing vector of length |z| − (|x|+ |y|). Now we look at the right side

x+(y+z). The inequality |x+y| < |z| implies in particular that |y| < |z|. Theorem 2

therefore implies that y+z is a left-pointing vector of length |z|−|y|. Now, using the

fact that |x+ y| < |z|, we have the following picture which shows that |x| < |z| − |y|.

|y|︷ ︸︸ ︷ |x|︷ ︸︸ ︷︸ ︷︷ ︸
|z|

The inequality |x| < |z| − |y| shows that the vector x + (y + z) is left-pointing

and its length is (|z| − |y|) − |x|) which, as the preceding picture shows, is equal to
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|z| − (|x|+ |y|). Thus x+ (y + z) is the same vector as (x+ y) + z, and the proof of

Case B, and therewith the proof of Theorem 4, is complete.

Exercises 2.2

1. Prove that or all x, y ∈ Q, if x+ y = x, then y = 0.

2. For each of the following numbers, explain as if to a seventh grader whether it is

positive or negative:

(681
2)∗ + 682

5 , (17
8)∗ + 2 1

10 , 16
7 + (21

4)∗, (1 3
10)∗ + 9

7 .

3. (87
89)∗ +

(
(104 10

117)∗ + ( 2
89)∗

)
+
(

10 + (105 10
117)∗

)∗
= ?

4. Explain as if to a seventh grader, directly and without making use of Theorem 3,

why (2.3)∗ + (12
5
)∗ = 3.7∗, and why (91

2
)∗ + 7.5 = 2∗.

5. Compute: (a) (46
7)∗ + 22

3 . (b) 7.1∗ + (221
3)∗. (c) (4 2

101)∗ + (2.5 + 3 99
101)∗.

(d) (703.2∗ + 689.4) + (1
5 + 32

3)
∗
. (e) (5

6 + (1 7
18)∗) + 5

24 .

6. Give a direct proof of the associative law of addition in the following two special

cases: (3+6.5∗)+2.5 = 3+(6.5∗+2.5), and (2.5∗+1.8∗)+3.7 = 2.5∗+(1.8∗+3.7).

7. For all x, y ∈ Q, if x+ y = 0, prove that y = x∗ and x = y∗.

3 Subtracting rational numbers

Subtraction as addition

The introduction of −x
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Subtraction as addition

The explicit formulas for the addition of rational numbers in Theorem 3 lead

to the following insight: the subtraction of fractions becomes addition in the larger

context of rational numbers, in the following sense. If s, t are fractions so that s ≥ t,

then s − t makes sense as ordinary fraction subtraction (see §3 of Chapter 1) while

s + t∗ also makes sense as the addition of two rational numbers; Theorem 3 affirms

that both give the same result. The fact that, although s− t up to this point has no

meaning when s < t, s+ t∗ makes sense for all s, t ∈ Q immediately suggests that we

could define in general the subtraction between any two rational numbers s and t to

be just s + t∗. Formally, for rational numbers x and y, we define the subtraction

x− y as

x− y def
= x+ y∗

We emphasize the idea, already mentioned several times, that this concept of

subtraction between rational numbers x − y coincides with the previous concept of

fraction subtraction when x and y are fractions. We build on what we know rather

than play a new game at every turn. Thus, a subtraction such as 6
5 −

1
4 has exactly

the same meaning whether we look at it as a subtraction between the two fractions
6
5 and 1

4 or between these fractions considered as rational numbers. On the other

hand, we are now free to do a subtraction between any two fractions such as 1
4 −

6
5

even when the first fraction is smaller than the second. We see for the first time the

advantage of having rational numbers available: we can as freely subtract any two

fractions as we add them. But this goes further, because we can even subtract not

just any two fractions, but any two rational numbers, e.g., 5.5∗ − 17∗.

This definition reveals that subtraction is just a different way of writing addition

among rational numbers. Hence any property about subtraction among rational num-

bers is ultimately one about addition.

In the rest of the section, we will explore a bit the ramifications of this concept

of subtraction. The overriding fact is that, without this general definition, we do not

have a good grasp of what subtraction is about. Beyond the oddity of not being able

to subtract a larger fraction from a smaller one, there is also the unpleasant observa-
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tion that “subtraction is not associative”, i.e., in general, (x− y)− z 6= x− (y − z)

for fractions x, y, z. For example, letting x = 4, y = 2, z = 1, the left side is 1 while

the right side is 3. We proceed to clarity this situation.

The introduction of −x

We start from the beginning. As a consequence of the definition of x− y, we have

0− y = y∗

because 0 − y = 0 + y∗ = y∗ (see (A2) of Theorem 4). Common sense dictates that

we should abbreviate 0− y to −y, so that we write from now on:

−y = y∗

At this point, we abandon the notation of y∗ and replace it by the more common −y.

We call −y minus y.

Let us go through a few expressions involving y∗ and see how, strictly according

to the definitions, we can smoothly transition to the new notation. This is of some

importance because we hope this is how you are going to teach your students and

impress on them that, in mathematics, everything proceeds according to reason and

nothing is done on account of somebody’s whims.

For any x ∈ Q, we have x+ (−y) = x+ y∗ = x− y, where the last equality is by

definition of x− y. Therefore

x+ (−y) = x− y for all x, y ∈ Q

Next we show

−x+ y = y − x for all x, y ∈ Q

This is because

y − x = y + x∗ (definition of subtraction)

= x∗ + y (commutativity of addition)

= −x+ y

For example, −2
3

+ 4 = 4 − 2
3
, both being equal to 10

3 as a simple application of

Theorem 3 shows.
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Letting y be −y in the preceding equality then gives the “commutativity of sub-

traction ”:

−x− y = −y − x for all x, y ∈ Q

Let us re-state two of our previous conclusions in the new notation. From x∗∗ = x

for any x ∈ Q, we get

−(−x) = x

(A3) of Theorem 4 now states that

(A3*) If x is any rational number, x+ (−x) = (−x) + x = 0.

The Lemma and Theorems 3 now read:

Lemma* For all x, y ∈ Q, −(x+ y) = −x− y.

(For Lemma*, observe that x∗+ y∗ = x∗− y, by the definition of subtraction, so

that x∗ + y∗ = −x− y.)

Theorem 3* For all fractions s and t,

s+ t = the ordinary sum of the fractions s and t

−s− t = − (s+ t)

s− t = − t+ s =

{
(s− t) if s ≥ t

− (t− s) if s < t

Observation: We now see that Lemma*, in the form of

−(x+ y) = −x− y

for all rational numbers x and y, is a statement about “removing parentheses”. We

can go a step further: for all rational numbers x and y,

−(x− y) = −x+ y and − (−x+ y) = x− y

We leave these as exercises.
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We pursue the theme that subtraction is another way of writing addition among

rational numbers and bring closure to a remark we made at the end of §3 in Chapter

1 about the subtraction of fractions. We now show that for any rational numbers a,

b, x, y,

(a+ b)− (x+ y) = (a− x) + (b− y)

This is because

(a+ b)− (x+ y) = a+ b+ (x+ y)∗ = a+ b+ x∗ + y∗

where the first equality is by the definition of subtraction and the second equality

is on account of the Lemma. Thus (a + b) − (x + y) = (a + x∗) + (b + y∗), by

Theorem 1 of the Appendix in Chapter 1. By the definition of subtraction again, we

get (a+ b)− (x+ y) = (a− x) + (b− y).

It is clear from this reasoning that there is a similar assertion if a+ b is replaced

by a sum of k rational numbers for any positive integer k and the same is done to

x+ y. The details are left as an exercise.

Finally we take up the issue of why, on the basis of the associative law of addition,

(x− y)− z 6= x− (y − z) . We have:

(x− y)− z = (x+ y∗) + z∗ (definition of subtraction)

= x+ (y∗ + z∗) (associativity)

= x+ (y + z)∗ (Theorem 1)

= x− (y + z) (definition of subtraction)

Therefore

(x− y)− z = x− (y + z)

and this is why (x− y)− z 6= x− (y − z).

Exercises 2.3

1. Without using Theorem 3 or Theorem 3*, and using only Theorem 2, explain as

if to a seventh grader why 4
3 − 21

5 = − 13
15 .
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2. Prove that for all rational numbers x and y, we have −(x − y) = −x + y and

−(−x+ y) = x− y. Give the reason at each step.

3. Explain carefully why each of the following is true for all rational numbers x, y, z:

(a) (x+y)−z = x+(y−z). (b) (x−y)−z = (x−z)−y. (c) x−(y−z) = (x−y)+z.

4. (a) Explain as if to seventh graders why −7584 1
279 = −7584 − 1

279 . (b) Explain

as if to seventh graders in two different ways why −7584 1
279 < −7584. (c) Explain

as if to seventh graders why it is not a good idea to do (a) or (b) by converting the

mixed number to a fraction first.

5. Compute and explain every step: −97654 1
123 −

(
122

123×124 − 97644 1
124

)
.

6. Compute: (a) (−52
5)− (−6). (b) (− 7

12)− (−12
21). (c) 51

2 − (27
5 − 513

15).

7. (a) Let a, b, . . . , z, w be rational numbers. Give a detailed proof of

(a+ b+ c+ d)− (x+ y + z + w) = (a− x) + (b− y) + (c− z) + (d− w)

by justifying every step. (b) Can you extend (a) from a pair of 4 rational numbers

to a pair of n rational numbers for any positive integer n? For notation, try

(a1 + a2 + · · ·+ an)− (x1 + x2 + · · ·+ xn) = (a1 − x1) + (a2 − x2) + · · ·+ (an − xn).

4 Multiplying rational numbers

Assumptions on multiplication

The equality (−m)(−n) = mn for whole numbers

Multiplication of rational numbers in general

Miscellaneous remarks
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Assumptions on multiplication

We now take up the multiplication of rational numbers. If we imitate what we did

with addition by giving a general definition of the product of two rational numbers

and then show that the definition yields the same product as in §4 of Chapter 1 in case

the rational numbers are fractions, then we will discover that the definition consists

of the following four rules: for all fractions s and t,

st = same product st as before

(−s)t = −(st)

s(−t) = −(st)

(−s)(−t) = st

This was pretty much what Diophantus33 did when he first introduced negative num-

bers. One can infer from his writing why he defined multiplication this way, and we

could very well just follow Diophantus’ brute force method and say, “There it is.”

However, it may be more enlightening to try to retrace Diophantus’ steps in order to

see for ourselves why things are the way they are. In other words, imagine that we

have gotten used to working with positive numbers and we are suddenly confronted

with the need to deal with negative numbers (which was pretty much what Diophan-

tus had to face). For example, if we try to write down a solution to x+ 7 = 1, then

we would have a negative number staring us in the face and we would have to compute

with them, willy nilly (see the discussion at the beginning of §2). In particular, we

have to learn to multiply such numbers, and we do so without doing violence to the

existing rules of arithmetic. Of course we’d take for granted that there is a way to

multiply them; that is not in doubt! Moreover,to judge by the usual way of computing

with positive numbers, we expect that multiplication will continue to be associative,

commutative, and distributive, and that when a negative number is multiplied by 1 it

doesn’t change. If we are going to hold onto these beliefs, then we will be forced to

multiply rational numbers in the way described above. What we are going to do now

33A Greek mathematician who lived in Alexandria, Egypt, probably around 250 AD. Incidentally,
the female mathematician Hypatia (c. 355-415 AD) also spent her life in Alexandria; her murder,
engineered by St. Cyril of Alexandria, brought to a close the classical period of Greek mathematics.
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is give the details of why this is so.

Let us then be clear about what we are going to take for granted for the rest of

this section. We will summarize it in the form of the following two fundamental

assumptions on multiplication:

(M1) Given any two rational numbers x and y, there is a way to multiply

them to get another rational number xy so that, if x and y are fractions,

xy is the usual product of fractions. Furthermore, this multiplication of

rational numbers satisfies the associative, commutative, and distributive

laws.

(M2) If x is any rational number, then 1 · x = x.

We note that (M2) says, in particular, that 1 × (−5.4) = −5.4, and this fact is

certainly new.

Now assumptions (M1) and (M2) remind us of (A1) and (A2) in Theorem 4 of §2,

with 1 playing the role in multiplication what 0 does in addition. There is no analog

of (A3) at the moment because the counterpart of x∗ in addition is the number x−1

in multiplication, and the latter will not be defined until §5.

On the basis of (M1) and (M2), we are going to learn how rational numbers must

be multiplied. There is an “obvious” fact that we can dispose of right away.

Lemma 1 0 · x = 0 for any x ∈ Q.

Proof We know from the definition of addition that 0 + 0 = 0. Take an x ∈ Q,

then 0 ·x = (0 + 0) ·x = 0 ·x+ 0 ·x, by the distributive law. Thus 0 ·x = 0 ·x+ 0 ·x,

so that

0 · x− 0 · x = (0 · x+ 0 · x)− 0 · x.

Of course the left side is equal to 0. The right side is (0 · x+ 0 · x) + (0 · x)∗ so that,

by the associative law, it becomes

0 · x+ (0 · x+ (0 · x)∗) = 0 · x+ 0 = 0 · x
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Altogether, we get 0 = 0 · x, and Lemma 1 is proved.

The equality (−m)(−n) = mn for whole numbers

Once we have introduced multiplication among rational numbers, our first task

is to find out how multiplication is related to the existing operations, in particular,

addition and the mirror reflection ∗. As always, the relationship between addition

and multiplication is codified by the distributive law, which we must point out is part

of the assumption in (M1). As to the operation ∗, we can ask whether the order of

applying multiplication and ∗ is interchangeable. In other words, given two rational

numbers x and y, if we get their mirror reflections first and then multiply (thus

x∗y∗), how is it related to the number obtained by multiplying them first and then

getting its mirror reflection (thus (xy)∗). If multiplication is replaced by addition,

the order is interchangeable; see the Lemma of §2. In the case of multiplication,

however, the order matters. In fact, x∗y∗ 6= (xy)∗, or in the notation of the minus

sign, (−x)(−y) 6= −(xy). As is well-known, the correct answer is

(−x)(−y) = xy for all rational numbers x and y.

This surprising fact, the bane of many middle school students, can be given a very

short proof. We will present this proof at the end of the next sub-section. For the

middle school classroom, such a proof is too sophisticated to be given at the outset

(or maybe never in school mathematics). Instead we will give a more leisurely proof

by first taking a detour through the more familiar terrain of the integers to see why

(−m)(−n) = mn for all whole numbers m and n. There is a reason for singling out

the whole numbers. It is not only easier to learn (it is that for sure!), but it is also

far easier to teach, as we shall see presently. If you can get all your kids to believe,

for example, that (−1234)(−5678) = 1234× 5678, then you are already ahead of the

game.

We begin with the simplest special case of this assertion: the case of x = y = 1.

This will turn out to be the critical case.

Theorem 1 (−1)(−1) = 1.
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Proof Let x denote (−1)(−1). Our goal is to show x = 1. We should ask

ourselves: if we have a number x, how can we tell if it is 1 or not? One way is to try

to see if (−1)+x = 0. If it is, then x is the right-pointing vector of length 1 (because

it must go from −1 back to 0), and therefore x = 1.34

0(−1) 1
-

With this in mind, we now compute:

(−1) + x = 1 · (−1) + (−1)(−1) (by (M2) and the definition of x)

= (1 + (−1)) · (−1) (distributive law)

= 0 · (−1)

= 0 (Lemma 1)

So we know x = 1, i.e., (−1)(−1) = 1. The proof is complete.

We can rephrase this proof to give it a more algebraic flavor; this reformulation

will turn out to be more in line with the proof in general that (−x)(−y) = xy for all

x, y ∈ Q. It goes as follows:

We have (−1) + 1 = 0 (review (A3) of Theorem 4 in §2 if necessary). Multiply

each side by (−1) and apply the distributive law to get

(−1)(−1) + 1 · (−1) = 0 · (−1)

By Lemma 1, the right side is 0. As to the left side, by (M2), it is equal to (−1)(−1)+

(−1). Therefore,

(−1)(−1) + (−1) = 0

Adding 1 to both sides and using the associative law of addition, we get:

(−1)(−1) + ((−1) + 1) = 0 + 1

Now the left side is (−1)(−1) and the right side is 1. Theorem 1 is proved.

34This is entirely similar to what one does in chemistry: to see whether a solution is acidic or not,
dip a piece of litmus paper (ph test strip) into the solution and see if it turns red.
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Activity Practice explaining as if to a seventh grader why (−1)(−1) = 1 by

using your neighbor as a stand-in for the seventh grader. (Theorem 1 is so basic to

understanding rational number multiplication that this Activity is strongly recom-

mended.)

We can now give the proof that (−m)(−n) = mn for all whole numbers m and

n. Let us first do a special case: why is (−2)(−3) = 6? This is because

(−2)(−3) = {(−1) + (−1)} · {(−1) + (−1) + (−1)} (Theorem 3* of §3)

= (−1)(−1) + · · ·+ (−1)(−1)︸ ︷︷ ︸
6

(distributive law)

= 1 + · · ·+ 1︸ ︷︷ ︸
6

(Theorem 1)

= 6

In the same manner, we can show even fifth graders why (−3)(−4) = 12, (−5)(−2) =

10, etc. A teacher can probably win the psychological battle over students’ disbe-

lief of the “(negative)×(negative) = positive” phenomenon by these very concrete

computations.

The general proof of (−m)(−n) = mn is essentially the same. So let m, n be

whole numbers. We first prove that

(−1)(−m) = m

This is because

(−1)(−m) = (−1){(−1) + · · ·+ (−1)︸ ︷︷ ︸
m

} (Theorem 3* of §3)

= (−1)(−1) + · · ·+ (−1)(−1)︸ ︷︷ ︸
m

(distributive law)

= 1 + · · ·+ 1︸ ︷︷ ︸
m

(Theorem 1)

= m

137



Hence, we have:

(−n)(−m) = ((−1) + · · ·+ (−1)︸ ︷︷ ︸
n

)(−m) (Theorem 3* of §3)

= (−1)(−m) + · · ·+ (−1)(−m)︸ ︷︷ ︸
n

(distributive law)

= m+ · · ·+m︸ ︷︷ ︸
n

= nm = mn

Multiplication of rational numbers in general

Our goal is to find out explicitly how to multiply rational numbers. As noted,

since a nonzero rational number is either a fraction or a negative fraction, it is a

matter of finding out the values of the following four products where s and t are

nonzero fractions:

st, (−s)t, s(−t), and (−s)(−t).

In the last sub-section, we already got a taste of what to expect if s and t are whole

numbers. Therefore we can afford to directly attack a more general problem, that of

determining the values of

xy, (−x)y, x(−y), and (−x)(−y),.

where x and y are arbitrary rational numbers. We first prove the following general-

ization of Theorem 1.

Theorem 2 For any rational number x, the number (−1)x is the mirror reflec-

tion of x. In symbols: (−1)x = −x.

Proof The number −x is the point on the opposite side of 0 from x so that x and

−x are equi-distant from 0. Therefore this is the picture we want to be true when x

is positive:

0(−1)x x
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and this is the picture we want to be true when x is negative:

0x (−1)x

Now think of the sum x+ (−1)x in terms of vectors (see §2). If we can show that

x+ (−1)x = 0

then the vectors x and (−1)x must have opposite direction and equal length. Conse-

quently, (−1)x will have to be equal to −x. Let us therefore prove that x+ (−1)x is

equal to 0. We use the distributive law:

x+ (−1)x
(M2)
= 1 · x+ (−1)x = {1 + (−1)}x

But 1 + (−1) = 0. Therefore,

x+ (−1)x = {1 + (−1)}x = 0 · x = 0

where the last equality is due to Lemma 1. Theorem 2 is proved.

Remark The most critical step of the preceding proof of Theorem 2 is to convert

x + (−1)x to {1 + (−1)}x so that we get to 0 · x = 0. This is the distributive

law at work. Refer back to Diophantus’ initial confrontation with negative numbers

some eighteen centuries ago (see the beginning of this section), we can imagine him

pondering over the product (−7)5 and wondered what it should be. He realized that

(−7)5+7 ·5 = ((−7)+7)5 because the distributive law35 “must” hold. Consequently

(−7)5 + 7 · 5 = ((−7) + 7)5 = 0 · 5 = 0, so naturally he would guess (−7)5 = −(7 · 5).

Since there is nothing special about the numbers 7 and 5, he would also guess that

(−x)y must be equal to −(xy) for any numbers x and y. It is in this sense that the

distributive law “forces” the rule that (−x)y = −(xy). We can pursue this argument

to see how the other rules of Diophantus must also follow from the assumed validity

of commutativity, associativity and distributivity. You will see these arguments below.

35The explicit recognition of this concept of distributivity came only in the twelfth century, but
Diophantus would have taken it for granted.
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We are now ready for the general statements about rational number multiplication.

Theorem 3 For all rational numbers x and y,

(−x)y = x(−y) = −(xy)

(−x)(−y) = xy

Proof We first prove (−x)y = x(−y) = −(xy). If we read the equality

of Theorem 2 backward, we get −x = (−1)x. Therefore (−x)y = ((−1)x) y =

(−1) (xy), by the associative law of multiplication. Now we apply Theorem 2 again

in the same way, but this time to the rational number (xy). Then we get (−1)(xy) =

−(xy). Hence

(−x)y = (−1)(xy) = −(xy)

The proof of x(−y) = −(xy) is similar (or we can apply the commutative law twice

to what we have just proved: x(−y) = (−y)x = −(yx) = −(xy)).

Next, we prove (−x)(−y) = xy. Theorem 2 gives (−x)(−y) = (−1)x · (−1)y.

By the commutative law of multiplication (see Theorem 2 in the Appendix of Chapter

1), we have:

(−1)x · (−1)y = (−1)(−1)(xy)

So the Corollary to Theorem 2 says (−1)(−1)(xy) = 1 · (xy) = xy. Theorem 3 is

proved.

Finally, by letting x and y be fractions in Theorem 3, and taking into account of

(M1), we recover the rules of Diophantus:

Corollary For all fractions s and t,

st = the ordinary product of the fractions s and t

(−s)t = −(st)

s(−t) = −(st)

(−s)(−t) = st

Looking ahead to algebra, this Corollary is the reason that, for a number x, an

expression such as −3x is completely unambiguous. Indeed, this expression can be
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interpreted as either −(3x) or (−3)x, but the Corollary says that both numbers are

equal.

From the Corollary, we deduce the following well-known rules:

positive × positive = positive

positive × negative = negative

negative × negative = positive

In particular, we know that

x2 ≥ 0 for any x ∈ Q

regardless of whether it is 0 or positive or negative. By FASM, we have

x2 ≥ 0 for any number x

It remains to bring closure to this discussion of multiplication by delivering on a

promise made at the beginning of the last sub-section, to the effect that there is a

short and self-contained proof of Theorem 3.

We first prove (−x)y = −(xy), where x, y ∈ Q. It suffices to prove that (−x)y+

xy = 0 (compare problem 7 in Exercises 2.2). This is so because by the distributive

law,

(−x)y + xy = ((−x) + x) y = 0 · y = 0

Next we prove (−x)(−y) = xy. Again, it suffices to prove that (−x)(−y)+(−(xy)) =

0, because this equality implies that (−x)(−y) is equal to −(−(xy)), which is xy.

Now

(−x)(−y) + (−(xy)) = (−x)(−y) + ((−x) y) (because −(xy) = (−x)y)

= (−x) ((−y) + y) (distributive law)

= (−x) · 0 = 0

The proof of Theorem 3 is complete.
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Miscellaneous remarks

We conclude this section with three remarks. First, there is a simple consequence

of Theorem 3 which is an explicit algorithm for the multiplication of rational numbers:

if m
n and k

` are fractions, then:

m

n
×− k

`
= − mk

n`

− m
n
× k

`
= − mk

n`

− m
n
×− k

`
=

mk

n`

In the next section, we will see that these formulas remain valid even when m, n, k,

` are rational numbers (rather than just whole numbers).

Second, Theorem 2 gives us another way to think of how to remove parentheses,

to the effect that −(x + y) = −x − y for all x, y ∈ Q (see Lemma* of §3). This

is because −(x + y) = (−1)(x + y), by Theorem 2. Applying the distributive law,

we get −(x+y) = (−1)x+(−1)y = −x−y, and the last step is by Theorem 2 again.

Third, we use Theorem 3 to tie up a loose end by proving the following form of

the distributive law for subtraction, which is commonly taken for granted:

x(y − z) = xy − xz for all x, y, z ∈ Q

Indeed, by using the ordinary distributive law, we have: x(y − z) = x(y + z∗) =

xy + xz∗ = xy + x(−z). But xy + x(−z) = xy + (−xz), by Theorem 3, so

x(y − z) = xy + (−xz). As noted in §3, we have xy + (−xz) = xy − xz, so

the distributive law is completely proved.

It remains to supplement the second remark by pointing out that, for school stu-

dents, it is undoubtedly easier to think of −(x+y) = −x−y in terms of multiplication

by −1 and the distributive law. Nevertheless, it is good to keep in mind that this

equality is not about either, because it is an elementary statement about addition
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only and not about the far more subtle concept of rational number multiplication. So

don’t lose sight of the original proof of the Lemma in §2.

Exercises 2.4

1. Show that Theorem 1 follows from Theorem 2.

2. Compute, and justify each step: (a) (−4)(−11
2 + 1

4). (b) 165− 560(3
4 −

8
7).

(c) (−3
2)(0.64−4

3). (d) (202
9 × (− 5

17)) + (32
9 ×

5
17).

3. Write out a direct explanation, in language as simple as possible, for a seventh

grader of why (−3)(−4) = 3× 4.

4. Give as simple a proof as you can, without using Theorem 3, that, for all whole

numbers m and n, (−m)n = −(mn).

5. Use Theorem 3 to prove the other two rules of “removing parentheses”:

−(x− y) = −x+ y and − (−x+ y) = x− y

for all rational numbers x and y. (To give proper perspective to this problem, see the

concluding remark of this section.)

6. Consider each of the following two statements about any rational number x:

(a) 3x < x.

(b) 1
10x > x.

If it is always true or always false, prove. If it is sometimes true and sometimes false,

give examples to explain why.

7. The following is a standard argument in textbooks to show, for example, that

(−2)(−3) = 6:
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Consider the sequence of products

· · · · · · 4× (−3) = −12, 3× (−3) = −9, 2× (−3) = −6,

1× (−3) = −3, 0× (−3) = 0, (−1)(−3) = a, (−2)(−3) = b,

(−3)(−3) = c, (−4)(−3) = d, · · · · · ·

Observe the pattern that, for m×(−3) as m decreases to 0, each product

increases by 3. To continue this pattern beyond 0, one should assign

3 to a, 6 to b, 9 to c, 12 to d, and so on, because (−1)(−3) = 0 +
3 = 3, (−2)(−3) = 3+3 = 6, (−3)(−3) = 6+3 = 9, (−4)(−3) = 9+3 =
12.

Is this a valid argument? What are the implicit assumptions used? Write a critique.

(Hint: If you write down precisely what this so-called pattern says, it would be the

statement that (n− 1)(−3) = n(−3) + 3 for any positive integer n.)

8. (a) I have a rational number x so that 5− (2x− 1) = (1 − 8
3x). What is this x?

(b) Same question for (2− 3x)− (x+ 1) = 5
3x + 1

2 .

9. [For this problem, we extend the definition in §2 of Chapter 1 by defining, for any

rational number y and any fraction m
n

, the meaning of m
n

of y to be m
n
× y.] (a) A

rational number y has the property that 3
4 of −y exceeds y itself by 49. What is this

y? (b) A number t has the property that twice t exceeds t2 by 4
7 of t. Find t.

5 Dividing rational numbers

Definition of division

Rational number as division of integers

Rational quotients

Definition of division

The concept of the division of rational numbers is the same as that of dividing

whole numbers or dividing fractions. See the first sub-section in §5 of Chapter 1.
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We begin such a discussion with the proof of a theorem that is the counterpart of

Theorem 1 in §5 of Chapter 1.

Theorem 1 Given rational numbers x and y, with y 6= 0, there is a unique (i.e.,

one and only one) rational number z such that x = zy.

For example, making use of the Corollary to Theorem 3 of §4, we have that if

x = −1
3

and y = 2
5
, then z = −(1

3
× 5

2
). Similarly, if x = 7

5
and y = −2

3
, then

z = −(7
5
× 3

2
), or if x = − 7

5
and y = −2

3
, then z = 7

5
× 3

2
. Note that, except for the

negative sign, the z in all cases is obtained by invert-and-multiply.

We will reduce the proof of Theorem 1 to the special case where x = 1. Precisely,

we first prove:

Theorem 1′ Given any nonzero rational number y, there is a unique (i.e., one

and only one) rational number z such that zy = yz = 1.

Proof of Theorem 1′ First assume y > 0. Then y is a fraction and the existence

and uniqueness of such a z is already known (see Theorem 1 of §5 in Chapter 1). If

y < 0, then y = − m
n for some fraction m

n . Then by Theorem 3 of the preceding

section, the rational number z = − n
m satisfies zy = yz = 1. If there another rational

number Z so that Zy = yZ = 1, then

Z = Z · 1 = Z · y(− n
m

) = (Zy)(− n
m

) = − n
m

= z

So z = − n
m is the only number with the requisite property. The proof of Theorem

1′ is complete.

Now we give the proof of Theorem 1 itself. With x and y given, then clearly

x = x · 1 = x(y−1y) = (xy−1)y. So if z = xy−1, then x = zy. If there is another

rational number Z such that x = Zy, then multiplying both sides of this equation by

y−1 yields xy−1 = (Zy)y−1 = Z(yy−1) = Z · 1 = Z, and so necessarily Z = xy−1.

Thus any such Z has to be xy−1, and the proof of Theorem 1 is complete.
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The number z in Theorem 1′ so that zy = yz = 1 is called the multiplicative

inverse of y (as in §5 of Chapter 1) and is denoted by y−1 (again as in §5 of Chapter

1). Using the concept of a multiplicative inverse, we can now prove something that

is usually taken for granted.

Corollary 1 If x, y are rational numbers and xy = 0 but x 6= 0, then y = 0.

Proof Indeed, since xy = 0, we have x−1xy = x−1 · 0. The left side is 1 · y
while the right side is 0. Therefore y = 0. Corollary 1 is proved.

The fact implied by Corollary 1, that xy = 0 implies x = 0 or y = 0, is important

in the solution of equations in algebra, so this fact should be carefully pointed out to

students before they take up algebra.

Corollary 2 For any nonzero rational number y, (−y)−1 = −(y−1).

Proof This can be verified separately for the case where y is positive and then

for the case that y is negative y’s (see Exercises 2.5 below), but it is also valuable to

learn an abstract proof. Indeed, from 1 = y−1y, we get 1 = (−(y−1))(−y) (by Theo-

rem 3 of §4). Comparing the latter with 1 = ((−y)−1)(−y) and using the uniqueness

of the multiplicative inverse of −y in Theorem 1′, we get (−y)−1 = −(y−1), as claimed.

We normally omit the parentheses around y−1 in −(y−1) and simply write − y−1,
and we can do this because Corollary 2 guarantees that there is no possibility of

confusion.

Thus (−2
7
)−1 = − 7

2
, and (−21

7
)−1 = − 7

15
. In general (cf. problem 1 in Exercises

2.5 below), if m
n is any fraction, (

− m
n

)−1
= − n

m

What does the preceding theorem really say? It says that if we have a nonzero

rational number y, then any rational number x can be expressed as a rational mul-

tiple of y, in the sense that x = zy for a unique rational number z; in fact, z = xy−1.

Thus with y fixed, every rational number x determines a unique rational number
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z = xy−1 so that x = zy. This existence and uniqueness of such a number z makes

the following definition well-defined.

Definition Given rational numbers x, y, with y 6= 0, the division of x by y, in

symbols,
x
y

, is the unique rational number z so that

x = zy

The number x
y (= z) is also called the quotient of x by y. Theorem 1 implies

that this quotient z is given by z = xy−1. Thus we have

x

y
= xy−1

Thus “x divided by y” is the same as “x multiplied by the multiplicative inverse of

y”. It is in this sense that, among rational numbers, division is just multiplication,

in the same way that subtraction is just addition (see §3).

We note that, as a special case, for any nonzero rational number y,

1

y
= y−1

Rational number as division of integers

We can now clear up a standard confusion in the study of rational numbers. One

routinely finds in school textbooks, for instance, the equalities

3

−7
=
−3

7
= − 3

7
,

and they are used with nary a comment or an explanation. For example, what

does something like 3
−7 mean and why are the equalities true? We now supply the

explanation. Because −3, −7, etc. are rational numbers, it makes sense to interpret

a symbol such as 3
−7 as a division of rational numbers. It then follows from the

definition that
3

−7
= 3× (−7)−1 = 3× (− 1

7
) = − 3

7
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where we have made use of Corollary 2 above to get (−7)−1 = −1
7

and Theorem 3 of

§4 in the last step. In a similar fashion, we have −3
7

= − 3
7
. More generally, the same

reasoning supports the assertion that if k and ` are whole numbers and ` 6= 0, then

−k
`

=
k

−`
= − k

`

and
−k
−`

=
k

`
.

We may also summarize these two formulas in the following statement:

Lemma For any two integers a and b, with b 6= 0,

−a
b

=
a

−b
= − a

b
.

This lemma will be seen to be a special case of basic facts about so-called ra-

tional quotients, to be introduced in the next sub-section, but in terms of everyday

computations with rational numbers, it is well-nigh indispensable. In particular, the

Lemma implies that every rational number can be written as a quotient of two inte-

gers. Because of the conceptual significance of this conclusion, we single it out in the

following theorem.

Theorem 2 Every rational number can be written as a quotient of two integers.

In addition, the quotient can be chosen so that the denominator is a whole number.

This theorem gives an alternate view of a rational number. In advanced mathe-

matics, rational numbers are usually defined as quotients of integers.

Theorem 2 implies that, for instance, the rational number − 9
7

is equal to −9
7

or 9
−7 , and the former is the preferred choice. This is because we know y−1 = 1

y , so

that
−9

7
= −9× 1

7
=

1

7
× (−9)

whereas
9

−7
= 9× 1

−7
=

1

−7
× 9
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and it is much easier to think of 1
7 of −9 than 1

−7 of 9 (we have had lots of practice

dividing a segment into 7 equal parts, but none dividing a segment into “−7” equal

parts, whatever that means).

Rational quotients

Just as the division of fractions led to the concept of complex fractions, the di-

vision of rational numbers leads to a similar concept which, for lack of a name, will

be simply referred to as rational quotients. We now list the analogs of the basic

properties (a)–(e) of complex fractions. Let x, y, z, w, . . . be rational numbers so

that they are nonzero where appropriate in the following. Then x
y is an example of

a rational quotient; x will be called its numerator, and y its denominator.

(a) Generalized cancellation law:
x
y

=
zx
zy

for any nonzero z ∈ Q.

(b)
x
y

= z
w

if and only if xw = yz.

(c)
x
y
± z

w
= xw±yz

yw
.

(d)
x
y
× z

w
= xz

yw
.

(e) Distributive law
x
y

(
z
w
± u

v

)
=
(
x
y
× z

w

)
±
(
x
y
× u

v

)
.

Compared with the corresponding assertions for complex frac-

tions in §6 of Chapter 1, it will be noticed that in (b), the analog

of the inequality version of the cross-multiplication algorithm is

missing. Indeed, the presence of negative numbers adds com-

plexity to the comparison of rational numbers. This issue needs

extra care and will be left as an exercise.

An immediate consequence of (a) and (d) is the cancellation rule among ratio-

nal numbers:
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(f)
x
y
× z

x
= z

y
.

For example, (f) justifies the cancellation −3
17
× 5
−3 = 5

17
.

As in §6 of Chapter 1, we will avoid proving (a)–(e) by the mechanical procedure

of writing out each rational number as a quotient of two integers for the routine

computation, but will instead make use of the uniqueness assertion of Theorem 1.

To prove (a), for example, let A = x
y
, B = zx

zy
, and we will prove that A = B. By

the definition of division of rational numbers, we have x = Ay and zx = B(zy).

But the first equality implies zx = z(Ay) which is of course equal to zx = A(zy).

Now compare the latter with zx = B(zy). Theorem 1 says there is only one way to

express zx as a rational multiple of zy, so that we must have A = B.

We explicitly caution against incorrect reasoning at this stage in

the passages from

A =
x

y
to x = Ay,

and from

B =
zx

zy
to zx = Bzy.

It is tempting to think that each is the result of an appropriate

cancellation. For example, it would appear that by multiplying

both sides of A = x
y by y, one gets Ay = x

y × y, so that by

simplifying the right side, one arrives at Ay = x. However,

unless we already know that (a) and (c) are true, we do not get
x
y ×y = x “by cancellation” (cf. (f) above). But we are, at this

stage, still trying to prove (a), so we are in no position to do

any kind of cancellation as yet. Rather, the equality x = Ay is

the result of the definition of the division of x by y. Similarly,

one obtains zx = Bzy from B = zx
zy by virtue of the definition

of dividing zx by zy.

We repeat, there is no “cancellation” in the preceding proof of

(a). But of course, once we have proved (a)–(f), we can cancel

as much as we want.
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To prove (d), let A = x
y
, B = z

w
, and C = xz

yw
. We want to show AB = C. Again,

by the definition of division, we get, respectively,

Ay = x

Bw = z

C(yw) = xz

Multiplying the first and second equalities together, we get AB(yw) = xz. Comparing

the latter with the third equality, we get AB = C by appealing to the uniqueness

part of Theorem 1 on how to express xz as a rational multiple of yw.

The proofs of (b) and (c) are similar and will be left as an exercise, and (e) re-

quires no proof as it is just the ordinary distributive law expressed in terms of rational

quotients.

These formulas may seem unnecessarily abstract, but they have interesting, prac-

tical consequences. For example, let x, y, . . . be rational numbers as before. Then(
x

y

)−1
=
y

x

This is because, by (d) and (a), y
x
× x

y
= 1. Also, we have the general form of

invert and multiply:
x
y
z
w

=
x

y
× w

z

This is because, by the definition of division, the left side is x
y

(
z
w

)−1
, and because(

z
w

)−1
= w

z .

In school textbooks, the following kind of invert-and-multiply on rational quotients

is routinely performed:
−3
5
2.4
−7

=
(−3)(−7)

5× 2.4

At the same time, students are only told to invert and multiply ordinary fractions

(see §5 of Chapter 1). The cumulative effect of these gaps between what we expect

students to know and what we actually teach them cannot help but inspire distrust.

Students will second-guess everything they are taught, and “improve” on theorems
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they know as they go along. Under these circumstances, precise definitions and precise

theorems go out the window. Such a climate is not conducive to good mathematics

education.

Be sure to point out to your students that there is substantive mathematics rea-

soning (encoded in the Lemma, Theorem 2, and the rules (a) and (d) for rational

quotients) behind the seemingly simple general invert-and-multiply rule.

Exercise 2.5

1. Give a direct proof of (−x)−1 = − (x−1) by considering the two cases separately:

(i) x is a fraction and (ii) x is a negative fraction.

2. Write down an explanation you would give to an seventh grader that − 4
5 = 4

−5 .

Expect this seventh grader to be hazy about all these symbols to begin with.

3. Explain as if to a seventh grader why 3/ 4
−5 = −15

4 . Assume only a knowledge of

the multiplication of rational numbers, and explain what division means.

4. (a) Prove that, for rational numbers x, y, z, w (yw 6= 0), x
y = z

w if and only if

xw = yz. (b) Give a proof of x
y + w

z = xz+wy
yz for rational numbers x, y, z, w

(yw 6= 0), by making use of the uniqueness assertion of Theorem 1. (See the above

proofs of (a) and (c).)

5. Let x, y, z be rational numbers so that z = x
y . Explain as if to a seventh grader

why (a) if x and y are both positive or both negative, z is positive, and (b) if one

of x and y is positive and the other negative, then z is negative.

6. Compute and simplify: (a) (−39
8 × 9

11) + ( 39
−8 ×

−5
33 ). (b) 7

1.2 + 5
−1.8 . (c) −61

4

− 27
8 (2

3 −
8
9). (d) (−4.79)× 0.25− (−0.5)(1.87). (e) 9

−3 1
2

+ 26.7
10.5 .

7. (a) Find a rational number x so that 4− 5
7x = −3x+ 23

4 . (b) Show that if A, B,
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C, and D are rational numbers, and A−C 6= 0, then there is a rational number x so

that Ax+B = Cx+D.

8. (a) Let x be a nonzero rational number. Explain why x
0 cannot be defined. (Hint:

Look carefully at the definition of a division x
y and see where the reasoning begins

to break down if y = 0.) (b) Explain why 0
0 cannot be defined. (Caution: This

requires more care.)

6 Comparing rational numbers

The basic inequalities

Absolute value

Two useful inequalities

The basic inequalities

Recall the definition of x < y between two rational numbers x and y (see §1):

it means x is to the left of y on the number line.

x y

We also write y > x for x < y. A related symbol is x ≤ y (or, y ≥ x), which

means x < y or x = y.

In this section, we will take a serious look at the comparison of rational numbers

and prove several basic inequalities that are useful in school mathematics. In general,

we use the symbol “<” exclusively, but you should be aware that every one of these

inequalities has an analogous statement about “≤”.

We take note of three simple properties of the inequality between numbers. The

first two are the following:
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If x ≤ y and y ≤ x, then x = y.

If x ≤ y and y ≤ z, then x ≤ z.

The third property deserves to be singled out because it plays a critical role in

many proofs. Given any two numbers x and y, then either they are the same point,

or if they are distinct, one is to the left of the other, i.e., x is to the left of y, or y is to

the left of x. These three possibilities are obviously mutually exclusive. In symbols,

this becomes:

Trichotomy law Given two numbers x and y, then one and only one of

the three possibilities holds: x = y, or x < y, or x > y.

The way this law comes up in proofs is typically the following. Suppose we try to

prove that two numbers x and y are equal. Sometimes it is impossible or difficult to

directly prove x = y. But by the trichotomy law, if we can eliminate x < y and

x > y, then the fact that x = y will follow.

The basic inequalities we are after are labeled (A) to (G) below. (Recall that

“⇐⇒” stands for “is equivalent to”.)

(A) For any x, y ∈ Q, x < y ⇐⇒ −x > −y.

For example, 2 < 3 ⇐⇒ −3 < −2.

If x < 0 < y, then −x > 0 while −y < 0 and there is nothing to prove. Therefore

we need only to attend to the cases where x and y have the same sign, i.e., are

both positive or both negative. If 0 < x < y, then we have

0 x y−x−y

On the other hand, if x < y < 0, then we have

0 −y −xyx
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In both cases, the truth of −x > −y is obvious.

(B) For any x, y, z ∈ Q, x < y ⇐⇒ x+ z < y + z.

For example, given 2 < 3, we can verify by direct computation that 2−15 < 3−15

and 2 + 7
3
< 3 + 7

3
.

We first prove that x < y implies x + z < y + z for any z. So suppose x < y.

Because of the commutativity of addition, it suffices to prove z + x < z + y, or

equivalently, the endpoint of the vector z + x is to the left of the endpoint of the

vector z+ y. By the definition of vector addition, both vectors z+x and z+ y are

obtained by placing the starting points of x and y, respectively, at the endpoint of z,

and the endpoints of the displaced x and y, respectively, will be z+x and z+y. Since

by hypothesis, the endpoint of x is to the left of the endpoint of y, the conclusion is

immediate.

The following picture shows the case where x > 0 and y > 0 (and whether z is

positive or negative is irrelevant):

0
-x -

y

z
-
z + x

-

z + y

Next we prove x + z < y + z for some z implies that x < y. To do this, we

make use of what we have just proved: adding −z to both sides of x + z < y + z

immediately yields x < y. The proof of (B) is complete.

Corollary For any x, y, w, z ∈ Q, if x < y and w < z, then x+w < y+ z.

The detailed proof will be left as an exercise.

(C) For any x, y,∈ Q, x < y ⇐⇒ y − x > 0.

For example, (−5) < (−3) =⇒ (−3)− (−5) > 0 (check: (−3)− (−5) = 2), and

conversely, (−3)− (−5) > 0 =⇒ (−5) < (−3).

First, we prove that x < y =⇒ y − x > 0. By (B), x < y implies x + (−x) <

y+(−x), which is equivalent to 0 < y−x. Conversely, we prove y−x > 0 =⇒ x < y.
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Again we use (B): y − x > 0 implies that (y − x) + x > 0 + x, which is equivalent to

y > x, as desired.

It should be remarked that in higher mathematics, (C) is taken as the definition

of x < y.

(D) For any x, y, z ∈ Q, if z > 0, then x < y ⇐⇒ xz < yz.

Thus, 4 < 5 =⇒ (23
6

)4 < (23
6

)5 (check: the left side is 92
6

and the right side is
115
6

). Also, (−11) < (−9) =⇒ 7(−11) < 7(−9) (check: the left side is −77 while

the right side is −63).

We first prove that, with x, y, z as given, x < y =⇒ xz < yz. We give two

proofs.

First, we make use of (C). By (C), xz < yz is equivalent to (yz − xz) > 0. Now

(yz − xz) = (y − x)z. But we know z > 0 by hypothesis, and y − x > 0 because

of the hypothesis that x < y and because of (C). Since the product of two positive

numbers is positive, we have (y−x)z > 0, which means (yz−xz) > 0,36and therefore

xz < yz (by (C) again), as claimed. A second proof uses Theorem 2 of §4 in Chapter

1 on fraction multiplication, which equates a product with the area of a rectangle.

Given z > 0 and x < y. If x < 0 < y, then xz < 0 and yz > 0 and there would

be nothing to prove. Therefore we need only consider the cases where x and y have

the same sign (which, we recall, means they are both positive or both negative). If

x, y > 0, then this inequality is exactly inequality (A) at the end of §4 in Chapter 1.

Briefly, the proof goes as follows: x, y, and z are fractions and xz and yz are then

areas of rectangles with sides of length x, z and y, z, respectively (Theorem 2 in §4
of Chapter 1). Since x < y, clearly the rectangle corresponding to yz contains the

rectangle corresponding to xz and therefore has a greater area. Hence yz > xz. Next,

suppose x, y < 0, then we get (−x), (−y) > 0. Moreover x < y implies (−y) < (−x),

by (A). Thus we know from the preceding argument that (−y)z < (−x)z, which is

equivalent to −yz < −xz (Theorem 3 in §4 of this chapter), and therefore yz > xz,

by (A) again.

36Note that from now on, we are secure enough about the multiplication of rational numbers that
we will write −xz in place of −(xz) without fear of confusion. See comment after the Corollary
to Theorem 3 in §4.
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Finally, we prove the converse: if for some z > 0, xz < yz, then x < y. We claim

that 1
z
> 0. Indeed, since z(1

z
) = 1, and 1 > 0, we see that the product of the positive

number z with 1
z

is positive. Therefore 1
z

has to be positive. Such being the case,

then by what we have just proved, 1
z
> 0 and xz < yz imply that 1

z
(xz) < 1

z
(yz),

which is the same as x < y. (D) is proved.

As a Corollary, we have: If x, y, z, w are fractions and x ≤ y and z ≤ w, then

xz ≤ yw. The proof will be left as an exercise.

(E) For any x, y, z ∈ Q, if z < 0, then x < y ⇐⇒ xz > yz.37

To students, the fact that, when z < 0, the inequality x < y would turn into xz >

yz is the most fascinating aspect about inequalities. This goes against everything they

have learned up to this point, which suggests that whatever arithmetic operation they

apply to an inequality, the inequality will stay unchanged. Here is a situation where

an inequality gets reversed. We first illustrate with some examples. In each of the

following cases, the initial inequality is multiplied by −4:

1 < 2 but −4 > −8,

3
2
< 15

4
but −6 > −15,

−2 < 1
2

but 8 > −2,

−1 < −2
3

but 4 > 22
3
.

Again, we give two proofs of x < y =⇒ xz > yz when z < 0. First we make use

of (C). By (C), this is equivalent to proving that xz−yz > 0, i.e., (x−y)z > 0. From

the hypothesis x < y and using (C), we have y− x > 0, which implies −(y− x) < 0,

by (A), and therefore −y+x < 0. In other words, x− y < 0. Since z is also negative,

the product of the two negative numbers z and x− y is positive, i.e., (x− y)z > 0,

as desired.

For the second proof, let z = −w, where w is now positive. Since x < y, (D) implies

that wx < wy. By (A), −wx > −wy. But Theorem 3 of §4 says −wx = (−w)x = zx,

37In the preceding section, we warned against the tendency to assume that every skill is universally
applicable. There is no better illustration of the danger of this tendency than the contrast between
(D) and (E). One must begin to be sensitive to the fact that some facts are true only under restrictive
hypotheses.
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and −wy = (−w)y = zy. So zx > zy.

The second proof suggests a more intuitive way to understand why, if z < 0, then

multiplying an inequality by z will reverse that inequality. Consider the special case

where 0 < x < y and z = −2. So we want to understand why (−2)y < (−2)x.

By Theorem 3 of §4, (−2)y = −(2y) and (−2)x = −(2x). Thus we want to see,

intuitively, why −2y < −2x. From 0 < x < y, we get the following picture:

0 x y

Then the relative positions of 2x and 2y do not change as each of x and y is pushed

further to the right of 0 by the same factor of 2. (Of course, if z were 1
2 , then x and y

would be pushed closer to 0 by the same factor of 1
2 , so their relative positions would

still be the same.)

0 2x 2y

If we reflect this picture across 0, we get the following:

0 2x 2y−2y −2x

We see that −2y is now to the left of −2x, so that −2y < −2x, as claimed.

It remains to prove that if z < 0, then xz > yz implies x < y. We claim that
1
z
< 0. This is because z(1

z
) = 1 and 1 is positive. Since z is negative, 1

z
has to be

negative too. Thus by the first part of the proof, multiplying both sides of xz > yz

by 1
z

would reverse the inequality, i.e., 1
z
(xz) < 1

z
(yz). This is the same as x < y. The

proof of (E) is complete.

(F) For any x ∈ Q, x > 0 ⇐⇒ 1
x
> 0.
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This has essentially been proved in the course of proving (E). Observe that

x( 1
x
) = 1 > 0. Therefore x and 1

x
are either both positive, or both negative, as

claimed.

The next item is an immediate consequence of (D)–(F).

(G) For any x, y, z ∈ Q, let x < y. If z > 0, then x
z <

y
z ; if z < 0, then x

z >
y
z .

Absolute value

Next, we turn to the concept of the absolute value of a number, which is intrinsi-

cally tied to any discussion of inequalities. The absolute value |x| of a number x is

by definition the distance from x to 0 (i.e., the length of the segment [x, 0] or [0, x],

depending on whether x is negative or positive, respectively). In particular, |x| ≥ 0

no matter what x may be. The most pleasant property of the absolute value is that,

for all numbers x, y,

|x| |y| = |xy|

This can be proved by a case-by-case examination of the four cases where x and y

take turns being positive and negative. The reasoning is routine. On the other hand,

inequalities involving absolute value present difficulties to students, so it is absolutely

essential that we come to grips with such inequalities. If b is a positive number, then

the set of all numbers x so that |x| < b consists of all the points x of distance less

than b from 0, indicated by the thickened segment below (excluding the endpoints):

0 x b−b

It follows that the inequality |x| < b for a point x is equivalent to the fact that

x satisfies both −b < x and x < b. It is standard practice in mathematics to combine

these two inequalities into a composite statement in the form of a double inequality

−b < x < b. In this notation, we can summarize what we have proved neatly, as

follows:

|x| < b is equivalent to −b < x < b.
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In the usual notation for intervals on the number line, this becomes:

|x| < b is equivalent to x ∈ (−b, b).

Recall: the set of all the points x satisfying c < x < d, where c and d are

two fixed numbers so that c < d, is denoted by (c, d), called an open

interval. The segments we have been using thus far are sets of the form

(c, d) together with the endpoints c and d; these are denoted by [c, d],

called a closed interval , i.e., [c, d] is the set of all points x so that

c ≤ x ≤ d.

The fact that the single inequality |x| < b involving absolute value is equivalent to a

double inequality −b < x < b is a very useful fact in the elementary considerations

involving absolute value. In the following, we sometimes refer to −b < x < b as the

associated double inequality of |x| < b. The following example illustrates the way

the conversion of an absolute value inequality into its associated double-inequality can

be put to use.

Example 1 Determine all the numbers x so that |6x+ 1|+ 21
4
< 5, and show

them on the number line.

The inequality |6x + 1| + 21
4
< 5 is equivalent to |6x + 1| < 5 − 21

4
, (by

(B) above), which is just |6x + 1| < 23
4
, which in turn is equivalent to the double

inequality −23
4
< 6x+ 1 < 23

4
. The left inequality is equivalent to −23

4
−1 < 6x (by

(B) again), i.e., −15
4
< 6x. Now we multiply both sides of this inequality by 1

6
and

use (D) to conclude that it is equivalent to −15
24
< x. By exactly the same reasoning,

the right inequality 6x+ 1 < 23
4

is equivalent to x < 7
24

. Putting all this together,

we have that the inequality |6x+ 1|+ 21
4
< 5 is equivalent to the double inequality

−15
24
< x < 7

24
. The set of all x satisfying this double inequality is indicated by the

thickened segment in the picture.

−15
24 0

7
24︸ ︷︷ ︸

Example 2 Determine all the numbers x so that |2x− 1
2
| ≥ 3, and show them

on the number line.
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There are two cases to consider: Case I: 2x− 1
2
≥ 0, and Case II: 2x− 1

2
< 0.

First we look at Case I. Then the inequality becomes 2x− 1
2
≥ 3, ⇐⇒ 2x ≥ 7

2
(by

(B)), ⇐⇒ x ≥ 7
4

(by (D)). Therefore, in case 2x− 1
2
≥ 0, |2x− 1

2
| ≥ 3, if and only

if x ≥ 7
4
.

Next, suppose 2x− 1
2
< 0. Then |2x− 1

2
| = 1

2
− 2x, so that |2x− 1

2
| ≥ 3 ⇐⇒

1
2
− 2x ≥ 3, ⇐⇒ −2x ≥ 5

2
, ⇐⇒ x ≤ −5

4
(by (E)). Therefore in case 2x − 1

2
< 0,

|2x− 1
2
| ≥ 3, if and only if x ≤ −5

4
.

Together, we see that |2x − 1
2
| ≥ 3 if and only if either x ≥ 7

4
or x ≤ −5

4
,

corresponding to either 2x− 1
2
≥ 0, or 2x− 1

2
< 0. On the number line, the numbers

satisfying the inequality are exactly those numbers lying in one of the two thickened

semi-infinite segments.

0− 5
4

7
4

Having introduced the concept of absolute value, we now face the question, asked

by most teachers (not to mention innumerable students), of why we bother with this

concept. As one educator noted, in schools, absolute value is often taught as a topic

disconnected from anything else in the curriculum; it is barely touched on, and is not

understood except as a kind of rote procedure (“take off the minus sign if there is

one”). Teachers feel handicapped by being made to teach something for which they

don’t see any relevance.

It is not possible in an elementary text to give a wholly satisfactory answer to the

question of why absolute value should be taught. The importance of absolute value

emerges mostly in the more advanced portion of mathematics or the sciences, such as

when we come face-to-face with the concept of limit and the unavoidable inequalities

or when making estimates becomes a necessity rather than empty rhetoric. In these

notes, however, we have to be content with giving only a rough idea of its significance.

There are situations where we want only the absolute value (“magnitude”) of

a number, but do not care much whether the number is positive or negative. For

example, suppose you try to estimate the sum of two 3-digit whole numbers, 369+177,

by rounding to the nearest hundred. The sum is of course 546, but the estimated sum

would be 400 + 200 = 600. The measurement of the accuracy of such an estimate is
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the so-called absolute error of the estimation, which is by definition the absolute

value of the difference between the true value and the estimated value, i.e.,

absolute error = |true value − estimated value |

In this case, it is |546 − 600| = 54. Now, if we do the same to the sum 234 + 420,

then the absolute error of the estimated value of 600 (= 200+400) is still 54, because

|654 − 600| = 54. These two estimates differ in that the former under-estimates by

an amount of 54, whereas the latter over-estimates by the same amount. However, as

a preliminary indication of the accuracy of these estimates, it can be said that they

both miss the mark by 54 and it doesn’t matter whether they are over or under by this

amount. Thus it is the absolute value of this difference, rather than the difference

itself, that is of primary interest. The absolute value in this instance provides exactly

the right tool to express the error of such estimations.

Two useful inequalities

Another way to see why absolute value is essential is to see how it is used. We

illustrate with two standard inequalities. Here is the first.

Theorem 1 For any numbers x and y,

2|xy| ≤ x2 + y2

By FASM, it suffices to prove this for rational values of x and y, and we will

tacitly assume x, y ∈ Q in the discussion following. Before giving the proof, there

are at least two things one should do. The obvious one is to become convinced,

psychologically, that this inequality is true. If you have no conviction, then there is

no hope of arriving at a proof. For inequalities, conviction comes readily enough by

trial and error: let x and y be replaced by concrete numbers to see if the inequality

still holds. For example, if x = 7 and y = 11, the inequality suggests 154 ≤ 170. If

x = 8 and y = 10, the inequality gives 160 ≤ 164. And so on. Now if x = y = 9, the

inequality becomes 162 ≤ 162, and the same thing happens if x = y = 8: 128 ≤ 128,

etc. In fact, once this observation is made, you begin to notice that if x = y, then
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both sides of the inequality become 2x2 (there is no need for the absolute value in

this case because |x|2 = |x2| = x2.) Now you get to see why “≤” is used rather than

“<”. We will come back to the case of equality presently.

Another thing one should do before attempting any proof is to at least understand

why the absolute value |xy| of xy is used at all. Clearly, this theorem is of no interest

if one of x and y is 0, as it merely says in that case that 0 ≤ x2 + y2. So we may

as well assume both x and y to be nonzero. Such being the case, we make use of (G)

above to rewrite the theorem as

2|xy|
x2 + y2

≤ 1

for all x and y. Since x2 + y2 ≥ 0, we have 1
x2+y2 ≥ 0 on account of (F). It follows

that | 1
x2+y2 | = 1

x2+y2 . Therefore, using |AB| = |A| |B| for all numbers A and B,

we get ∣∣∣∣ 2xy

x2 + y2

∣∣∣∣ = |2xy| ·
∣∣∣∣ 1

x2 + y2

∣∣∣∣ = 2|xy| · 1

x2 + y2
=

2|xy|
x2 + y2

Thus the theorem is equivalent to ∣∣∣∣ 2xy

x2 + y2

∣∣∣∣ ≤ 1

We know from a previous remark that this inequality is equivalent to the double

inequality

−1 ≤ 2xy

x2 + y2
≤ 1

In this form, the theorem asserts that the number 2xy
x2+y2

is trapped inside the segment

[−1, 1] between −1 and 1 for all x and y.

Without the absolute value sign, the theorem merely says that

2xy

x2 + y2
≤ 1

This inequality does not preclude the possibility that
2xy

x2+y2 = −100. With the

absolute value sign in place, however, we know that
2xy

x2+y2 cannot be to the left of

−1 on the number line and, in particular, cannot be equal to −100. We see clearly
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that, in this case, the presence of absolute value in the inequality is an inequality that

carries much more information than the one without absolute value.

The preceding discussion gives the barest glimpse into what happens in advanced

mathematics, where very often we want to control the absolute value of a given

number, in much the same way that we want to control the absolute value of xy in

Theorem 1. Typically, this control is obtained only after stringing together a sequence

of inequalities involving absolute values. If we do not explicitly make use of absolute

value at each stage, then we will be forced to deal instead with two inequalities each

time (i.e., those given by the associated double inequalities). As the number of such

inequalities involving absolute value increases, the number of ordinary inequalities we

need to look at becomes unmanageable. The use of absolute value is thus a necessity.

It remains to give the simple proof of Theorem 1. We prove it in its original

formulation:

2|xy| ≤ x2 + y2

Let u = |x| and v = |y|, then as we have seen, 2|xy| = 2|x| |y| = 2uv. Now we make

the simple observation that for all numbers t, t2 = |t|2; this is clear when we first

consider the case t ≥ 0 and then the case t < 0. Therefore, we have x2 = |x|2 =

|x| |x| = uu = u2. Similarly, y2 = v2. Thus the inequality becomes

2uv ≤ u2 + v2

which is equivalent to 0 ≤ u2− 2uv+ v2, by (B) above. In other words, the theorem

is equivalent to

u2 − 2uv + v2 ≥ 0

for any numbers u and v. This is however obvious because u2 − 2uv + v2 = (u− v)2

and (u− v)2 ≥ 0. The proof is complete.

At this point, we pick up the thread of the discussion right after the statement

of Theorem 1 about when equality actually takes place in the inequality, i.e., if two

numbers x and y satisfy

2|xy| = x2 + y2,

what can we say about them? If we let u = |x| and v = |y| as in the preceding proof,

then we have 2uv = u2 + v2, which becomes u2 − 2uv + v2 = 0. Thus (u− v)2 = 0.
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But the square of any number t is ≥ 0 (see remark after the Corollary to Theorem

3 in §4), and is 0 if and only if t = 0, so u − v = 0, i.e., u = v, or |x| = |y|.
Conversely, if |x| = |y|, then both sides of the inequality in Theorem 1 are equal to

2|x|2. Therefore we see that the inequality in Theorem 1 is an equality if and only if

|x| = |y|. We may therefore restate Theorem 1 in a more refined version, as follows.

Theorem 1* For any numbers x and y,

2|xy| ≤ x2 + y2

The inequality is an equality, i.e., 2|xy| = x2 + y2, if and only if |x| = |y|.

You may consider this excursion into considering the extreme case of equality a

mildly entertaining exercise, but no more. What actually happens is that, most of the

time, when a (weak) inequality becomes an equality, something dramatic happens.

In the case of Theorem 1, this is no exception. See Chapter 6.

We conclude with what is probably the most basic inequality involving absolute

value in elementary mathematics.

Theorem 2 (Triangle Inequality) For any numbers x and y,

|x+ y| ≤ |x|+ |y|

In this case, the critical role played by absolute value is all too obvious as the

inequality would be meaningless without the absolute value symbols. Incidentally,

there will be a “real” triangle inequality in §1 of chapter 5 (see (D4) of that section).

The reason Theorem 2 is called the Triangle Inequality has to do with fact that if x

and y are vectors and the absolute value symbol is interpreted as length, then Theo-

rem 2 would be a statement about triangles.

Proof If one of x and y is 0, then there is nothing to prove. We assume therefore

that both x and y are nonzero. The most elementary proof is one using case-by-case

examination of the inequality. There are two cases to consider: (i) x and y have the
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same sign (recall: this means both are positive or both are negative), and (ii) x and

y have opposite signs (i.e., one is positive and the other is negative). Each case

then splits into sub-cases. Such a proof is boring (compare the proof of Theorem 4 in

§2), but it does have two things in its favor. Such a proof is instructive if you want

to get some down-to-earth feelings about absolute values, and furthermore, it is the

easiest way to analyze the situation when equality takes place. (See below for the

latter.)

We give a different proof, one that makes use of the fact that the inequality |x| ≤ b

is equivalent to the double-inequality −b ≤ x ≤ b. This is a standard proof, but

is also one from which one can learn something about absolute values. Therefore

instead of proving |x+ y| ≤ |x|+ |y|, we prove the double inequality

−|x| − |y| ≤ x+ y ≤ |x|+ |y|

There is no question that −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|. From −|x| ≤ x and

−|y| ≤ y, we use the corollary of (B) above to conclude that −|x| − |y| ≤ x + y.

Similarly, we use x ≤ |x| and y ≤ |y| and the corollary of (B) to conclude that

x+ y ≤ |x|+ |y|. Thus we have proved both inequalities in the double inequality.

As in the case of Theorem 1, we ask when does equality take place for the triangle

inequality? If both x and y are positive or if both are negative, then clearly we have

equality. If one of x and y is 0, then again we have equality. Suppose exactly one of

x and y is positive and the other negative. Because the inequality doesn’t change if

x and y are interchanged, we may assume x > 0 and y < 0 without loss of generality.

If x+ y > 0, then

|x+ y| = x+ y < x+ 0 < x = |x| < |x|+ |y|

and equality is impossible in the triangle inequality. If x+ y < 0, then

|x+ y| = −(x+ y) = −y − x < −y = |y| < |x|+ |y|

and again equality is impossible. Thus we have proved:

The triangle inequality is an equality if and only if one of the numbers is

0, or the numbers have the same sign.
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Exercises 2.6

Here as later, a declarative statement means simply that you have to supply

a proof.

1. (a) If x, y, z, w are rational numbers and x ≤ y and w ≤ z, then (a) x+w ≤ y+z.

(This is the Corollary of (B).) (b) If, in addition, all four numbers≥ 0, then xw ≤ yz.

2. (a) Let x, y, z, w ∈ Q, and let y, w > 0. Then prove that x
y <

z
w ⇐⇒ xw < yz.

(b) Give examples to show that both implications “x
y <

z
w =⇒ xw < yz” and

“xw < yz =⇒ x
y <

z
w” are false without the assumption that y, w > 0. (c) Are

the following numbers
32.5

−3
and

−302
3

24
5

equal? If so, prove. If not, which is bigger?

3. Which is greater? (a) (−1.7)(9) or −22 + 62
3
. (b) −2

5
or (−5) 1.1

12.5
. (c) −2

3
/4
7

or

(14
3

)(−2
8.5

).

4. (a) Determine all the numbers x which satisfy |x − 1| − 5 < 2
3

and show them

on the number line. (b) Do the same for 11− |3 + 2x| > 2.5. (c) Do the same for

|2x− 3
5
| ≥ 1

5
. (d) Do the same for 3− |2x− 5| ≥ 4.2.

5. For any two rational numbers p and q, the length of the segment between p and q

is exactly |p− q|.

6. Let x and y be rational numbers. (a) How does |x| − |y| compare with |x − y|?
Why? (b) How does | |x| − |y| | compare with |x− y| ? Why?

7. If x and y are rational numbers, and y 6= 0, then∣∣∣∣xy
∣∣∣∣ =

|x|
|y|
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In other words, the absolute value of x/y is equal to the quotient of |x| by |y|.

8. If x and y are positive rational numbers, then (a) x2 = y2 if and only if x = y,

and (b) x2 < y2 if and only if x < y.

9. If x is a rational number, is it true that x < 1 implies 1
x > 1? If so, prove. If not,

formulate a true statement, and prove it.

10. If x, y are numbers so that 0 < x < y, and n is a positive integer, how does xn

compare with yn ? Why?

11. If x > 1, then xn > 1 for any positive integer n. Also if −1 < x < 1, then

−1 < xn < 1 for any positive integer n.

12. Let x be a rational number. (a) If x > 1, then xm > xn for whole numbers m > n.

(b) If 0 < x < 1, then xm < xn for whole numbers m > n.

13. For any two positive numbers s and t, s + t ≥ 2
√
st. Furthermore, equality

holds if and only if s = t.

14. Show that for all numbers x, y, and c 6= 0,

|x+ y|2 ≤ (1 +
1

c2
) |x|2 + (1 + c2) |y|2

15. Can you see why if x and y are any two rational numbers (in particular, they

could be negative), then 1
9
x2 − 1

12
xy + 1

64
y2 ≥ 0 ?
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Chapter 3: The Euclidean Algorithm

§1 The reduced form of a fraction (p. 170)

§2 The fundamental theorem of arithmetic (p. 183)
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This chapter gives two principal applications of the Euclidean Algorithm, which is

a finite procedure for finding the greatest common divisor of two given whole numbers.

1 The reduced form of a fraction

A fraction m
n

is said to be a reduced form of a given fraction k
`

if m
n

= k
`

and if

no whole number other than 1 divides both the numerator m and the denominator n.

In general, a fraction with the property that no whole number other than 1 divides

both the numerator and the denominator is said to be in lowest terms, or reduced.

A fact taken for granted in elementary school is that any fraction has a reduced form,

and that there is only one. When classroom instruction focuses entirely on fractions

with single-digit numerator and denominator, the reduced form of a fraction can be

obtained by visual inspection. For fractions with larger numerators and denominators,

deciding whether a fraction is in reduced form is often not so obvious. For example,

is the fraction
1147

899

reduced? (It is not. See Exercises 3.1.)

The purpose of this section is to clarify this situation once and for all by proving

the following theorem. The statement requires that we introduce the term algo-

rithm, which is an explicit finite procedure that leads to a desired outcome.

Theorem 1 Every fraction has a unique reduced form. Furthermore, this reduced

form can be obtained by an algorithm.

The proof of the theorem involves some number-theoretic considerations about

whole numbers. We start at the beginning.

We say a nonzero integer d is a divisor or a factor of an integer a, or d divides

a, if a = cd for some integer c. We also call a = cd a factorization of a. Another

way to say d divides a is to say that the rational number a
d

is an integer. We write

d|a when this happens, and we also say a is an (integral) multiple of d. If d does

not divide a, we write d 6 | a.

Observe that (i) if k|` and `|m, then k|m, and (ii) every nonzero integer
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divides 0. The simple proofs are left as exercises.

In the following discussion, most of the time all the integers involved are whole

numbers, i.e., integers which are positive or 0. However, there are one or two places

which would become very awkward if we restrict ourselves only to whole numbers

(cf. the proof of the Key Lemma below). For this reason, we bring in integers from

the beginning. When we need to focus on whole numbers, we will be explicit about

it, e.g., the concept of a prime immediately following.

A whole number a which is greater than 1 has at least two whole number divisors,

1 and a itself. A proper divisor d of a whole number a is a whole number divisor

of a so that 1 < d < a. Note that if a = cd for whole numbers c and d so that

both c and d are > 1, then both c and d are proper divisors of a. A whole number

> 1 without proper divisors is called a prime, or prime number. A whole number

which is > 1 and is not a prime is called a composite. Note that by definition, 1

is neither prime nor composite. Checking whether a whole number is a prime, while

difficult in general, is easier than appears at first sight, because we have the following

lemma.

Lemma Given a whole number n > 1. If no prime number p satisfying 2 ≤ p ≤
√
n is a divisor of n, then n is a prime.

For a positive number x, its positive square root
√
x is the

positive number so that its square is equal to x, i.e., (
√
x)2 = x.

It can be proved that any positive real number has a positive square

root and there is no danger of circular reasoning if we make use of

this fact here.

Observe that if a, b are positive numbers, then a < b is equivalent

to
√
a <
√
b (problem 8(b) in Exercises 2.6).

For example, to check whether 233 is a prime, it suffices to check whether any of

the primes ≤ 16 divides 233 (because 162 = 256 > 233). The primes in question are

2, 3, 5, 7, 11, 13. Since none of them divides 233, we conclude that 233 is a prime.

The Lemma can be rephrased equivalently as one about composite numbers: If

n ∈ N is composite, then it has a prime divisor p in the range 2 ≤ p ≤
√
n. We will
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prove this version of the Lemma.

Proof Suppose n is composite. We first show that n has a proper divisor ` in

the range 2 ≤ ` ≤
√
n. If not, then every proper divisor of n exceeds

√
n. So let `

be a proper divisor of n, and we write n = m` for some whole number m. Then m is

itself a divisor of n and therefore m >
√
n as well. We then have (cf. problem 1(b) of

Exercises 2.6):

n = m` >
√
n
√
n = n

and therefore we have the absurd situation of n > n. Thus n must have a proper

divisor ` so that 2 ≤ ` ≤
√
n.

If ` happens to be a prime, we are done. If not, then among all the distinct proper

divisors of `, let p be the smallest. Then p must be a prime because otherwise p has a

proper divisor q, and since q|p and p|`, we have q|`. Since q < p, p is not the smallest

proper divisor of `, which is a contradiction. So p is a prime, and p < ` ≤
√
n, as

claimed. The Lemma is proved.

Given two whole numbers a and d, not both equal to 0, there is at least one

whole number that divides both a and d, namely, the number 1. A whole number c

is said to be the GCD (greatest common divisor) of whole numbers a and d if,

among all the whole numbers which divide both a and d, c is the greatest. Notation:

GCD(a, d). Two whole numbers a and d (again not both equal to 0) are said to be

relatively prime if GCD(a, d) = 1.

We can approach GCD from another angle. Given a whole number n, let D(n) be

the collection of all the divisors of n. Then if a and d are both whole numbers and

not both equal to 0,

the collection of all common divisors of a and d = D(a) ∩ D(d)

The following is therefore an equivalent formulation of the concept of GCD:

GCD(a, d) = max{D(a) ∩ D(d)}

where max indicates the largest number in the set. In this formulation, it is clear

that the GCD of any two whole numbers a and d always exists: after all, the set
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D(a) ∩D(d)} is a finite set and all we have to do is pick the largest number in it. In

this notation, we also see that a and d being relatively prime is equivalent to

D(a) ∩ D(d) = 1

At this point, we can explain why we are interested in the GCD of two whole

numbers. Let a fraction m
n be given. Let k be the GCD of m and n, and let m = km′

and n = kn′ for some whole numbers m′ and n′, We claim that m′

n′ is the reduced

form of m
n . The equality m′

n′ = m
n is a consequence of the Theorem on Equivalent

Fractions. As to why m′

n′ is reduced, suppose it is not. Then m′ and n′ have a

common divisor ` > 1, let us say m′ = `a and n′ = `b for some whole numbers a

and b. Then

m = km′ = k`a, and n = kn′ = k`b

It follows that k` is a common divisor of m and n. Since ` > 1, k` > k, and this

contradicts the fact that k is the greatest of the common divisors. Our claim of the

existence of a reduced form for m
n is now proved.

From a practical point of view, what we want is more than a theoretical assurance

that there is a GCD; we want an explicit procedure that unfailingly yields the GCD

of two given whole numbers. This is what the Euclidean algorithm accomplishes.

The proof of the uniqueness of the reduced form turns out to be more subtle. The

key to this proof is the following lemma which is also the key to many other basic

facts. What is interesting is that this lemma is also a natural consequence of the

Euclidean algorithm.

Key Lemma Suppose `, m, n are nonzero whole numbers, and `|mn. If ` and

m are relatively prime, then `|n.

One can appreciate this Key Lemma better if one notices that a whole number `

can divide a product without dividing either factor. Thus, 63|(18× 245), but 63 6 |18

and 63 6 |245. What the Key Lemma says is that if ` is relatively prime to one of the

factors, then ` dividing the product would imply that ` divides the other factor. (It

goes without saying that 63 is relatively prime to neither 18 nor 245, so there is no

contradiction to the Key Lemma.)
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The proof of the Key Lemma requires some preparation concerning the greatest

common divisor of two numbers, which in turn requires that we review the well-

known procedure of division with remainder: given whole numbers a and d, then

the division with remainder of a by d is given by

a = qd+ r where q, r ∈ N, and 0 ≤ r < d

The whole number r is the remainder. (In abstract algebra, this is of course the

division algorithm for integers, but in school mathematics, one cannot afford to use

this terminology because it causes confusion with the long division algorithm.) The

main observation here is that, given a = qd+ r,

GCD(a, d) = GCD(d, r)

The way we prove this is to prove something slightly more general, namely, the

equality of the following two sets:

D(a) ∩ D(d) = D(d) ∩ D(r)

By the characterization of the GCD of two numbers in terms of the divisors of each

number, this implies the above observation about GCD.

Before giving the proof of this equality of the sets of common divisors, we should

make two remarks. First, this equality of sets means precisely that the following

two inclusions hold (recall: “⊂” means “is contained in”, and “A ∩ B” means ”the

intersection of the sets A and B”):

D(a) ∩ D(d) ⊂ D(d) ∩ D(r)

and

D(d) ∩ D(r) ⊂ D(a) ∩ D(d)

A second remark is that suppose A, B, C are whole numbers and A = B + C. If a

whole number n divides any two of A, B, C, then n divides all three. The proof is

straightforward (see Exercise 3.1). This fact will be used several times in the proof

of the inclusions.

Let us prove the first inclusion relationship:

D(a) ∩ D(d) ⊂ D(d) ∩ D(r)
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Suppose a whole number n belongs to the left side, then we must prove that it belongs

to the right side. In other words, if n divides both a and d, then it divides both d

and r. Therefore we must prove that if n divides both a and d, then it divides the r

in

a = qd+ r

However, this means n divides both a and qd in this equation, so it divides the third

number r, by the second remark above.

The proof of the reverse inclusion is entirely similar. It follows that if

a = qd+ r,

then

GCD(a, d) = GCD(d, r)

There are many reasons why this fact is interesting. The most obvious reason can

be seen from a simple example. Suppose we want to get the GCD of 469 and 154.

We have

469 = (3× 154) + 7

Therefore GCD(469, 154) = GCD(154, 7), and since obviously GCD(154, 7) = 7, it

follows immediately that GCD(469, 154) = 7. Thus one application of division with

remainder suffices to yield the GCD of 469 and 154.

Is this an accident? Not entirely, because the determination of the GCD of two

numbers a and d is quite easy if at least one of a and d is sufficiently small. Witness

the fact that GCD(154, 7) = 7. In general, if d is sufficiently small, then the set

D(d) can be determined by visual inspection one way or another, and therewith also

the set D(a) ∩D(d). Thus GCD(a, d), being max{D(a) ∩D(d)}, can be determined.

The virtue of having the equality GCD(469, 154) = GCD(154, 7) is, therefore, that

instead of having to deal with two fairly large numbers 469 and 154, we are reduced

to dealing with 154 and 7, and 7 is sufficiently small (no matter how one defines

“sufficiently small”). As we have seen, this leads immediately to the determination

of GCD(469, 154).

In one sense, though, this example is an accident: in this case, one application of

division with remainder suffices to determine GCD(469, 154). In general, one appli-

cation is not enough. For example, suppose we try to find GCD(3008, 1344). From

3008 = (2× 1344) + 320,
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we get GCD(3008, 1344) = GCD(1344, 320). This time, it is not obvious what

GCD(1344, 320) is, because for one thing, 320 has too many divisors so that D(320)

becomes unwieldy. But we can again apply division with remainder to 1344 and 320

to get a yet smaller number:

1344 = (4× 320) + 64

and we get GCD(1344, 320) = GCD(320, 64). But now D(64) is seen to consist of

powers of 2 up to the 6th power, and it turns out that 64 itself divides 320, and

therefore GCD(320, 64) = 64. Hence

GCD(3008, 1344) = GCD(1344, 320) = GCD(320, 64) = 64

We can further illustrate this process with a slightly more complicated example:

let us find the GCD of 10049 and 1190. From

10049 = (8× 1190) + 529

we get GCD(10049, 1190) = GCD(1190, 529). Since it is not obvious what GCD(1190, 529)

is, we apply division with remainder to 1190 and 529:

1190 = (2× 529) + 132

Now GCD(10049, 1190) = GCD(529, 132), because GCD(1190, 529) = GCD(529, 132).

However, it is still not immediately obvious what GCD(529, 132) is, so we go one step

further:

529 = (4× 132) + 1

This time, GCD(132, 1) = 1, so GCD(10049, 1190) = GCD(132, 1) = 1. Incidentally,

we have exhibited a nontrivial example of a pair of relatively prime integers: 10049

and 1190.

It is not difficult to explain this method of determining the GCD of two whole

numbers in general. The idea is that the application of division with remainder to

two whole numbers reduces the problem of finding the GCD of these numbers to the

determination of the GCD of a second pair of numbers which are correspondingly

smaller than the original pair. Thus, given the whole number pair a and d, with

a > d, division with remainder yields

a = qd + r, where 0 ≤ r < d
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The equality

GCD(a, d) = GCD(d, r)

replaces the determination of the GCD of a and d by the determination of the GCD

of d and r, and the advantage is that a > d and d > r. This process can be repeated

by doing division with remainder on the pair d and r, getting

d = q1r + r1, where 0 ≤ r1 < r

Now we get GCD(a, d) = GCD(d, r) = GCD(r, r1), and a > d > r > r1. In this

way, we introduce smaller and smaller numbers at each step into the problem, until

we inevitably reach either 1 or 0. At that point, if not earlier, we would be done

because, in either case,

GCD(n, 1) = 1 and GCD(n, 0) = n

for any whole number n.

It is now clear that iterations of division with remainder lead to the determination

of the GCD of any two whole numbers in a finite number of steps. What is even more

remarkable is the fact that there is more information to be extracted from this process.

First consider the simplest case of the GCD of 469 and 154. We had

469 = (3× 154) + 7

This equation not only shows that GCD(469, 154) = 7, but also exhibits the GCD,

which is 7, as an integral linear combination of the two original numbers 469 and

154, in the sense that 7 is an integer multiple of 469 plus an integer multiple of 154,

namely,

7 = {1× 469} + {(−3)× 154} .

If we consider the fact that the GCD of 469 and 154 is defined in terms of 469 and

154 using the concept of multiplication, the expression of this GCD as the sum of

multiples of these two numbers must come as a surprise, to say the least.

Let us represent GCD(3008, 1344) = 64 as an integral linear combination of 3008

and 1344. We first list the steps of the division with remainder:

3008 = (2× 1344) + 320

1344 = (4× 320) + 64
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Now rewrite, in reverse order, each of these divisions-with-remainder as an equation

expressing the remainder as an integral linear combination of the divisor and dividend,

thus:

64 = 1344 + ((−4)× 320)

320 = 3008 + ((−2)× 1344)

Substitute the value of 320 in the second equation into the first, and we get:

64 = 1344 + (−4)× (3008 + (−2)× 1344)

= 1344 + ((−4)× 3008) + (8× 1344)

= {9× 1344}+ {(−4)× 3008}

In other words the GCD of 1344 and 3008 is 64, and

64 = {9× 1344} + {(−4)× 3008}

Let us also express GCD(10049, 1190) as an integral linear combination of 10049

and 1190. Again, we first list the steps of division with remainder:

10049 = (8× 1190) + 529

1190 = (2× 529) + 132

529 = (4× 132) + 1

As before, we rewrite each equation as an expression of the remainder in terms of the

dividend and divisor, but in reverse order:

1 = 529 + ((−4)× 132)

132 = 1190 + ((−2)× 529)

529 = 10049 + ((−8)× 1190)
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So we have, by repeated substitution:

1 = 529 + ((−4)× 132)

= 529 + (−4)(1190 + (−2)× 529)

= 529 + ((−4)× 1190) + (8× 529)

= (9× 529) + ((−4)× 1190)

= 9× (10049 + (−8)× 1190) + ((−4)× 1190)

= (9× 10049) + ((−72)× 1190) + ((−4)× 1190)

= {9× 10049}+ {(−76)× 1190}

Thus the GCD of 10049 and 1190 is 1, and

1 = {9× 10049}+ {(−76)× 1190}

Clearly, no one would consider this expression of 1 as an integral linear combination

of 10049 and 1190 to be obvious.

The general case is quite clear at this point. Let whole numbers a and d be given,

with a > d. If we iterate the process of performing division with remainder on a and

d, and then on d and the remainder, etc., obtaining:

a = q d + r

d = q1 r + r1

r = q2 r1 + r2

r1 = q3 r2 + r3

r2 = q4 r3 + 0

Note that the division with remainder can, in principle, continue for d − 1 steps

before it terminates with remainder 0, but for simplicity of writing, we have allowed

the remainder 0 to appear after 4 steps. Clearly there is no loss of generality in the

reasoning. That said, we conclude that

GCD(a, d) = GCD(d, r) = GCD(r, r1) = GCD(r1, r2) =

GCD(r2, r3) = GCD(r3, 0) = r3.
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Furthermore, the GCD, which is r3, can be expressed as an integral linear combination

of a and d as follows. First, rewrite the preceding sequence of equations in reverse

order, each time expressing the remainder as a linear combination of the dividend

and the divisor:

r3 = r1 + (−q3) r2
r2 = r + (−q2) r1
r1 = d+ (−q1) r
r = a+ (−q) d

Therefore, repeated substitution of ri into the equation above it yields:

r3 = r1 + (−q3) r2
= r1 + (−q3)(r + (−q2) r1)
= (−q3) r + (1 + q2 q3) r1

= (−q3) r + (1 + q2 q3) (d+ (−q1) r)
= (1 + q2 q3) d + (−q1 − q3 − q1 q2 q3) r
= (1 + q2 q3) d + (−q1 − q3 − q1 q2 q3) (a+ (−q) d)

= (1 + q2 q3 + q (q1 + q3 + q1 q2 q3)) d + (−q1 − q3 − q1 q2 q3) a

We have therefore proved the following theorem:

Theorem 2 (Euclidean Algorithm) Given a, d ∈ N. Then GCD(a, d) can be

obtained by a finite number of applications of division with remainder. Furthermore,

GCD(a, d) is an integral linear combination of a and d.

The reason we are interested in the Euclidean Algorithm in this context is that it

leads directly to the

Proof of Key Lemma The following brilliant proof is (so far as we can deter-

mine) due to Euclid, which of course also accounts for the name. We are given whole

numbers `, m, and n, so that `|mn and ` and m are relatively prime. We must prove

`|n. Since ` and m are relatively prime, GCD(`,m) = 1. By the Euclidean algorithm,
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1 = α` + βm for some integers α and β. Multiply this equation through by n, and

we get n = α`n + βmn. Since ` divides mn by hypothesis, `|(βmn); obviously,

`|(`n). Therefore ` divides α`n + βmn, which is n. In other words, ` divides n. The

proof is complete.

We are now in a position to give a proof of the main theorem of this section an-

nounced earlier: Any fraction k
` , is equal to a unique fraction m

n in reduced form.

Moreover, there is an algorithm to produce this m
n .

Proof of Main Theorem Let GCD(k, `) = a. Thus k = am and ` = an

for some whole numbers m and n. Note that m and n are relatively prime because

if GCD(m,n) = b > 1, then ab|(am) and ab|(an), so that ab is a common divisor of

k and ` which is bigger than a, contradicting the fact that a is the GCD of k and `.

Therefore m
n is a reduced fraction. By equivalent fractions, m

n = am
an = k

` . Thus this
m
n is the desired fraction. Since m = k

a and n = `
a , and since a is obtained from k

and ` by the Euclidean algorithm, the theorem is proved with the exception of the

uniqueness statement.

To prove uniqueness, suppose k′

`′ = k
` and k′

`′ is reduced. We must prove that

k′ = m and `′ = n. We have k′

`′ = m
n , both being equal to k

` . By the cross-

multiplication algorithm, k′n = `′m. Since n|(k′n), we see that n|(`′m). Since m
n

is

reduced, m and n are relatively prime. Therefore the Key Lemma implies that n|`′,
so that n ≤ `′. We now look at k′n = `′m from a different angle. Since `′|(`′m), we

have `′|(k′n). Since k′

`′ is reduced, `′ and k′ are relatively prime. By the Key Lemma,

we must have `′|n and thus `′ ≤ n. Together with n ≤ `′, we get n = `′. Using

k′n = `′m, we conclude that also k′ = m, as desired.

Exercises 3.1

1. (i) If k, `, m are integers, and if k|` and `|m, then k|m. (ii) Every nonzero

integer divides 0. (Caution: Use the precise definition of divisibility.)
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2. Suppose A, B, C are whole numbers and A = B+C. If a whole number n divides

any two of A, B, C, then n divides all three.

3. Find the GCD of each of the following pair of numbers by listing all the divisors

of each number and compare: 35 and 84, 54 and 117, 104 and 195.

4. Find the GCD of each of the following pairs of numbers, and express it as an

integral linear combination of the numbers in question: 322 and 159, 357 and 272,

671 and 2196.

5. Let the GCD of two positive integers a and d be k, and let k = ma − nd for

some whole numbers m and n. Then m and n are relatively prime.

6. In each of the following, find the reduced form of the fraction. (a) 160
256 . (b) 273

156 .

(c) 144
336 . (d) 1147

899 .

7. The effectiveness of the Euclidean algorithm depends on how fast the remainders

in the sequence of iterated divisions-with-remainder get to 0. Here is an indication:

Suppose we have three iterated divisions-with-remainder as follows:

d = q1 r + r1

r = q2 r1 + r2

r1 = q3 r2 + r3

Then prove that r3 < 1
2 r1.

8. Prove that a whole number is divisible by 4 exactly when the number formed by

its last two digits (i.e., its tens digit and ones digit) is divisible by 4. (Thus 93748 is

divisible by 4 because 48 is divisible by 4.)

9. Prove that a whole number is divisible by 5 if and only if its last digit is 0 or 5.

10. The number 3 is a divisor of a whole number n if and only if 3 is a divisor of the

number obtained by adding up all the digits of n. (Hint: 3 dividing a power of 10
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always has remainder 1.)

11. Repeat problem 10 with the number 3 replaced by the number 9.

12. (a) For any whole number n, GCD(n, n+ 1) = 1. (b) What is GCD(n, n+ 2) for

a whole number n? (c) Let n be a whole number. What could GCD(n, n+ k) be for

a whole number k?

2 The fundamental theorem of arithmetic

The purpose of this section is to prove the following basic theorem and to use it

to draw two consequences about numbers: the first about fractions which are equal

to finite decimals, and the second about the existence of numbers (i.e., points on the

number line) which lie outside Q.

Theorem 1 (Fundamental theorem of arithmetic) Every whole number

n ≥ 2 is the product of a finite number of primes: n = p1p2 · · · pk. Moreover, this

collection of primes p1, . . . , pk, counting the repetitions, is unique.

This theorem will usually be referred to as FTA. The uniqueness statement,

which is important for many reasons, can be made more explicit, as follows: Suppose

n = p1p2 · · · pk = q1q2 · · · q`, where each of the pi’s and qj’s is a prime. Then k = `

and, after renumbering the subscripts of the q’s if necessary, we have pi = qi for all

i = 1, 2, . . . , k.

The expression of n as a product of primes, n = p1p2 · · · pk, is called its prime

decomposition. Let it be noted explicitly that in the above expression, some or all

of the pi’s could be the same, e.g., 24 = 2× 2× 2× 3. FTA says that, except for the

order of the primes, the prime decomposition of each n is unique.

It should not be assumed that getting the explicit prime decomposition of a whole

number is easy. Try 9167, for instance. Even with the help of the Lemma of the last

section, we still have to check all the primes ≤ 96 to see if any of them divides 9167.

It turns out that 9167 has the prime decomposition: 9167 = 89 × 103. The whole

field of cryptography, which makes possible the secure transmission of confidential
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information on the internet, depends on the fact that if a number is very large, say

300 digits, then all the computers in the world put together cannot get its explicit

prime decomposition in 100 years.

On the other hand, it is easy to establish that, on a theoretical level, every whole

number has a prime decomposition.38 Given n ∈ N, if it is a prime, we are done. If

not, n has a proper divisor. Among all its proper divisors, take the smallest, to be

called p. Arguing as in the proof of the Lemma above, this p is a prime. Therefore

let us write n = pn1 for some whole number n1. Apply the same argument to the

whole number n1, and we get n1 = qn2, where q, n2 are whole numbers and q is a

prime. Then we have n = pqn2. Repeat the same argument on n2, and after a finite

number of steps, we get a prime decomposition of n.

It is the uniqueness that is more interesting and more difficult. The proof of

uniqueness is mathematically sophisticated, and it is due to Euclid. Let us first

convince ourselves that there is something to prove. Consider the following two

expressions of 4410 as a product:

4410 = 2× 9× 245 = 42× 105

These two products, 2× 9× 245 and 42× 105, have different numbers of factors and

the factors are all distinct. The nonuniqueness of the expression of 4410 as a product

is striking. Of course with the exception of 2, none of the factors is a prime. Once we

require that each factor in the product be a prime, then we get only one possibility

(other than those obtained by permuting the factors):

4410 = 2× 3× 3× 5× 7× 7

The question is: why must uniqueness emerge as soon as we require each factor to be

a prime? The answer resides, in large part, in the Key Lemma of the last section.

Proof of uniqueness of prime decomposition Let n be a whole number so

that n = p1p2 · · · pk = q1q2 · · · q`, where the p’s and the q’s are primes. We want to

38The difference between the explicit determination of a number and the theoretical statement
that this number exists can be seen from an example. It is easy to write down a definite integral

whose exact value is impossible to determine, e.g.,
∫ 7

0
sin(x3.6)dx, but the fact that this integral is

equal to some number is easy to prove.
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prove that k = `, and that after a renumbering of the subscripts of the q’s if necessary,

we have pi = qi for all i = 1, 2, . . . , k.

We first prove that p1 is equal to a qj, for some j. Since p1|p1 · · · pk, we have

p1|q1 · · · q`. Write Q1 = q2 · · · q`, then p1|q1Q1. If p1 = q1, we are done. If not,

then p1 and q1 are distinct primes and are therefore relatively prime. By the Key

Lemma of the last section, p1|Q1. Writing Q2 for q3 · · · ql, we have p1|q2Q2. Again,

if p1 = q2, we are finished. If not, then p1 and q2, being distinct primes, are relatively

prime. The Key Lemma implies p1|Q2, etc. Either p1 is equal to one of q3, . . . q`−1,

or after `− 1 steps, we have p1|q`−1q`. If p1 = q`−1, we are done. Otherwise, p1 and

q`−1 are relatively prime and therefore p1|q`. Since both p1 and q` are primes, this is

possible only if p1 = q`. Thus p1 is equal to a qj, for some j.

By relabeling the subscripts of the q’s if necessary, we may assume that p1 =

q1. The hypothesis that n = p1p2 · · · pk = q1q2 · · · q` now reads: p1(p2 · · · pk) =

p1(q2 · · · q`). Multiply both sides by (p1)
−1, and we get:

p2 · · · pk = q2 · · · q`

We may repeat the same argument, and conclude that p2 is equal to one of q2, . . . q`.

By re-arranging the subscripts of the q’s if necessary, we may assume that p2 = q2,

so that

p3 · · · pk = q3 · · · q`,

etc. If k 6= `, let us say k < `, then after k − 1 such steps, we get

1 = qk+1 · · · q`

This is impossible because each of the primes qk+1, . . . q` is greater than 1. Thus k = `

after all, and pi = qi for all i = 1, . . . k. The proof of FTA is complete.

FTA has an interesting application to fractions. The following characterizes all

the fractions which are equal to finite decimals.

Theorem 2 If the denominator of a fraction is of the form 2a5b, where a and b

are whole numbers, then it is equal to a finite decimal. Conversely, if a reduced frac-

tion m
n

is equal to a finite decimal, then the prime decomposition of the denominator
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contains no primes other than 2 and 5.

Note that the second part of the theorem is clearly false if m
n

is not reduced. For

example, 3
6

= 0.5, but the prime decomposition of 6 contains a 3. It is also good to

recall that a finite decimal is just a fraction whose denominator is a power of 10. It

will be apparent from the proof how important it is to have such a clear-cut definition

of a decimal.

We first prove that if the prime decomposition of the denominator n contains no

primes other than 2 and 5, then m
n

is equal to a finite decimal. The idea of the proof

is so simple that an example would give it away: since 160 = 25 · 5, the fraction 27
160

is equal to the decimal 0.16875 because, by equivalent fractions,

27

160
=

27

25 · 5
=

27 · 54

25 · 5 · 54
=

16875

105
,

which by definition is 0.16875. In general, if n = 2a5b, where a, b are whole numbers,

we may assume without loss of generality that a < b. Then

m

n
=

m

2a5b
=

2b−am

2b−a2a5b
=

2b−am

10b

and the last is a finite decimal.

Conversely, suppose m
n

is a reduced fraction which is equal to a finite decimal:

m

n
=

k

10b

where k, b are whole numbers. We have to show that no prime other than 2 and 5

divides n. By the cross-multiplication algorithm, nk = m10b. Since m
n

is reduced, n

is relatively prime to m. Since n divides nk, it divides m10b as well. The Key Lemma

shows that n must divide 10b, which is 2b5b. Therefore, 2b5b = n` for some whole

number `. By the uniqueness of the prime decomposition, the primes on the right

consists of only 2’s and 5’s. Thus n = 2a5c, where a and c are whole numbers ≤ b.

The theorem is proved.

At this point, we can take a look at the question of whether the rational num-

bers are sufficient for doing arithmetic. The following theorem implies that they are

not, because many “square roots” cannot be rational numbers. For the statement
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of the theorem, a perfect square is a whole number which is equal to the square

of another whole number. Thus the first few perfect squares are 1, 4, 9, 16, 25, 36, . . . .

Theorem 3 If a whole number n is not a perfect square, then there is no rational

number r so that r2 = n.

Proof Let the prime decomposition of n be expressed as a product of powers of

distinct primes. (For example, 72 = 23 32, 3375 = 33 53, etc.) Consider the case

where n is the product of powers of three distinct primes: n = pa1 p
b
2 p

c
3, where a, b,

c are nonzero whole numbers, and p1, p2, p3 are primes not equal to each other. The

reasoning for this special case will be perfectly general, and by limiting ourselves to

three primes, we save ourselves from some horrendous notation. If a, b, and c are

all even, let a = 2α, b = 2β and c = 2γ for some whole numbers α, β and γ. Then

n = (pα1p
β
2p

γ
3)2, contradicting the hypothesis that n is not a perfect square. Therefore

at least one of a, b, and c is odd, let us say, a = 2k + 1 for some whole number k.

Thus n = p2k+1
1 pb2 p

c
3.

Suppose there is some rational number r so that r2 = n. Let r = A
B

, where A and

B are whole numbers. Then

A2

B2
= n = p2k+1

1 pb2 p
c
3,

which implies that

A2 = B2 p2k+1
1 pb2 p

c
3.

By FTA, there are exactly the same number of p1’s on the left as on the right. We

claim that the number of p1’s on the right is odd. Indeed, if the prime decomposition

of B contains a p1, then B2 contains an even number of p1’s. There are of course

2k+ 1 p1’s in p2k+1
1 , and there are no p1’s in either pb2 or pc3 because the three p’s are

distinct. Therefore there are an odd number of p1’s on the right, as claimed. But on

the left, it is A2. If there are j p1’s in the prime decomposition of A, where j is any

whole number, then there are 2j p1’s in A2. In any case, the number of p1’s on the

left has to be even, which is a contradiction. Thus there is no such r ∈ Q.

A number, i.e., a point on the number line, is formally called a real number.

A real number is said to be irrational if it does not lie in Q. At this point, we do
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not know if there is any irrational number or not because there is the possibility that

every real number is rational, or equivalently, the whole number line is just Q. While

the preceding theorem says that the square root of many whole numbers is not a

rational number, it does not by itself say that these square roots can be found among

the real numbers. The fact that given any whole number n, there is a real number t

so that t2 makes sense and t2 = n will require a different kind of discussion, one that

involves limits. This will be done in Chapter 16.

Exercises 3.2

1. Without using the Fundamental Theorem of Arithmetic, give a direct, self-

contained proof of why the prime decomposition of 455 (= 5× 7× 13) is unique.

2. Given two positive integers a and b. If their GCD is k, then the two positive

integers a
k

and b
k

are relatively prime.

3. Let a, b, c be positive integers. If a is relatively prime to b and both a and b divide

c, then ab also divides c.

4. Define the least common multiple (LCM) of two whole numbers a and b to

be the smallest whole number m so that m is a multiple of both a and b. (a) If

a = p2q7r3 and b = p6qs4, where p, q, r, s denote distinct primes, what are the GCD

and LCM of a and b in terms of p, q, r, and s? (b) If k is the GCD of a and b, and

m is their LCM, prove that mk = ab.

5. There are consecutive odd numbers which are primes, e.g., 5 and 7, 51 and 53, 101

and 103, etc. An example of three consecutive odd numbers which are primes is 3, 5,

and 7. Are there other examples of three consecutive odd numbers which are primes?

6. A whole number which is the n-th power of another whole number is called a

perfect n-th power. Prove that if a whole number k is not a perfect n-th power,

there is no rational number whose n-th power is equal to k.
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Chapter 4: Experimental Geometry

§1 Freehand drawing (p. 190)

§2 Constructions using tools (p. 194)

§3 The basic isometries, Part I (p. 207)

§4 Dilation, Part I (p. 221)
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In this chapter, we begin an informal study of the geometry of the plane. It

is a warm-up for the geometry discussion of the next three chapters. It outlines a

series of suggested activities designed to foster the acquisition of geometric intuition.

In the process, it also acquaints you with the working vocabulary and notations in

geometry. Geometric intuition is important because, without it, not much geometry

can be learned. We will not be overly concerned with total precision or total accuracy

in this chapter; all the concepts introduced will be formally re-defined in subsequent

chapters. The reason the issue of precision is relevant is that the requisite precision of

formal definitions sometimes has the side effect of robbing a simple concept (such as

the “direction of a translation”) of its intuitive content. The purpose of this chapter

is therefore to make sure you get acquainted with the underlying intuition before

tackling the formal definitions.

1 Freehand drawing

Much geometric intuition can be developed by learning how to sketch common

plane figures without the use of any tools (e.g., compass, ruler, protractor). This is

the geometric analog of making estimates in numbers and operations. Eventually you

will have to make precise drawings using, for example, a straightedge and compass,

but before you get started, you should be able to see in your mind ahead of time

roughly what kind of picture you are going to get. If you cannot do that, then your

spatial intuition is under-developed and it will be difficult to engage in any serious

geometric thinking. The ability to see a rough geometric picture without the use of

any tools also has the benecial effect of averting gross mistakes, in much the same

way that having an estimate of your answer ahead of time can prevent many mistakes

due to pushing the wrong buttons on a calculator.

Here are some suggested drawings to be done in class:

1. Draw a line through a given point parallel to a given straight line.

2. Locate (approximately) the midpoint of each side of a given obtuse triangle.

Use a ruler to check how good your guesses are.
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3. Locate the midpoints of the three sides of a given triangle. Now join each vertex

to the midpoint of the opposite side to obtain three segments. Do this for many

triangles. Question: What do you notice about these segments?

4. Again draw a triangle and locate the midpoints of the three sides. This time,

join these midpoints to each other get four smaller triangles within the original

one. Do this for many triangles. Question: What do you notice about these

smaller triangles?

5. Drop a perpendicular from a point outside a given line to the line. (The point

where the perpendicular meets the line is called the foot of the perpendicular.)

6. Draw a line from a point on a given line L so that it is perpendicular to L.

7. Draw an acute angle, and drop a perpendicular from a point on one side of the

angle to the (line containing the) other side. Do this for many angles. Question:

Where does the perpendicular meet the other side? (An angle will be taken

to be a region bounded by two rays (semi-infinite line segments), and each of

these rays is called a side of the angle.)

8. Draw an obtuse angle, and drop a perpendicular from a point on one side of the

angle to the (line containing the) other side. Do this for many angles. Question:

Where does the perpendicular meet the other side?

9. Draw a triangle, and from each vertex, drop a line perpendicular to the (lines

containing the) opposite side. Do this for many triangles, some obtuse and some

acute. Question: What do you notice about these three perpendiculars?

10. Take a line segment, and draw the perpendicular through its midpoint. (The

latter straight line is called the perpendicular bisector of the line segment.)

Question: How is a point on the perpendicular bisector related to the two

endpoints of the line segment?

11. Draw a triangle and draw the perpendicular bisector of each side. Do this for

acute triangles as well as obtuse triangles. Question: What do you notice

about these three perpendicular bisectors?
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12. Draw a circle with a given center and a given radius.

13. Draw a circle passing through the three vertices of a given triangle. Try acute,

obtuse, and right triangles. Question: What do you notice about the center of

the circle?

14. Draw the angle bisector of a given angle. (The angle bisector is the ray that

separates the angle into two equal angles.) From a point P on the angle bisector

drop perpendiculars to both sides of the angle. Question: What do you notice

about the the segments from P to the feet of the perpendiculars? Try drawing

a circle with center at P and with one of these segments as radius. Question:

What do you notice about this circle?

15. Draw the three angle bisectors of a given triangle. Questions: What do you

notice about them? Can one draw a circle inside the triangle tangent to all

three sides of the triangle (recall that tangent to a side means touching the side

at exactly one point)?

Here are selected comments on the rationale behind the above suggested activities.

2. The purpose is to develop an accurate perception of length, and the use of an obtuse
triangle is to bring awareness of optical illusion. Even for people who get it right for
acute triangles, they tend to trip themselves on the sides of the obtuse angle.

3. Can you see that these three lines (called the medians of the triangle) seem to meet at
a point? This point is the centroid of the triangle.

4. Can you see that these four triangles are congruent to each other?

7. and 8. The two activities should acquaint you with the difference between acute and
obtuse angles. In activity 8, the perpendicular does not meet the side as is; you have
to extend the side to a line before the latter meets the perpendicular.

9. Again, you should get the idea that these perpendiculars probably always meet at a point,
but in the case of an obtuse triangle, this point lies outside the triangle. This point
is called the orthocenter of the given triangle. Let the triangle be ABC, and let its
orthocenter be H. Now notice that if ∠A is obtuse, then A becomes the orthocenter
of the acute triangle HBC.
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10. Observe the symmetry of the line segment with respect to its perpendicular bisector:
every point on the latter is equi-distant from the endpoints.

11. The perpendicular bisectors meet at a point. Moreover, for obtuse triangles, this point
is outside the triangle.

12 This will take practice, and some may never acquire the knack of drawing a good looking
circle even with extended practice. One way to get around this is not to try to draw
the circle in one fell swoop, but begin by putting a few points around the center which
are judged to be at the same distance from the center as the given radius.

13. The center of this circle (called the circumcenter of the triangle) should be the point
described in activity 11. One should also note the following: if the triangle is acute, its
circumcenter is inside the triangle. If the triangle is obtuse, then its circumcenter is
outside the triangle. But for a right triangle, the circumcenter should be the midpoint
of the hypotenuse.

14. The angle should appear to be symmetric with respect to the bisector, in the sense that
the two segments from P are equal in length. The circle in question should be tangent
to the sides.

15. The angle bisectors meet at a point P , and the circle with center at P and with radius
equal to any of the segments described in item 14 should be tangent to all three sides.
This is called the incircle of the triangle. However, one should be careful not to con-
fuse the point where the incircle touches a side with the point where the angle bisector
of the opposite angle intersects the side.

Exercises 4.1

All the problems ask for freehand drawings.

1. Given a quadrilateral. Can you draw a circle that passes through all four vertices?

Do you know when this is possible?

2. Let L1 and L2 be any two lines in the plane. Let points A, B, C be randomly

chosen on L1, and let points D, E, F be randomly chosen on L2. Let AF , CD inter-

sect at X, let AE, BD intersect at Y , and let BF , CE intersect at Z. What do you

notice about X, Y , and Z?
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3. Let a circle be given and let A be a point outside of this circle. Draw two lines

through A; let the first intersect the circle at B and C and the second intersect it at

D and E. Let CD and BE intersect at P , and BD and CE intersect at Q. Finally,

let the line PQ intersect the circle at X and Y . What do you notice about the lines

AX and AY ?

2 Constructions using tools

The use of plastic triangles

Using ruler and compass

The use of plastic triangles

We next turn to some basic geometric constructions using tools. By tradition, i.e.,

by the tradition established by the Greek mathematicians around the fourth century

BC, the tools of choice are ruler and compass (the “ruler” should be properly called a

straightedge because we use it only to draw straight lines and never for measuring

length, but this abuse of terminology is probably beyond recall). However, it must be

said that there are a small number of constructions that are easier to do if we avail

ourselves of plastic triangles, and we do these first. There are two kinds of plastic

triangles on the market, the 90-45-45 one and the 90-60-30 one:
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The simplest use of these triangles is to draw angles of 90, 60, 45, and 30

degrees. For example, to draw an angle of 45 degrees with a vertex O and one side

OA given, we proceed as follows.
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(1) Place a ruler along the line joining A and O, denoted by LAO, as shown.

(2) Holding the ruler firmly in place with one hand, place one leg of the 90-45-45

plastic triangle flush against the ruler and slide it until the 45-degree vertex of the

triangle is at O, as shown.

OA r@@@
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@
@

Now hold the triangle firmly in place and gently remove the ruler. If you draw

the other side of the sought-after 45-degree angle at this point by running a pencil

along the hypotenuse (i.e., the longest side) of the triangle, the line will not quite

get to the point O neatly. Perform two more steps, as follows.

(3) Press down with one hand on the plastic triangle to keep it in this position,

then use the other hand to place the ruler flush against the hypotenuse, as shown.
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(4) Press down on the ruler to keep it in this position before gently removing the

90-45-45 triangle. Now draw the line from O that gives the other side of the desired

45-degree angle.
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The next use of plastic triangles is to drop a perpendicular from a given

point to a given line. For this purpose, either of the two plastic triangles can be

used. For ease of drawing (on the computer), we will continue to use the 90-45-45

one. There are two possible scenarios: the point is on the given line, and the point is

not on the given line.

First, suppose the point P lies on the given line L.

(1) Place a ruler along the line L, as shown in the left picture below.

(2) Put the triangle flush against the ruler and slide it along the ruler until the

90-degree vertex is at the point P , as shown in the left picture.
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Once again, if you hold the plastic triangle firmly in place and run a pencil along

the vertical side, you will get part of a line that doesn’t quite reach P neatly. Do

instead the following:
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(3) With one hand holding the triangle firmly in place, place the ruler flush against

the vertical side of the triangle as shown in the right picture above.

(4) Gently remove the triangle while holding the ruler in place. You can now

draw a complete line passing through P and perpendicular to the line L.

Now consider the case of the point P not lying on L. Here are the steps.

(1) Place a ruler along the line L as before.

(2) Pressing down on the ruler to hold it in place, put the triangle flush against

the ruler, as in the picture on the left below.

(3) Still holding the ruler firmly in place, slide the triangle along the ruler until

the vertical side of the triangle passes through P , as shown in the picture on the right.
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By now, you are already experienced in this game and it should be unnecessary

to repeat the steps about how to place a ruler flush against the vertical side of the

triangle and draw the desired line along the ruler rather than along the vertical leg

of the triangle.
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The final construction with plastic triangles is to draw a line through a given
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point P parallel to a given line L which does not contain P . Again, either

triangle can be used, but we will continue to use the 90-45-45 triangle for illustration.

(1) Place a ruler along the line L.

(2) Holding the ruler in place with one hand, put the triangle flush against the

ruler as shown in the left picture below.

(3) Now hold the triangle firmly in place and put the ruler flush against the

vertical side of the triangle, as shown in the right picture below.
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(4) Hold the ruler firmly in place and slide the triangle along the ruler until the

horizontal side passes though the point P , as shown in the picture on the left below.

(5) Gently remove the ruler and draw the parallel line through P , or go through

the standard procedure of placing the ruler flush against the horizontal side of the

triangle before drawing the line, as shown in the picture on the right.

@
@
@

@
@
@

@
@

@
@

@

P
r

L

@
@
@

@
@
@

@
@

@
@

@

P
r

L

198



Remarks.

(a) One has to exercise good judgment about where to place the triangle at the

beginning of the construction. Otherwise the critical step (4) cannot be carried out

if the horizontal side of the triangle is too short to pass through P .

(b) We put one leg of the triangle flush against the ruler in step (2) above, but

you can equally well do the same using the hypotenuse.

(c) This construction is most useful when we have to draw a line parallel to a

given line L passing through each of several given points P1, P2, . . . , Pn. In this case,

we would modify steps (4) and (5) as follows:

(4′) Hold the ruler firmly in place and slide the triangle along the ruler until the

horizontal side passes though the point P1. Draw the line through P1.

(5′) Still holding the ruler firmly in place, now slide the triangle along the ruler

until the horizontal side passes though the point P2. Draw the line through P2. etc.

Using ruler and compass

We now turn to ruler-compass constructions. No proofs are necessary at this

point. Most students derive a sense of power knowing how to use tools to get things

done. If they can do this here, they will have a good entry into the world of geometry.

We begin with the most basic constructions.

(a) Reproduce a line segment on another line with a specified endpoint.

Suppose a line segment AB is given; a line L is also given together with a point C

on L. The problem is to construct a line segment on L which has C as an endpoint

and which has the same length as AB.

L

A B

C

D
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The construction:

1. Open the compass to the length of AB. With C as center and AB as radius,

draw a circle which intersects L at two points. Let one of them be D.

2. CD is the desired segment.

(b) Reproduce an angle on a given ray.

Suppose we are given an angle ∠ABC and a ray to be denoted by REF . The

problem is to construct a ray RED so that ∠DEF equals (i.e., has same degree as )

∠ABC.

Q

A

B C

D

E
F

M

N

P

The construction:

1. Draw a circle (any radius) with B as center, then draw another circle with E

as center but with the same radius.

2. Let the first circle intersect the sides of ∠ABC at N and M , as shown, and let

the second circle (to be called circle E) intersect the ray REF at P .

3. With P as center and with the length of MN as radius, draw a circle and let

one of the points of intersection of this circle with circle E be Q.

4. Let RED be the ray that contains E and Q. Then ∠DEF is the sought-after

angle.
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(c) Construct a line from a point perpendicular to a line L.

Let the point be P . There are two cases to consider: P lies on L, and P does not

lie on L. It will be seen that the following construction takes care of both cases at the

same time.

P

L

A B

Q

The construction:

1. Draw a circle with P as center so that it intersects L at two points A and B.

2. Draw two circles with the same (sufficiently large) radius but with two different

centers A and B so that they intersect; let one of the points of intersection be

Q.

3. The line LPQ is the line we seek.

(d) Construct the perpendicular bisector of a line segment.

Let the segment be AB. We have to construct a line which is perpendicular to

AB and which passes through the midpoint of AB. Incidentally, this construction

also yields a method to locate the midpoint of a given segment.

The construction:

1. Draw two circles with the same (sufficiently large) radius but with two different

centers A and B so that they intersect at P and Q.
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M

P

Q

A B

2. The line containing P and Q is the line we seek. (By implication, the point of

intersection M of PQ and AB is the midpoint of AB.)

(e) Construct the angle bisector of an angle.

Let the angle be ∠ABC. The problem is to construct a ray from B that bisects

this angle. Note the similarity of this construction with construction (c).

M

A

B C

P

Q

The construction:

1. Draw a circle with center at B (with any radius); let it intersect the rays RBA

and RBC at P and Q, respectively.

2. Draw two circles with the same (sufficiently large) radius but with two different

centers P and Q so that they intersect at a point M .

3. the ray RBM is the angle bisector of ∠ABC.
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(f) Construct a line through a point parallel to a line.

Let the line be L and let the point be P ; P does not lie on L. We have to construct

a line passing through P and parallel to L.

L

P

A

B

RQ

The construction:

1. Take a point Q on L and join P to Q.

2. Let A be a point on the ray RQP so that P is between A and Q. Let R be some

point on L. On the ray RPA, construct an angle ∠APB so that it is equal to

∠PQR, as shown in the picture. (See construction (b) above.)

3. The line passing through P and B is the line parallel to L.

Remarks.

(i) This construction assumes that you are already completely fluent in reproduc-

ing an angle (construction (b)). If you experience difficulty in learning how to do this

construction, please go back to construction (b) and learn that construction to the

point of automaticity.

(ii) It is not easy to do this construction accurately, mainly because it is not easy

to do construction (b) accurately. In practice, a better alternative is to use a plastic

triangle to construct parallel lines.

(g) Divide a given line segment into any number of equal segments.

Let segment AB be given. We show how to trisect AB. The construction can

obviously be generalized to equal division into any number of parts.
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F G B

K

The construction:

1. Let RAK be any ray issuing from A which is different from AB. Let AC be any

segment on AK.

2. Reproduce AC successively on AK so that AC is equal to CD and is equal to

DE (see (a)).

3. Join EB. From D and C, construct lines parallel to LEB (see construction (f)),

and let these lines intersect AB at G and F , respectively.

4. AF , FG, and GB have the same length.

Remark. Step (3) above can be done more accurately using a plastic triangle.

See remark (ii) at the end of construction (f).

(h) Construct an equilateral triangle on a given side.

An equilateral triangle is a triangle whose sides have equal lengths. Let a

segment AB be given. We have to construct an equilateral triangle with AB as one

of its sides. (The picture is shown on the next page.)

The construction:

1. Draw two circles with AB as radius but with different centers at A and B.

2. Let C and D be the points of intersection of the two circles. Then 4ABC or

4ABD is the sought after triangle.
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(i) Construct a regular hexagon in a circle.

A regular hexagon in a circle is a polygon whose six vertices lie on the circle,

so that its six sides are equal and its six angles at the vertices are also equal. Given

a circle with center O, we will refer to it as circle O. The problem is to locate six

points on circle O so that they form the vertices of a regular hexagon.

E

O

B

D

A

CF

The construction:

1. Take a point A on circle O whose radius will be denoted by r. With A as center

and with r as radius, draw a circle which intersects circle O at B and F .

2. With B as center and r as radius, draw a circle which intersects circle O at an

additional point C.

3. Repeat the drawing of circles with center C and then D, as shown, so that we

obtain two more points D, and E.

205



4. Connect the successive points A, B, . . . , F and A to get the desired hexagon.

(j) Draw tangents to a circle from a point outside the circle.

Let P be a point outside circle O. The problem is to construct a line passing

through A and tangent to circle O.

A

PO M

The construction:

1. Join P to O to obtain segment OP .

2. Locate the midpoint M of OP (see construction (d)).

3. With M as center and MP as radius, draw a circle that intersects circle O at

two points.

4. If A is a point of intersection in step 3, then the line LPA is tangent to circle O.

Exercises 4.2

1. Accepting the fact that all the constructions with ruler and compass are mathe-

matically correct, describe how you would go about constructing a square when one

side is given. Discuss at which point of the construction you may have doubts that

you are getting a square.

2. If you accept that the construction described in (f) is correct, explain on this basis

why the earlier construction of a parallel line to a given line using plastic triangles is
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correct.

3. (a) Perform construction 3 of §1 using ruler and compass. (b) Do the same with

construction 9 of §1. (c) Do the same with construction 11 of §1.

4. Divide a given segment into 7 parts of equal lengths.

5. It is known that if A is a point on a circle centered at O and a line ` passes through

A, then ` is tangent to the circle if and only if the line LOA is perpendicular to `. On

this basis, (a) if PQ is a diameter of a circle (i.e., PQ passes through the center

of the circle) and K is a point on the circle, what would you guess is the degree of

∠PKQ, and can you explain your guess? (Look at construction (j).) (b) If A is a

point on a circle, use ruler and compass to draw a tangent to the circle at the point

A.

3 The basic isometries, Part I

Translation along a vector

Reflection across a line

Rotation around a point

We now embark on some activities that are designed to familiarize you with a

concept that is not only basic in the remainder of these notes, but basic in geometry

itself: isometry39 in the plane. This is a “rule” or a “motion” that specifies how to

move each point in the plane to another point in the plane, in such a way that if two

points are distance d apart, then they are still exactly distance d apart after being

moved. For this reason, an isometry is sometimes called a rigid motion. In technical

terms, an isometry (in the plane) is a motion that is distance preserving. With one

exception, we have no example of isometries in the plane at this point, i.e., we know

39The prefix “iso” means equal, and the suffix “metry” means roughly the process of measuring
(as in geometry). This word deserves to be used in school mathematics.
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of no rule that is distance preserving, and the exception is the rule that sends every

point p to p itself. However, we had better come up with some interesting examples,

and fast.

We introduce three basic rules, called basic isometries:

translation along a vector

reflection across a line

rotation around a point

We first explain what these rules are, and then we will convince ourselves through

some hands-on activities that, indeed, they are distance preserving, i.e., they are

isometries.

An easy way to come to grips with these three basic isometries is to get hold of

a piece of paper and a sheet of overhead-projector transparency. We will imagine

that the piece of paper is the plane and then we move the transparency in a way

that simulates the effect of the basic isometry in question. A case-by-case discussion

follows.

Translation along a vector

Translation is conceptually the simplest of the three basic isometries, although it

will turn out to be difficult to make precise mathematical sense of the concept of the

“direction” of a translation. Here we are more concerned with intuitive understanding

and are willing to sacrifice precision for this purpose. First we generalize the concept

of a vector, which was already used in §2 of Chapter 2. By a vector AB, we mean a

line segment AB together with the designation of the first point A as the beginning

point and the second point B as the endpoint. Therefore AB and BA are different

vectors although they have the same segment in common. We usually use an arrow

at the endpoint to indicate, for example, that AB is from A to B. Thus if AB is the

following vector,

��
��

��
��

��1

A

B
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then BA would be pictured as:

����������)
A

B

With a vector AB given, we define the translation along AB, or more simply

the translation from A to B, as the rule which moves points in the plane as follows:

a point P in the plane is moved to the point Q so that

(i) if P does not lie on the line LAB containing AB, then the (line con-

taining the) segment PQ is parallel to the (line containing the) segment

AB,

(ii) If P lies on LAB, then Q is in the same direction relative to P as B is

to A,

(iii) PQ has the same length as AB, and

(iv) the two vectors PQ and AB point in the same direction.

We leave open the precise meaning of “in the same direction” for now, but trust

that on an intuitive level its meaning is unambiguous. For example, suppose AB is

horizontal and points right, then PQ will likewise point right (and of course PQ is

also horizontal because of (i)).

-A B

-P Qq q

We usually denote a translation by T , or if necessary, by TAB to denote the trans-

lation from A to B. A translation is easily visualized through the following activity.

Activity We are going to use a piece of paper as a model for the plane. On

the paper, draw a vector AB, and also extend the segment AB to a line, denoted

as usual by LAB. Draw some figures on the paper. Then use a piece of overhead-

projector transparency to copy everything on the paper, using (let us say) a red pen.

In particular, both the vector AB and the line LAB are on the transparency. Holding

the paper in place, slide the transparency along the line LAB until the red point A on
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the transparency is on top of the point B on the paper. The new positions of all the

red figures on the transparency then display how the translation from A to B moves

the figures on the paper.

If AB is horizontal, the following is an example of what a translation does. We

use the following notation: TAB(S) denotes the new position of a figure S after being

moved by TAB.

--A B LAB

s s ss ss s ss ss sS TAB(S)

c c cc cc c cc cc c

ssssssssssssU TAB(U)cccccccccccc
Can you explain why this activity is an accurate model of the concept of a translation?

We will formalize some concepts. Let T be the translation from some point A to

some B. If T moves a point P to a point Q, then we denote Q also by T (P ) and call

it the image of P under T , or more simply the translated image of P . We also

say T maps P to Q. If S is a geometric figure in the plane, then the totality of all

the translated images of the points in S is called the image of S under T , or more

simply the translated image of S, and denote it by T (S) (note the consistency

with the notation in the preceding picture).

A geometric figure S is said to has translational symmetry if there is a trans-

lation T so that T maps S onto itself, i.e., T (S) = S, i.e., S is its own translated

image. Note that for a figure S to possess translational symmetry, all it takes is to

get one translation T so that T (S) = S. In practice, most figures with a translational

symmetry possesses more than one translation to fulfill this requirement. The sim-

plest figure with translational symmetry is a line `: just pick any two points A and

B on ` and you should be able to show that TAB(`) = `:

210



��
��

��
��

��1

��
��

��
��

��1

A

B

��
��

��
��

��
��

��

���

`

Another obvious figure with translational symmetry is the grid on graph paper. With

the points A, B, C, and D as indicated, if T denotes the translation along any of the

three vectors AB, AC, and AD and if G denoted the grid, then T (G) = G.

q
qq
q

C D

A B

Most patterns on rugs have translational symmetry, but the most famous geometric

figures with translational symmetry are no doubt some of the prints of M. C. Escher.

If you go to

http://www.mcescher.com/Shopmain/ShopEU/facsilimeprints/prints.html

you will get to see five of them: Two Birds, Bird/Fish, Lizard, Horseman, and Twelve

Birds.

In view of the preceding Activity, the following assertions should be completely

plausible for a translation T :

(T1) A translation is an isometry (i.e., distance-preserving); it also preserves the

degree of an angle.

(T2) The image of a (straight) line under a translation is a (straight) line. Fur-

thermore, the image of a segment is a segment, and the image of a ray is a

ray.
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(T3) If T is a translation from A to B, then the distance between a point P and its

translated image under T is always equal to the length of AB.

Some other simple properties of translation will be left to an exercise.

Reflection across a line

Given a line ` in the plane. We are going to describe a rule that moves points

from one side of ` to the other side. We will use the letter R to denote this rule, to

be called the reflection across ` or reflection with respect to `: if p is a point

in the plane that does not lie on `, then R moves p to another point, traditionally

denoted by R(p), so that ` is the perpendicular bisector of the segment joining P to

R(p). Clearly, p and R(p) lie on opposite sides of `. On the other hand, if p is a

point on ` itself, then by definition, R(p) = p, i.e., we leave p alone. We call R(p)

the image of p under R, or more simply as the reflected image of p. Thus, for

each and every point in the plane, we have described how to move p to another point

R(p).

We shall describe the rule p 7→ R(p) in a slightly different language presently,

but first, if ` is a vertical line, then we can easily picture p and R(p) this way. Let

us denote the reflected image of a point • by ◦, i.e., for the moment, we will use

the representation that R(•) = ◦ . Then we have the following examples when ` is

vertical:

`

c ss cs cc s
s cc s

c sc sc s

s cs c

Note especially the fact that if the number line is inserted as a horizontal line in

this picture, then for every p on the number line, the point R(p) is exactly what we
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called p∗ in §1 of Chapter 2. (This explains the terminology of “mirror reflection” of

Chapter 2.) Note also that, just as p∗∗ = p in Chapter 2, we have in the case

R(R(p)) = p for every point p in the plane

where the meaning of R(R(p)) is as follows. Suppose q stands for R(p), then q is

a point in the plane and therefore R(q) makes sense. So this R(q) is exactly the

meaning of R(R(p)). In the above picture, the meaning of this equality is that if we

start with a point •, the its reflected image is the corresponding ◦ on the opposite side

of `, but if we now look at the reflected image of this ◦, then it is back to the original •.

We can define the reflection R in a different but equivalent way. Given ` and a

point P not lying on `, let the perpendicular line from P to ` meet ` at A (i.e., A is

the foot of the perpendicular from P to `). If Q is the point on this perpendicular,

but on the other side of `, so that the segment from P to A and the segment from A

to Q have the same length, then R(P ) = Q.
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Q = R(P )
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��

A

There is clearly no mathematical difference between this description of R and the

original description, but this description has the advantage of making it easier to

picture what R does: go straight from P to `, and then go again the same distance

and stop, and the stopping point is R(P )

Next, we give an intuitive description of R that gives a global picture of what R

does. Go back to the picture of the vertical line above: one can imagine that if we

fold the page across the vertical line, then each black dot • would fall on the corre-

sponding white dot ◦ and vice versa. So a reflection is nothing but a precise way of

describing how points are matched up when we fold the paper along the line ` if one

can imagine the whole plane as a piece of paper. This then suggests an activity, one
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that is strongly recommended for the middle school classroom to acquaint students

with the concept of a reflection.

Activity On a piece of paper, draw a line, to be called ` for the sake of discussion.

Draw some figures on the paper. Then use a piece of overhead-projector transparency

to carefully copy everything that is on the paper, using a different color, say red. In

particular, the line ` is also on the transparency. Flip over the transparency and

superimpose it on the paper, making sure that the red line ` on the transparency

matches point-for-point the line ` on the paper. Now a comparison between the

figures on the paper and the corresponding red figures on the transparency gives a

clear idea of how the reflection across ` moves the points around: the red version of

a figure on the paper is the reflection of the corresponding figure across `.

Discuss with your neighbors why flipping the transparency over, as above, is an accu-

rate realization of the reflection across `.

The preceding activity highlights the need to consider, not just how each point

is individually reflected, but how a whole geometric figure is reflected. Let R be the

reflection across a line ` as usual. If S is a geometric figure in the plane, then the

totality of all the reflected images of the points in S is called the reflected image

of S, or more generally the image of S under R, and is denoted R(S). Here are

two examples in case the line ` is the vertical line. Note the effect of a reflection on

“left” and “right”, and on “up” and “down”.

`

c sc sc sc sc sc sc sc sc sc sc sc s

cs cs cs cs cs cs cs cs cs cs cs cs

R(S) S

T R(T )

We now make several observations about reflections, which are all pictorially plau-

sible, and are made all the more so by the preceding activity with transparencies. Let
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R be a reflection across a line `. Then:

(R1) A reflection is an isometry (i.e., distance-preserving) and, in addition, preserves

degree of angles.

(R2) The image of a (straight) line under a reflection is a (straight) line. Further-

more, the image of a segment is a segment, and the image of a ray is a ray.

(R3) Reflecting twice across the same line leaves every point in the plane fixed, i.e.,

unchanged.

If the image of a geometric figure under R is the geometric figure itself, then we

say R maps the figure onto itself. In school mathematics, it is more common

to say that the figure has bilateral symmetry or reflection symmetry and ` is

called the axis of symmetry or line of symmetry. For example, the letters “A”,

“H”, “M” (among others) have bilateral symmetry with respect to the vertical line in

the middle, whereas a circle has bilateral symmetry with respect to every line passing

through the center. One would like to believe that a photograph of every human face

has bilateral symmetry with respect to the vertical line in the middle, but that is

just wishful thinking. We leave as an exercise to show that, if we believe in (R1) –

(R3), then the angle bisector of an angle is a line of symmetry of the angle and the

perpendicular bisector of a segment is a line of symmetry of the segment.

Rotation around a point

Given a point P , we will define what is meant by a rotation of (let us say) 32

degrees around P . Denote this rotation by ρ (Greek letter rho; we cannot use “R”

because this letter has been preempted by reflections). The point P will be called the

center of rotation and the number 32 the degree of rotation. In this case, the

definition will be best explained by an activity.

Activity On a piece paper, fix a point P , and then draw a geometric figure

S. On a piece of transparency, copy all this information exactly, in red color (say),
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and keep the transparency in exactly this position. In particular, the red point P on

the transparency is on top of the point P on the paper. Now use a pointed object

(e.g., the needle of a compass) to pin the transparency to the paper at the point P .

Holding the paper fixed, rotate the transparency around P , counterclockwise40 by 32

degrees and stop; the position of the red figure is exactly where ρ moves S. If the

figure consists of a single point Q, then the position of the red Q is where the rotation

ρ moves Q. Notice that ρ does not move P , the center of rotation. See picture; we

will explain the notations used in the picture below.

(ρ

32
o

P

Q

Q)(ρ
32
o

S

S)

Of course there is nothing special about the number 32. So we may define a

rotation with center P of degree e, where −180 ≤ e ≤ 180, to be the rule

which leaves P itself unchanged but which moves every point Q which is not P in the

following way:

If e ≥ 0, join Q to P and rotate the segment PQ, with P as pivot, like

the hands of a clock e degrees counterclockwise. The new position of Q is

where ρ moves Q, and is denoted by ρ(Q). If e < 0, then do the same

except that we rotate PQ clockwise e degrees.

The point ρ(Q) is called the image of Q under ρ, or more simply, the rotated

image of Q. If S is a geometric figure, then the collection of all the rotated images

of the points in S is called the image of S under ρ, or the rotated image of S,

to be denoted by ρ(S). Compare the preceding picture.

It follows from the Activity that if ρ is a rotation of e degrees around a point P ,

and ρ′ is a rotation of −e degrees around the same point P , then rotating a point Q

40If “32 degrees” is replaced by a negative degree, then we rotate clockwise.
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first by ρ and then by ρ′ bring Q back to itself, i.e., leaves Q fixed. The succession

of these two rotations is recorded as ρ′(ρ(Q)); let us make sure that this notation

makes sense, and it does because if we write Q′ for ρ(Q), then Q′ is just a point in

the plane and therefore ρ′(Q′) makes sense. So this is exactly ρ′(ρ(Q)). Notice that,

more generally, if ρ∗ is a rotation of degree e∗ around the same point P , then the

rotation ρ followed by the rotation ρ∗ is a rotation of degree e + e∗ around P . This

is easily borne out by rotating the transparency, first e degrees, and then e∗ degrees

(keeping in mind that a rotation of positive degree is counterclockwise and a rotation

of negative degree is clockwise.

For a later need, we want to address two issues concerning rotations. The first is:

what does a rotation do to lines and angles? The preceding activity should convince

you that, under a rotation, the image of a line is a line, the image of a segment of

length d is a segment of length d, and the image of an angle is an angle of the same

degree. Thus if ∠ABC has degree e, then a rotation ρ, regardless of what its center

is or what its degree of rotation may be, will rotate it to an angle ρ(∠ABC) of the

same degree e. The second question is about rotations of 180 degrees. Let ρ∗ be such

a rotation, with center P , and let ` be a line not containing P . Take a point A on `.

There are two questions:

(i) Is there anything special about the three points A, P , and ρ∗(A)?

(ii) Can ρ∗(A) be a point on `, given that A is a point on `?

The answer to (i) is yes, and the reason is straightforward: write A∗ for ρ∗(A), then

the fact that the angle ∠APA∗ is 180 degrees means that the the three points are

collinear, i.e., lie on a line:

o

A*

180

P A

The answer to (ii) is more tantalizing. Again write A∗ for ρ∗(A), then the following

picture shows clearly that A∗ is “away” from `, because it is as far on one side of P

and A is on the other side. Therefore, A∗ cannot lie on `.
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We will discover, gradually, that an indispensable part of learning geometry is to

learn how to replace intuitive, gut feelings by mathematical reasoning. In this case,

since we are completely convinced that A∗ cannot be on `, why not pretend that A∗

is on ` and see what absurdity this assumption leads to? So let A∗ ∈ `, then you’d

notice this peculiarity about the line LAA∗ : the two lines ` and LAA∗ both join the

point A to the point A∗ which is different from A (why are A and A∗ different?).

But we know that there is only one line joining two distinct points, so we have to

conclude that ` and LAA∗ coincide. So what is wrong with that? Here is where we

must remember what we started with, i.e., what our assumptions are. We have

assumed from the beginning that ` does not contain P . But LAA∗ contains P and if

it coincides with `, then ` must contain P . In the face of this contradiction, we see

the error of our ways: we made the mistake of saying A∗ is on `. Therefore A∗ is not

on `. Thus the answer to (ii) is no.

Let us summarize our reasoning into one conclusion:

(]) If P is a point not on a line `, and if ρ∗ is the rotation of 180 degrees

around P , then for every point A on `, the rotated image ρ∗(A) does not

lie on `.

We will have many occasions to revisit this seemingly innocuous statement (]).

As before, if a geometric figure S satisfies ρ(S) = S for some rotation ρ, then

we say S has rotational symmetry. We also say ρ maps S onto itself. The

prototypical figure with rotational symmetry is of course the circle: if O is the center

of a circle, then the rotation of every degree with center at O maps the circle onto

itself. We cannot prove it now, but you can believe that the regular hexagon of

construction (i) in the preceding section has rotational symmetry: the rotation of 60

degrees around the center of the circle maps the hexagon onto itself. One of Escher’s

most famous prints, Circle Limit III, has a subtle 180 degree rotational symmetry.

See
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http://www.d.umn.edu/~ddunham/dunamtlk.pdf

Just as with translations and reflections, several observations about rotations are

entirely believable.

(ρ1) A rotation is an isometry and it preserves degrees of angles.

(ρ2) The rotated image of a line is a line, the rotated image of a segment is a segment,

and the rotated image of a ray is a ray.

(ρ3) If ρ and ρ∗ are two rotations — of degrees e and e∗, respectively, — with the

same center P , then the point Q′ = ρ∗(ρ(Q)) obtained by first rotating a point

Q by ρ and then by ρ∗ is the same point as the one obtained by rotating Q

e+ e∗ degrees around P .

In connection with (ρ3), it is important to remember that each rotation depends

on two pieces of data: the degree of the angle of rotation and the center of rotation.

Whenever you talk about a rotation, do not assume that the center of rotation is

somehow understood and pay attention only to the degree of the rotation. You must

know what the center of rotation is! Here is an activity to remind you of this fact.

Activity In the picture below, let ρ, ρ∗ be respectively the rotation of 90 degrees

with center P , P ∗, and Q is a point on the segment PP ∗ so that the length of QP ∗

is 3 times the length of PQ. Compare the following four points: ρ∗(ρ(Q)), ρ(ρ∗(Q)),

the point A obtained by rotating Q 180 degrees around P , and the point A∗ obtained

by rotating Q 180 degrees around P ∗.

r r r
P Q P ∗

Exercises 4.3

1. Explain why equilateral triangles, squares, and regular hexagons all possess rota-

tional symmetry. Do they possess bilateral symmetry too? How many of the latter
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are there in each case?

2. Show that if ` is the angle bisector of an angle, then the reflection R across `

interchanges the two sides of the angle, i.e., if OA and OB are the sides of the angle,

then R(OA) = OB and R(OB) = OA.

3. Let T be the translation from point A to point B. Prove that if a line ` is neither

LAB nor parallel to LAB, then the image of ` under T is parallel to `.

4. Repeat the Activity above Exercises 4.3, but change ρ, ρ∗ to be, respectively, the

rotation of 30 degrees with center P , P ∗. Use a protractor to make the drawings as

accurate as possible.

5. Describe a sequence of basic isometries that would move the left ellipse to the right

one (there is obviously more than one way):

6. In the picture below, C denotes the lower left corner of the black figure, |∠CAB| =
45◦, |AB| = |BC|, and line L makes 45 degrees with line LAB.

Let G be the clockwise rotation of 90◦ with center at the point A, let H be the

reflection across the line L, and let J be the translation along AB. Furthermore, let

S denote the black figure.

Using a separate sketch for each of the following items, indicate the positions of

(a) J(S) and G(J(S)), (b) G(S) and J(G(S)), (c) H(S) and G(H(S)), (d) G(S)

and H(G(S)), (e) J(S) and H(J(S)), (f) H(S) and J(H(S)).

220



C

A B

L

4 Dilation: Part I

The last section deals with isometries, but in this section, we will discuss motions

that move points in the plane in order to increase or decrease distance without, in

some sense, distorting shape. For rectilinear figures like triangles, size modification

can be fully characterized by the ratios of corresponding sides, For a curved geometric

figure like an ellipse, what it means for one ellipse to be “twice the size” of another

one is less clear. The key concept involved is a dilation. A motion, or a rule, D of

the plane is a dilation with center O and scale factor r (r > 0) if

(i) D leaves the point O fixed (i.e., D(O) = O ).

(ii) If a point P is different from O, D moves P to the point P ′ on the

ray ROP so that |OP ′| = r|OP |.

The standard notation for P ′ is D(P ). Thus a dilation with center at O maps

each point by “pushing out” or “pulling in” the point along the ray from O to that

point, depending on whether the scale factor r is bigger than 1 or smaller than 1. In

particular, each ray issuing from O is mapped onto itself. Here is an example of how

a dilation with r = 2 maps four different points (for any point P , we continue to let

the corresponding letter with a prime, P ′, denote the image D(P ) of P ):
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The fundamental fact about dilations is the following. For the statement, we have

to introduce the notation that |AB| stands for the length of the segment AB.

(A) If D is a dilation with center O and scale factor r, then for any two

points P , Q in the plane so that O, P , Q are not collinear, the lines LPQ

and LP ′Q′ are parallel, where P ′ = D(P ) and Q′ = D(Q), and further-

more, |P ′Q′| = r |PQ|.

Activity 1 Check this statement experimentally by direct measurements for

dilations with scale factors 2, 3, and something exotic like 3.7. (However, if you do

it with 3.7, use a calculator!) Thus for the following example of a dilation with scale

factor 3, one can use plastic triangles (see §2) to check that PQ ‖ P ′Q′, and also

check |P ′Q′| = 3|PQ|.
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One should appreciate why (A) is so remarkable: the definition of how a dilation

moves the points in the plane involves only the “radial direction” with respect to the
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center of the dilation. In other words, if the center of the dilation D is O and P is a

point distinct from O, then to find where P ′(= D(P )) is, all you need is to look at O

and nothing else: if you know where O is, you know how to draw the ray ROP and

on this ray you can get hold of P ′. The same holds for Q′. What (A) says is that,

although P ′ appears to have nothing to do with Q′, yet the segment P ′Q′ will always

be tied to PQ in that PQ ‖ P ′Q′ and |P ′Q′| = r |PQ|, where r is the scale factor of D.

The above activity can be done with great accuracy for any scale factor. If we

set our collective sights lower by not insisting on great accuracy and are happy with

using only scale factors which are fractions with small whole numbers in the numerator

and denominator, then your lined notebooks provide a fertile playground for dilation

activities. Here is an explanation. The lines on your notebook papers are supposed

to be mutually parallel and equi-distant, i.e., if you draw a line LAB perpendicular

to one (and therefore every) line, then the segments intercepted by the lines on LAD

are all of the same length. Thus |AB| = |BC| = |CD| = . . . (see the picture

below). Now draw another line LMQ at random but make sure that it intersects

all the given lines and check (using a compass, for instance) that, always, we have

|MN | = |NP | = |PQ| = . . .. Such a line as LMQ is called a transversal of the

parallel lines.

\
\
\
\
\
\
\
\
\
\
\
\\A

B

C

D

M

N

P

Q

Our finding may therefore be re-phrased as follows:

(B) Equi-distant parallel lines intercept equal (length) line segments on a

transversal.
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In a problem of Exercises 5.3 in the next chapter, you will have a chance to prove

(B). In any case, we are now in a position to describe an activity on how to use your

lined notebooks.

Activity 2 On a lined notebook paper, take a point A on a line and draw two

rays RAB and RAC from A. Let both B and C be on (let us say) the 5th line below

A. Let the intersections of the rays RAB and RAC with the 7th line below A be B′

and C ′, respectively (see picture below). Then according to (B), we have

|AB′|
|AB|

=
|AC ′|
|AC|

because both are equal to 7
5 .

Thus if D∗ is the dilation with center A and scale factor 7
5 , then D∗(B) = B′ and

D∗(C) = C ′. Now check by direct measurements that |B′C ′| = 7
5 |BC|. Repeat this

activity by varying the numbers 5 and 7.
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The reason we said this activity with notebook papers may not be of great accuracy

is that one cannot always be sure that the lines are truly equi-distant.

The next striking fact about dilations is somewhat subtle. Let us go over the

above statement (A) with care: We have dilation D and two points P and Q so that

the center O is not collinear with P and Q. We get two more points P ′ = D(P )

and Q′ = D(Q). Then (A) says the lines LPQ and LP ′Q′ are parallel, but it says

nothing about the image under D of PQ. Recall that the point D(V ), for any point

V , is called the image of V under D, and that by the image of PQ under D,

we mean the collection of the images of all the points in the line segment PQ under

D. The notation for the latter is, as usual, D(PQ). Thus far, we have looked into
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the segment P ′Q′ joining P ′ ( = D(P )) to Q′ ( = D(Q)), but we have no idea what

D(PQ) might be. In other words, if A ∈ PQ, do we know that D(A) lies in the

segment P ′Q′? You should try to find out:

Activity 3 We pursue the example of Activity 2. Pick any point P on LBC ,

and let the line joining A and P intersect LP ′Q′ at P ′. Now measure |AP | and |AP ′|;
is it true that |AP ′| = 7

5 |AP | ? Pick another point Q on LPQ and get Q′ on LP ′Q′ as

shown. Again, is it true that |AQ′| = 7
5 |AQ| ? Try other choices P and Q.
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What turns out to be true in general is that if D is any dilation and P , Q are any

two points, then

D(LPQ) = LP ′Q′ where P ′ = D(P ) and Q′ = D(Q). (8)

We give the simple proof right now, assuming the truth of (A), as follows. Take any

point M on LPQ, and let M ′ be the image under D of M . We want to show that M ′

lies on LP ′Q′ , where P ′ = D(P ) and Q′ = D(Q).
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Because Q′ = D(Q) and M ′ = D(M), (A) implies that LQ′M ′ ‖ LQM . Because

Q′ = D(Q) and P ′ = D(P ), (A) implies that LQ′P ′ ‖ LQP . Of course LQM = LQP , we

now have two lines LQ′M ′ and LQ′P ′ passing through the point Q′ and both parallel

to the same line LQP . We know that there can be only one line passing through a

point and parallel to a given line. So LQ′M ′ = LQ′P ′ and M ′ lies on LP ′Q′ . Therefore

for any M ∈ LPQ, we have proved that D(M) ∈ LP ′Q′ . In other words,

D(LPQ) ⊂ LP ′Q′ where P ′ = D(P ) and Q′ = D(Q).

We leave the proof of the converse statement that LP ′Q′ ⊂ D(LPQ) to an exercise.

We have thus proved equation (8).

With a little bit more work, we can prove that, in fact, the image of the segment

PQ under D is the segment P ′Q′. There is an analogous statement about rays.

We summarize this discussion in the following statement:

(C) The image under a dilation of a line is a line, and the image of a

segment is a segment and of a ray is a ray.

Statement (C) makes it extremely easy to find the image of a triangle under a

dilation: just find the images of the three vertices (repeat: only three points) and

then connect them to get the image triangle.

Activity 4 (1) Copy the following triangle into your lined notebook. Choosing

any point on a line as the center of dilation, dilate the triangle with a scale factor of

3. Does it look similar to the original triangle?
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(2) Still with scale factor 3, repeat part (1) using another center of dilation (but make

sure that it still lies on a line of your notebook paper). How do the two triangles

compare?

From Activity 4, you should get a sense that the dilated image of a geometric figure

looks like the original figure and that the “shape” of the dilated image is independent

of the center of dilation if the scale factor remains the same. We will see in Chapter

6 that dilation lies at the heart of the concept of similarity. This then brings us back

to the point raised at the beginning of this section: if we have a curved figure, such

as the curve C below, how to magnify it to be “twice as big”?

C

The answer is: dilate it (using any point as center of dilation) with a scale factor of

2. And of course, if you want to magnify C to make it 14.7 times bigger, then you

dilate it with a scale factor of 14.7. Dilation is the method used to magnify

or shrink geometric figures, using a scale factor > 1 for magnification, of course,

and a scale factor < 1 for shrinking.

If D is a dilation with scale factor 2, then D(C) is the collection of all the dilated

images of the points on C. Because C has an infinite number of points, it is not pos-

sible to draw D(C), literally. In practice, we just draw the dilated images of enough

points on C to get an idea of what D(C) is like. With this in mind, we do the following:

Activity 5 Choose 12 points on C as shown, and choose some point O as center

of dilation:
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Now copy this picture on a piece of paper or transparency and dilate these 12 points

with a scale factor of 2. Can you see the general shape of D(C) just from these 12

dilated image points?

Because it is impractical to dilate too many points by hand, we are going to do

a few elaborate magnifications by using the computer in order to impress on you the

efficacy of dilating only a finite number of data points (the name we give to the

chosen points on the original geometric figure) in a curved figure. It is obvious that

the more data points we use, the better we can approximate the dilated curve by the

image points. With the computer at work, it would be silly to use a simple scale

factor of 2, so let us do something fancy by dilating it with a scale factor of 1.8. We

will start with a modest number of 90 data points (there is a software reason for using

90) and dilate them from O, as shown. (We omit the rays joining each data point

to O in the interest of visual clarity.) We will gradually increase the number of data

points so you will get an idea of this process:

O
q
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Next we triple the number of data points and use 270 instead of 90. The resulting

approximation by the images of this finite collection of points to the image curve itself

is already remarkably good.

O
q

If we use 600 points, then the images can almost pass for the real thing except

that, if we look very carefully, we can still see discrete dots rather than a smooth

piece of curve near the tail end of the longer curve.

O
q

Finally, if we use 1200 data points, then to the naked eye, these are two smooth

curves, one being the dilation of the other. For all practical purposes, this approxi-

mation to the true dilated curve is the real thing.
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What we have described is a basic principle of constructing the dilated image of

any object: To dilate a given object by a scale factor of r, replace the object by a

finite collection of judiciously chosen data points, and then simply dilate these data

points one by one by a scale factor of r. By increasing the number of data points,

their dilated images yield a closer and closer approximation to the true dilated object.

This is how we can draw similar figures regardless of how curved they may be. This is

also the basic operating principle behind digital photography: approximate any real

object by a large number of data points on the object, and then magnify or shrink

these data points by dilation.

It is very instructive for school students to learn to magnify or shrink simple curved

figures by such hands-on activities. These activities will not only impress them but

also give them a far better conception of what “similarity” means than “same shape

but not same size”.

Exercises 4.4

1. Copy the following picture on a piece of paper and dilate the quadrilateral from O

by a scale factor of 2
3 (use a calculator):
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2. Given a point O and the following curve in the plane:

rO

(a) Trace both on a piece of paper, and choose 10 points on the curve so that, by

dilating these points with center O and scale factor 2, the dilated points give a rea-

sonable picture of the dilated curve with scale factor 2. (b) Repeat part (a) by using

20 points. (You will notice that if you use only 10 data points, the points will have

to be placed strategically in order that their images combine to give a good idea of

the image curve.)

3. Dilate the following circle from O with a scale factor of 2.3. What is the dilated

figure, and why? (Caution: This is a much harder problem than meets the eye.)

rO &%
'$

4. Complete the proof of equation (8) by proving LP ′Q′ ⊂ D(LPQ). In other words,

if M ′ is a point on LP ′Q′ , then there is some point M ∈ LPQ so that D(M) = M ′.

(Hint: Let M be the intersection of LPQ and the ray ROM ′ , and imitate the first part

of the proof.)
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5. Explain in detail the statement made below statement (C) to the effect that, to

find the image of a triangle under a dilation, it suffices to find the images of the three

vertices and then connect them to get the image triangle.

6. If you remember any high school geometry, try to explain the phenomenon in part

(2) of Activity 4.

232



Chapter 5: Basic Isometries and Congruence

§1 The basic vocabulary (p. 235)

§2 Transformations (p. 258)

§3 The basic isometries: Part II (p. 265)

§4 Congruence (p. 281)

§5 A brief pedagogical discussion (p. 290)

Appendix (p. 291)
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In this chapter, we begin the formal study of the geometry of the plane. The goal

is to achieve at least a working knowledge of the meaning of congruence. The next

chapter will tackle the related concept of similarity.

School geometry is the analytic and symbolic study of our visual perception of the

space around us. In order to faithfully capture spatial information, we need to use

very precise language because our reasoning has to be conducted using this verbal

description of space.41 We will give new definitions to many concepts already familiar

to you, such as “half-planes”, “angles”, “convex sets”, “rectangles”, “polygons”, etc.

There is an inherent danger here that, because these terms seem so familiar, you take

the new definitions for granted and ignore them. You’d better not , because in an

overwhelming majority of the cases, the new definitions are more precise than the

ones you already know. Please pay special attention to the higher level of precision.

To give an example, you may know a rectangle as “a quadrilateral with four right

angles and two pairs of equal opposite sides”, but here there will be two surprises.

One, a rectangle is merely “a quadrilateral with four right angles” but there is no

mention about equal sides, and two, you are going to get a dire warning that a priori

we have no idea whether there are any rectangles or not. Eventually we will prove

that rectangles do exist and that, indeed, they have equal opposite sides. Please be

aware of these new features when we begin this tour of geometry.

In standard middle school textbooks, congruence is nothing but same size and

same shape. To the extent that this is not a mathematically acceptable definition,

we are forced to conclude that most middle school students do not have a clear

idea of what congruence is. In high school geometry courses, congruence tends to

become synonymous with “triangle congruence”, and such a turn of events again

leaves unexplained the general concept of congruence between curved figures.

In this chapter, we define congruence in terms of the basic isometries — rotations,

translations, and reflections — in the plane. We begin with a precise definition of

these three concepts. Since we have already devoted a good deal of effort in the last

chapter to an intuitive, hands-on discussion of these isometries, it is hoped that the

precise definitions, while somewhat sophisticated, can be taken for what they are: a

41In a strict sense, this is correct. But because a literal adherence to this ideal would make
the teaching of geometry in schools painful if not impossible, we try to walk a thin line be-
tween what is correct and what is learnable. Compare H. Wu, What is mathematics education?
http://math.berkeley.edu/∼wu/C49.pdf
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serious attempt to capture in precise mathematical language the intuitive content of

these motions of the plane. We need to explain congruence only because we need to

explain similarity, and the reason for the latter is that we need some knowledge of

similar triangles to make sense of the discussion of the slope of a line in beginning

algebra. For this reason, we adopt a strictly utilitarian attitude toward the treatment

of geometry: we only do enough to facilitate the learning of algebra.

Having pointed out the importance of precise geometric definitions, we are obli-

gated to also emphasize that the goal of geometry is not to study the precise definitions

per se, but to understand the visual information encoded in the definitions. The sub-

sequent discussions will amply bear this out.

Unlike the first two chapters and Chapter 4, which present school mathematics

at a level quite close to what can be taught in the school classroom, the material of

the next three chapters does not as yet have a natural niche in the school curriculum.

There is no doubt that most, if not all, of the reasoning is essential knowledge to

a middle school teacher, but how much of it should be used in the middle school

classroom has yet to be decided. The teaching of geometry in schools has been in

disarray for quite some time and it is inadequate in terms of the proliferation of

incorrect definitions and the lack of mathematical reasoning. What the remaining

three chapters try to do is to fill in a little bit of this immense void and present

geometry as a mathematical subject rather than as a glossary of mathematical terms

or as a random collection of facts to be memorized. We hope you will make an effort

to bring this viewpoint back to your classroom.

1 The basic vocabulary

The basic assumptions

Angles and the crossbar axiom

Polygons

Geometric measurements
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The discussion of this section takes place in a fixed plane.

The basic assumptions

We are going to start from the beginning. In particular, we will give formal def-

initions of all the concepts we are going to use. In our subsequent mathematical

explanations, it is understood that we draw only on these definitions if any of these

concepts come up in the discussions.

By a line, we mean a straight line. We assume you know what a straight line is,

but will nevertheless explicitly point out that it is understood to be infinite in both

directions. We will be discussing lines lying in a fixed plane, and it would be a good

idea if we have a common starting point. In the informal discussion of geometry in

Chapter 4, for example, we took for granted the following facts, among many others:

There is only one line joining two distinct points. (End of §3.)

Through a point P passes only one line which is parallel to another line

which does not contain P . (Proof of (C) in §4.

It stands to reason that, for the sake of transparency if nothing else, we put ev-

erything on the table and say exactly what we are going to take for granted in the

forthcoming discussion. So here goes. There are six such statements, (L1)–(L6). You

will undoubtedly agree that every single one of them is perfectly obvious.

(L1) Through two distinct points passes a unique line.

If L is the line passing through the points A and B, we say L joins A to B, and

if there is any fear of confusion, we will write LAB for L. It follows from (L1) that:

(L2) Two distinct lines intersect either at one point or none at all.

This last statement is not completely satisfactory because it needs to be supple-

mented by a more precise statement about when two lines will intersect and when

they will not. With this in mind, this is the right place to introduce one of the key
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definitions of plane geometry.

Definition Two lines in the plane are said to be parallel if they do not intersect.

In symbols, if two lines L and L′ are parallel, we write L ‖ L′. The following

statement now completely clarifies the situation. It turns out to have profound im-

plications in geometry as well as in the development of mathematics as a whole.

(L3) (Parallel Postulate) Given a line L and a point P not on L but lying in the

same plane, there is exactly one line in the plane passing through P which is parallel

to L.

In other words, we assume as obvious that in the plane that we normally work

with, for a point P not on a line L, every line containing P intersects L except for

one line. You will see that the Parallel Postulate dominates the discussion of plane

geometry.

If A and B are points on a line L, denote by AB the collection of all the points

on L between A and B, together with the points A and B themselves. We call AB

the line segment, or more simply the segment joining A and B, and the points A

and B are called the endpoints of the segment AB. Note that it makes sense to talk

about points on L between A and B, because L may be regarded as a number line

and A and B then become numbers, e.g., A = 0 and B > 0. In that case, the points

between A and B would be all the numbers x so that 0 < x < B.

xA B

AB

The next property of a line is most likely not one you have encountered in math-

ematical discussions thus far, possibly because it is deemed too obvious to be men-

tioned.

(L4) (Line separation) A point P on a line L separates L into two non-empty

subsets L+ and L−, called half-lines, so that
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(i) The line L is the disjoint union of L+, {P}, and L−, in the sense that

every point of L is in one and only one of these three sets (in particular,

the three sets L+, {P}, and L− are disjoint).

(ii) If two points A, B belong to the same half-line, then the line segment

AB does not contain P ,

PP A B

(iii) If two points A and B belong to different half-lines, then the line

segment AB contains P .

PPA B

This property of the line is best understood from the perspective that every line

is a number line. Thus if we have a point P on a line L , as shown, then letting P be

0, we may let L+ be all the positive numbers (those > 0), and L− be all the negative

numbers (those < 0). In this case, if A ∈ L− and B ∈ L+, then one sees that the

segment AB must contain P (= 0).

L
A

P

B

Of course, if A and B are both positive or both negative numbers (so that A,B ∈ L+

or A,B ∈ L−), AB would not contain P .

The preceding identification of a line with a number line is of course the reason

for the notation L+ and L−. One should not get the idea that, as a consequence of

this fact, one should always think of L− as the half-line on the left and L+ as the

half-line on the right. This only works if the line is “horizontal” (and we have yet to

make formal sense of this terminology). For a line that is “vertical” or almost so, it

would be impossible to carry out this analogy.

The union of either half-line, L+ or L−, with P is called a ray. We also say these

are rays issuing from P . If we want to specifically refer to the ray containing A, we

use the symbol RPA. Similarly, the ray containing B issuing from P is denoted by
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RPB. The point P is the vertex of either ray. The two rays have only the point P

in common, and each ray is infinite in only one direction.

If a point P lies on a line L and A, B are any two points on L not equal to

P , then (L4) tells us how to determine whether two distinct points A and B are on

opposite half-lines of L relative to P : they are on opposite half-lines if and only if

AB contains P , and are in the same half-line if and only if AB does not contain P .

This observation will be used frequently below.

You may wonder why, if a point P on a line L is given, we don’t just identify

L with a number line and P with 0 so that, once that is done, we won’t even have

to bother mentioning something as obvious as (L4). One reason is that if each time

we see a line, we have to make clear what the identification is (i.e., which direction

is positive), it gets tedious. And if we consider several lines all at once? Then you

begin to worry about how to make the identifications in a “nice” consistent way,

which then becomes a nonessential distraction. So what (L4) does is to provide a

direct description of the separation of a line by a point lying in it independent of any

identification with a number line. The same idea lies behind the next property of a

line, which describes the relationship between a line and the plane containing it.

(L5) (Plane Separation) A line L divides the plane into two non-empty subsets,

L and R, called half-planes. These half-planes have the following properties:

(i) The plane is the disjoint union of L, L, and R, i.e., the union of L,

L, and R is the whole plane and no two of these sets have any point in

common.

(ii) If two points A and B in the plane belong to the same half-plane, then

the line segment AB does not intersect L.
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(iii) If two points A and B in the plane belong to different half-planes,

then the line segment AB must intersect the line L.
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A comment about (L5) is in order. Clearly, one would prefer a more explicit

description of the half-planes of a line. After all, if a line is drawn on a piece of

paper or on a blackboard, one can point to the two “halves” of the plane separated

by the line. In a middle school classroom, this is what you should do without a

doubt: just point to the half-planes and not burden these students with abstract

statements like (L5). But as a teacher, you should learn to appreciate the difficulty of

transcribing the visual information into precise and (in this case) abstract language.

Without waving our hands about what is “on the left” or what is “on the right”, we

learn to use properties (i)–(iii) above to pin down precisely what these half-planes

are.42 Although they are non-intuitive, (i)–(iii) nevertheless leave no doubt that each

half-plane is exactly what our intuition says it is: all the points “on one side of L”.

More precisely, suppose we are given two points A and B in the plane, neither ly-

ing on L and they “lie on opposite sides of L” in the sense that the segment AB

intersects L. Then according to (ii), A and B lie in different half-planes. Moreover,

(iii) tells us that if two points C and D are in the same half-plane, then they do

not “lie on opposite sides of L” in the above intuitive sense. Without more infor-

mation about a line, this is all we can do about its half-planes. However, once we

have coordinates and we can describe a line by an equation, then we will be able to

describe the half-planes of a line explicitly. This will be a topic for a future discussion.

The union of either L or R with L is called a closed half-plane.

In the normal way of drawing a plane, if the line L goes left-right, then we will

continue to refer to it informally as horizontal, and the half-planes are referred to

as the upper half-plane and the lower half-plane. If L goes up-down, then it will

continue to be referred to as a vertical line and the half-planes are the left half-plane

42We will use the same abstract idea once more at the end of this section for the statement of the
Theorem about polygons.
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and the right half-plane. Again, all this can be made more precise in the presence of

a coordinate system.

Angles and the crossbar axiom

The last property of lines that we assume to be known cannot be stated until we

have the (always troublesome) concept of an angle. To this end, we first introduce the

concept of convexity. A subset R in a plane is called convex if given any two points

A, B in R, the segment AB lies completely in R.43 The definition has the obvious

advantage of being simple to use, so the concern with this definition is whether or not

it captures the intuitive feeling of “convexity”. Through applications, you will see

that it does. Every line and the plane itself are of course convex. The half-lines and

half-planes are convex, by virtue of the properties (L4) and (L5) above, respectively

(exercise). It is also an elementary exercise to show that each closed half-plane is

convex. Many common figures, such as the interior of a triangle or a rectangle or

a circle, once they have been properly defined, will also be seen to be convex. The

following shaded subsets of the plane are, however, not convex, because, visibly, the

segment AB of the points A and B in each region does not lie entirely in the respective

shaded subset itself.

A

. A

. B

.

B

.
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A .B .

The intersection of two half-planes or two closed half-planes is easily seen to be convex

(see problem 2 in Exercises 5.1 for a more comprehensive statement). This fact,

together with the concepts of rays and half-planes enter into the following definition

of the concept of an angle.

43This definition is in fact valid in any dimension.
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Given three points O, A, B in the plane which are not collinear, i.e., do not lie

on a line, let ROA, ROB be two rays issuing from O. These rays determine two subsets

of the plane. One of them is the intersection of the following two closed half-planes:

the closed half-plane of the line LOA containing B, and

the closed half-plane of the line LOB containing A.

By the observation above, this is a convex set, and is suggested by the shaded set in

the following figure.

O

A

B

The other subset determined by ROA and ROB is the union of the complement44 of

the shaded set together with the two rays ROA and ROB. This is suggested by the

unshaded set in the above figure, which is visibly not convex . Then either the convex

or the nonconvex subset determined by these two rays ROA and ROB is called the

angle determined by these rays. These rays are called the sides of the angles,

and the point O is the vertex of the angle. We emphasize that, in this book, an angle

is always one of the subsets of the plane “between” the two rays rather than just the

union of the two rays themselves. Unless stated otherwise, we follow the standard

practice of taking the convex subset (the shaded subset) to be the angle and denote it

by ∠AOB . If we want to consider the angle determined by the non-convex subset,

we would have to say so explicitly or use an arc to so indicate, e.g.,

A better notation, one that will be used often, is to use an arc and a letter in the

region to indicate the angle. Thus ∠b denotes the nonconvex region below, while

∠c denotes the convex region.

44The complement of a set S in the plane is by definition the set of all the points in the plane
not lying in S.
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Assuming you know what a triangle is (a precise definition will be given presently),

this way of denoting angles is especially relevant in the case of a triangle ABC. In

this case, since the angles ∠ABC, ∠ACB, and ∠BAC are understood to be convex,

each must contain triangle ABC itself, and we usually let ∠A to stand for ∠BAC,

∠B for ∠ABC, and ∠C for ∠ACB.
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If O, A, B are collinear, then either A and B are in the same half-line with respect

to O, or in opposite half-lines. In the former case, we call it a zero angle. In the

latter case, either half-plane determined by the line containing these points will be

called a straight angle.
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A O B

The last assumption on the properties of lines will now be stated:

(L6) (Crossbar axiom) Given angle AOB, then for any point C in ∠AOB, the

ray ROC intersects the segment AB (indicated by the point D in the following figure).
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You may regard the crossbar axiom as frivolous, because “what else can the ray

ROC do”? First of all, so long as you consider this statement to be obvious, our objec-

tive of agreeing on a common starting point will be met. As to whether the crossbar

axiom is frivolous, we should point out that up to this point, none of (L1)–(L5) guar-

antees that the ray ROC must intersect AB. It is the purpose of the crossbar axiom

to make official the intuitive idea that a ray is indeed “straight” and therefore must

meet a segment that is “in front of it”. For example, if we assume for a moment we

know what the angle bisector of an angle is (a concept that will be defined presently),

then (L6) guarantees that the angle bisector of an angle in a triangle must intersect

the opposite side. This is reassuring.45

Polygons

The next basic concept we need is that of a polygon. Intuitively, we do not want

the following figure on the left to be called a “polygon” because it “crosses itself”,

and we do not want the following figure on the right to be a “polygon” either because

it “doesn’t close up”.
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It is clear that the definition of a polygon requires some care. We first define a

special case of a polygon: a hexagon is by definition a collection of six points A, B,

C, D, E, F in the plane together with the six segments

45We note that in a strictly logical development of plane Euclidean geometry, the crossbar axiom
can be deduced from the plane separation property (L5). See page 116 of M. J. Greenberg, Euclidean
and Non-Euclidean Geometry, 4th Edition, W. H. Freeman, 2008. However the proof is too technical
to be of any educational value to most prospective teachers.
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AB, BC, CD, DE, EF , and FA,

so that any two of them do not intersect each other except at the endpoints as indi-

cated, i.e., CD intersects DE at D, DE intersects EF at E, etc.
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The six points A, B, . . . , F , are called the vertices of the hexagon and the six

segments AB, BC, . . . , FA are its sides or edges. Notice that by its very defini-

tion, a hexagon labels its vertices cyclically in the sense that its sides connect all of

them in alphabetical order until the very end, when the last vertex F is connected to

the first vertex A.

Now that we have defined a hexagon, we want to define a polygon of any number

of sides (or vertices, for that matter). Then we come up against a problem with

notation: for six vertices, we can employ A, . . . , F , but if we have a polygon with

234 vertices, what symbols should we employ to denote these vertices? We can use

numbers instead of letters to denote the vertices, in which case, we can go from 1, 2,

. . . all the way to 234. But because integers come up in so many contexts, sooner or

later this would lead to hopeless notational confusion. We are therefore forced into

using subscripts: we can efficiently denote the 234 vertices by the 234 symbols A1,

A2, A3, . . . , A233, A234. Of course we could have used any letter, say V , instead of A

for this purpose, e.g., V1, V2, V3, . . . , V233, V234.

We can now give the general definition of a polygon and related concepts.

Let n be any positive integer ≥ 3. An n-sided polygon (or more simply an

n-gon) is a collection of n distinct points A1, A2, . . . , An in the plane, together

with the n segments A1A2, A2A3, . . . , An−1An, AnA1, so that none of these segments

intersects any other except at the endpoints as indicated, i.e., A1A2 intersects A2A3

at A2, A2A3 intersects A3A4 at A3, etc. The n-gon is denoted by A1A2 · · ·An. If
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n = 3, the polygon is called a triangle; n = 4, a quadrilateral; n = 5, a pentagon;

and if n = 6, a hexagon, as we have seen. These names came to us from Euclid’s

Elements, and in principle there is a name for every n-gon. For example, if n = 10,

the polygon is called a decagon. But such extra erudition is not a necessity since

10-gon would do just fine. So unless absolutely necessary, we will only use the Greek

names of the first six polygons.

Given polygon A1A2 · · ·An, as in the earlier case of the hexagon, the Ai’s are

called the vertices and the segments A1A2, A2A3, etc. the edges or sometimes the

sides. For each Ai, both Ai−1 and Ai+1 are called its adjacent vertices (except

that in the case of A1, its adjacent vertices are An and A2, and in the case of An,

its adjacent vertices are A1 and An−1). Thus the sides of a polygon are exactly the

segments joining adjacent vertices. Any line segment joining two nonadjacent vertices

is called a diagonal.

The best way to remember the notation associated with a polygon is to think of

the points A1, A2, . . . , An as being placed in sequence around a circle,46 for example,

in clockwise (or counterclockwise) direction:

3

A

A

A

A

A
2

1
n

.

.

.

.

A
n−1

4

46Note that, here, we are using the concept of a “circle” in an informal way. The formal definition
will be given later.
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Then it is quite clear from this arrangement whether or not two vertices are

adjacent.

The following are examples of polygons (with the labeling of the Ai’s omitted):
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Geometric measurements

We next address the issue of measurement: how to measure the length of segments

and degrees of angles.

We begin with length. When we dealt with the number line, we could choose any

segment to be the unit segment, i.e., we could declare any length to be 1. That is

because if we only deal with one line, such a decision affects only what is done on

that line. Now that we have to deal with the plane which has many lines, the choice

of a segment of unit length on one line will have to be consistent with the choices on

other lines in order to make possible the discussion of length in the plane.

Assume that we can decree one choice of a unit segment, once

and for all, on all the lines, and consider this done.

Then every line can be considered to be the number line and every segment AB on

a line L now has an unambiguous length, to be denoted by |AB|. This has many

implications. The first one is that all that we have learned about the number line can

now be transferred to each line in the plane. For example, let A and B be points on

a line L, and suppose |AB| = r for some positive number r. If we consider L as the

number line, and take A to be 0 with B in the positive direction, then the segment

AB coincides exactly with the segment [0, r]. Note that this also implies there is

another point on L, to be called B′, so that B and B′ are on different rays issuing

from A and |AB| = |AB′| . Indeed, simply take B′ to be the point corresponding to

−r when L is regarded as the number line as above.47

47To anticipate a future development, the ability to look at each line as the number line is one
reason that we can set up coordinate axes in the plane.
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Another consequence of the universal adoption of a unit length for all lines in the

plane is the possibility of defining the concept of distance between any two points A

and B in the plane, denoted by dist(A,B): it is the length of the segment between

A and B on the line LAB. Clearly:

(D1) dist(A,B) = dist(B,A).

(D2) dist(A,B) ≥ 0, and dist(A,B) = 0 ⇐⇒ A and B coincide.

(D3) If A, B, C are collinear points, and C is between A and B, then

dist(A,B) = dist(A,C) + dist(C,B)

Note that (D2) implies that if we want to prove A = B, all we have to do is to prove

that dist(A,B) = 0. This may sound trivial, but it will turn out to be useful.

There are two more facts about distance that are equally basic but perhaps less

obvious. We point them out here, but will not have time to give a proof.

(D4) (Triangle inequality) Any three pointsA, B, C satisfy the inequality dist(A,C) ≤
dist(A,B) + dist(B,C).

(D5) For any three points A, B, C, the equality dist(A,C) = dist(A,B)+dist(B,C)

holds if and only if A, B, C are collinear and B is between A and C.

With the availability of measurements for line segments, we can now formally

introduce the concept of a circle. Fix a point O. Then the set of all points A in the

plane so that dist(O,A) is a fixed positive constant r is called the circle of radius

r (in the plane) about O. The point O is the center.

This is the official meaning of the concept of a circle, but in school mathematics,

the word “circle” is usually used in an undisciplined way. It is used for both the circle

as defined above and the region enclosed by the circle, which is defined precisely

as

all the points A satisfying dist(A,O) ≤ r.

In mathematics, the latter is called a disk, or the disk with radius r and center

O, to be precise. Thus when one talks about “the area of the circle”, what is meant is
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in fact “the area of the disk”. We usually go along with this kind of sloppiness when

no harm is done, but if absolute clarity is mandatory, we will make the distinction

between “circle” and “disk”.

A circle whose radius is of length 1 is called a unit circle. Using a unit circle, we

now describe how to measure the size of an angle by assigning it a degree. Divide the

unit circle into 360 parts of equal length,48 360 equal parts for short. The length of

one part is called one degree. Then we can subdivide a degree into n equal parts

(where n is any whole number), thereby obtaining 1
n

of a degree, etc. It is exactly the

same as the division of the chosen unit on a number line into fractions, except that

in this case, we have a “circular number line” and, once a point has been chosen to

be 0, the number 360 coincides with 0 again. A single (connected) piece of a circle is

called an arc.

Now suppose ∠AOB is given, then it intercepts an arc on the unit circle around O

(equivalently, this arc is the intersection of ∠AOB with the unit circle around O).49

For the sake of notational simplicity, let us assume that both A and B are points on

the unit circle around O. In the picture below, B is in the counterclockwise direction

from A, but if B happens to be in the clockwise direction from A, then the following

discussion will have to be adjusted accordingly.

o

AO

B

x

As in the case of the number line, we are free to choose A or B (or in fact any point

on this unit circle) as the 0 of this “circular number line”; let us say A for definiteness.

Because the arc intercepted by ∠AOB on this unit circle is in the counterclockwise

48There is a subtle point in this definition. It has to do with the fact that “equal parts” here
refer to “arcs of equal length”, but we have yet to define the concepts of “arc” and “length of an
arc”. There is no fear of circular reasoning, however, because an arc and the length of an arc can
be defined independently; see Chapter 7.

49At this point, you see the advantage of defining an angle as a region in the plane.
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direction from A, we chose the point on the unit circle, which is 1 degree from A and

in the counterclockwise direction from A, to be the unit 1 of this “circular number

line”. Then the degrees 1, 2, 3, . . . , 359, 360 go around the unit circle in a clockwise

direction until 360 comes back to 0 (which is A). Now, on this “circular number

line”, whose whole numbers up to 359 increase in the counterclockwise direction, B

has a numerical value x. Then we say ∠AOB is x degrees or that its measure

or magnitude is x degrees, and we write |∠AOB| = x◦, where the small circle
◦ in the superscript position indicates that we are using degree as the unit. Thus

by definition, degree is a number ≥ 0 and ≤ 360. For now, if we measure

degrees in the counterclockwise direction (as we just did), we would explicitly say

so, but if we measure in the clockwise direction we can do that too. In §2, we will

adopt a uniform method of expressing whether we measure angles in the clockwise

or counterclockwise direction. (There is another unit of measurement for measuring

angles, called “radian”, that is used almost universally in advanced mathematics.)

Notice that the method of angle measurement we have just described is exactly

the principle used in the construction of the protractor.

The following useful facts about angles are usually deemed to be too obvious to

be mentioned. We mention them explicitly because we will need them at crucial

junctures and want it known that there is a reasoning behind them.

(α) If B and B′ are two points lying in the same half-plane of LOA and

|∠AOB| = |∠AOB′|, then the rays ROB and ROB′ coincide.

(β) If C is a point in ∠AOB, then |∠AOC|+ |∠COB| = |∠AOB|.

D

O

A

C

B
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The reason for the first is that the rays ROB and ROB′ must intersect the unit

circle around the point O at exactly the same point. The reason for the second is

that if the ray ROC intersects the unit circle around O at a point C ′, as shown in the

figure above, then the degrees of the arcs (on the unit circle) from A to C ′ and from

C ′ to B add up to the degree of the arc from A to B.

An angle is a zero angle exactly when it is 0◦, and is a straight angle exactly when

it is 180◦. An angle of 90◦ is called a right angle. An angle is acute if it is less than

90◦, and is obtuse if it is greater than 90◦. There are analogs of these names for

triangles, namely, a triangle is called a right triangle if one of its angles is a right

angle, an acute triangle if all of its angles are acute, and an obtuse triangle if

(at least) one of its angles is obtuse. (Anticipating the theorem that the sum of the

degrees of the angles in a triangle is 180, we know that a triangle cannot have more

than one obtuse angle or more than one right angle.)

We observe that our convention of taking every angle to be convex unless other-

wise specified amounts to saying that, without statement to the contrary, an angle is

at most 180◦.

Let two lines meet at O, and suppose one of the four angles, say ∠AOB as shown,

is a right angle.

B′

A′

B

A

O
q

Because a straight angle is 180 degrees, it is easy to see that all the remaining angles

are also right angles, i.e., |∠BOA′| = |∠A′OB′| = |∠B′OA| = 90◦. It follows

that when two lines meet and one of the four angles so produced is a right angle, it is

unambiguous to say that the two lines are perpendicular. In symbols: LAO ⊥ LOB
in the notation of the preceding figure, although it is equally common to write instead,

AO ⊥ OB. A ray ROC in an angle50 AOB is called an angle bisector of ∠AOB

50Recall, an angle is a region.
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if |∠AOC| = |∠COB|. Sometimes we also say less precisely that the line LOC

(rather than the ray ROC) bisects the angle AOB.
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It is clear that an angle has one and only one angle bisector. Therefore if CO ⊥
AB as shown below, then CO is the unique angle bisector of the straight angle ∠AOB.

OA B

C

We thus have:

Let L be a line and O a point on L. Then there is one and only one line

passing through O and perpendicular to L.

With the availability of measurements for both angles and line segments, we can

now complete the list of standard definitions.

If AB is a segment, then the point C in AB so that |AC| = |CB| is called the

midpoint of AB. Analogous to the angle bisector, the perpendicular bisector of

a segment AB is the line perpendicular to LAB and passing through the midpoint of

AB. It follows from the uniqueness of the line perpendicular to a line passing through

a given point that there is one and only one perpendicular bisector of a segment.

Next we turn to polygons. The perimeter of a polygon is the sum of the lengths

of (all) its sides. This concept should be introduced as soon as the length of a

segment is defined. There is a perception that students confuse the “perimeter” and

“area” of a polygon, and one reason is undoubtedly the fact that these concepts are

252



usually introduced together.51 However the concept of area is more sophisticated (see

Chapter 7), and we suggest that you decouple these two concepts in your classroom

instruction.

We now introduce some common names for certain triangles and quadrilaterals.

An equilateral triangle is a triangle with three sides of the same length, and an

isosceles triangle is one with at least two sides of the same length. (Thus by our

definition, an equilateral triangle is isosceles.) A quadrilateral whose angles are all

right angles is called a rectangle. A rectangle whose sides are all of the same length is

called a square. Be aware that at this point, we do not know whether there is a square

or not, or worse, whether there is a rectangle or not even if common sense says there

is. (If it is the case that the sum of (the degrees) of the four angles of quadrilateral is

361◦, then clearly no rectangle can exist, much less a square.) A quadrilateral with

at least one pair of opposite sides that are parallel is called a trapezoid. A trapezoid

with two pairs of parallel opposite sides is called a parallelogram. A quadrilateral

with four sides of equal length is called a rhombus. Although we will not have time

to prove it, it is a fact that a rhombus is a parallelogram.

There is a debate in school mathematics about whether one should define an isosce-

les triangle to have exactly two sides of equal length, a rectangle to be a quadrilateral

with four right angles but with at least two unequal adjacent sides, or a trapezoid to

be a quadrilateral with exactly one pair of parallel sides. This debate is unnecessary.

Mathematicians want equilateral triangles to be special cases of isosceles triangles,

squares to be special cases of rectangles, and parallelograms to be special cases of

trapezoids, because this allows every theorem about isosceles triangles to apply to

equilateral triangles, every theorem about rectangles to apply to squares, and every

theorem about trapezoids to apply to parallelograms. It is completely counterpro-

ductive for schools to try to prepare students for advanced work on the one hand,

and simultaneously undercut this effort by feeding them erroneous information on

the other. There is no reason for school mathematics to make things up when such

inventiveness is not called for. Perhaps part of these counter-productive actions are

the result of the isolation of school mathematics from the mathematics mainstream.

If so, then this is the time to rejoin the mainstream.

51The other reason, one may surmise, is students’ failure to memorize the new vocabulary.
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In the above catalog of names for polygons, we all know that equilateral triangles

and squares are special; they are examples of regular polygons. It turns out that the

precise definition of the latter concept is subtle and requires an elaborate discussion.

For the needs of middle school mathematics, it would not be profitable to spend time

on such subtleties. We will therefore cut the Gordian knot by assuming that, given a

polygon P , you know what is meant by the region enclosed by P . For example,

if we have polygons such as the following:

then the regions they enclose are easily recognized as

In case you wonder why the concept of the region enclosed by a polygon is consid-

ered to be subtle, there are polygons for which it is not clear what region it encloses.

For example, take a point near the center of the following figure, is it clear whether

it is or is not in the region enclosed by the polygon?
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One can of course carefully make out that the region in question to be the shaded

one below:
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Nevertheless, one now recognizes that there are far more complicated polygons of this

genre, and this explains the subtlety.

One notes also that the concept of the region enclosed by a polygon is entirely

analogous to the earlier one of the region enclosed by a circle, except that, by acci-

dent, the latter is easy to define.

Finally, we are in a position to define regular polygons. We say a polygon is

convex if the polygonal region enclosed by the polygon is a convex set. A regular

polygon is a convex polygon which has the property that its sides are of the same

length and its angles (at the vertices) have the same degrees. We call attention to the

fact that, without the condition of the convexity of the polygon, the cross on the right

in the previous picture of three polygons would be a regular 12-gon because of our

standing convention that an angle is always automatically taken to be the convex set

determined by the two rays. It goes without saying that the convexity of a polygon

cannot be defined without the concept of the region it encloses.52

52On the other hand, if one is willing to spend the effort, one can define the concept of an interior
angle of a polygon at some cost. Then a regular polygon could be equally well defined as any polygon
whose sides all have equal lengths, and all of whose interior angles have the same degrees.
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It is well-known that for a triangle (a 3-gon) to be regular, it suffices to require

either the equality of the (lengths of the) sides or the equality of the (degrees of the)

angles. For this reason, a regular 3-gon is just an equilateral triangle (which literally

means a triangle with equal sides). Moreover, as soon as we can show that the sum

of all the angles of a convex quadrilateral is 360◦, it would follow that a regular 4-gon

must be a square. It can be proved that regular n-gons exist for any whole number

n ≥ 3, but this is certainly not obvious.

Exercises 5.1

1. Explain clearly why the following figure with five vertices, as indicated, cannot be

a polygon. (Caution: Be careful. This is harder than you think.)
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2. The intersection of a finite number of convex sets is convex. (The restriction of

finiteness is unnecessary, but that proof requires some fluency in dealing with infinite

sets and may not be appropriate for middle school.)

3. (a) Suppose we have a finite or an infinite number of convex sets Ci, where i is a

whole number, and suppose that each Ci is contained in the next one, Ci+1. Then the

union of these Ci’s is also convex. (Caution: be very clear in your proof.) (b) Is the

union of convex sets convex in general?

4. (a) Prove that half-lines and half-planes are convex. (b) Prove that closed half-

planes are also convex.

5. Explain why, given any three non-collinear points A, B, C, the three segments

AB, BC, CA can never intersect each other except at the endpoints as indicated.
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(In other words, take any three noncollinear points, then the union of the segments

joining them is always a polygon. It is even a convex polygon; see the next problem.)

6. For a triangle, its triangular region can be precisely defined as the intersection

of its three angles. (a) Show that the triangular region of a triangle is always con-

vex. (b) Explicitly exhibit the triangular region as the intersection of three closed

half-planes.

7. (a) Suppose we have three distinct lines, L1, L2, and L3, such that L1 ‖ L2 and

L1 ‖ L3. Then the line L2 is parallel to the line L3, (This problem justifies the ter-

minology that three lines are parallel.) (b) Let L1 ‖ L2 and let a third line ` be

distinct from L1. If ` intersects L1, then it must intersect L2.

8. Imagine the hands of a clock to be idealized rays emanating from the center of the

clock. What is the angle between the hands at 8:20?53

9. Given a circle C and a point P on C. A line LP is said to be a tangent to C at

P if LP intersects C exactly at P , i.e., LP ∩ C = {P}. Assume that every point

of a circle has a tangent, and furthermore that the circle always lies entirely in one

of the closed half-planes of each tangent. Then prove that the circular region of a

circle is always convex. (Caution: This is not an easy problem; try to do everything

according to the definitions.)

10. Let 4A′B′C ′ be inside (the closed region enclosed by) 4ABC. Assuming the

triangle inequality (D4), this problem proves that the perimeter of 4A′B′C ′ ≤ the

perimeter of 4ABC. (a) Prove that such is the case if, in addition, two vertices

of 4A′B′C ′ lie on one side of 4ABC. (b) Prove that such is also the case if, in

addition, two of the vertices of 4A′B′C ′ lie on two different sides of 4ABC. (c)

Prove the general case. (Hint: Let the rays RA′B′ and RA′C′ meet the sides of4ABC
at D and E and consider 4ADE. Try to apply part (a) or part (b).)

53Problem due to Tony Gardiner.
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2 Transformations of the plane

In this section, we continue our discussion of the geometry of the plane by defining

the abstract concept of a transformation in order to put on a solid foundation what we

did in Chapter 4 about “moving one transparency against another.” As we shall see,

we will be concerned only with a special class of transformations. The mathematics

of the discussion is conceptually self-contained, but for illustrative purposes — and

for those purpose only — we will freely avail ourselves of the discussion in Chapter 4.

Given two segments AB and CD (in the plane), how can we find out if they have

the same length without measuring them individually? For example, suppose we have

a rectangle ABCD. Are the opposite sides of equal length?

D

A

C

B

Similarly, given two angles, how can we tell whether they are equal without actu-

ally measuring the angles individually? For example, if two lines L and L′ are parallel

and they are intersected by another line, how can we tell if the angles ∠a and ∠b as

shown have the same degrees?





















a

b
L′

L

These questions, while seemingly silly if we only look at figures on a piece of paper,

take on a new meaning if the sides of the rectangle ABCD are several miles apart,

or if the lines L and L′ are also very far apart. We are therefore confronted with a

real-world situation of having to find out whether two general geometric figures (two

segments, two angles, or two triangles) in different parts of the plane (possibly very
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far apart) are “the same” in some sense (e.g., same length, same degrees, etc.).

The traditional way of dealing with this problem in Euclidean geometry is to write

down a set of axioms which abstractly guarantee that the two figures in question are

“the same” (i.e., congruent). This is how it is usually done in the school classroom,

and the drawback of such an approach is that it is an abstraction imposed from on

high and students do not have the needed foundations to handle the drastic change

in methodology. Consequently, the logical deductions from axioms cease to hold

any meaning and proofs become a futile exercise in formalism. As a reaction, the

recent trend is to ignore the fundamental deductive nature of mathematics and let

students approach geometry exclusively through hands-on activities. At the moment

(as of 2010), the teaching of geometry in high schools vacillates between these two

extremes, neither of which is designed to encourage the learning of mathematics.54

We propose a third alternative by adopting an approach that is more direct, more

tangible and makes use of three standard “motions” of Chapter 4 to bring one figure

on top of another in order to check whether the two geometric figures are “the same”.

Even more importantly, we base proofs of theorems directly on these “motions”. In

this way, the concept of congruence ceases to be abstract and intangible; it can be

realized concretely. So the key idea is how to “move” things around in a plane, as

we already saw in Chapter 4. However, we used the intuitive language of “rules”

and “moving one point to another” in that chapter, and now is the time to adopt

a more civilized language that is universally used in mathematics, the language of

transformations and mappings.

The rest of this section gives a short introduction to transformations so that we

can discuss, in the next section, the basic isometries introduced in Chapter 4 with

precision and with ease.

For convenience, we denote the plane by Π. A transformation F of Π is a rule

that assigns to each point P of Π a unique point F (P ) (read: “F of P”) in Π, so

54An overview of the situation can be glimpsed in the book review of H. Wu, Geometry: Our
Cultural Heritage, Notices of the American Mathematical Society, 51 (2004), 529-537 (available at
http://math.berkeley.edu/∼wu/Holme3.pdf). See also H. Wu, Euclid and high school geometry,
http://math.berkeley.edu/∼wu/Lisbon2010 1.pdf.
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that,

(i) if P1 and P2 are distinct points of Π, then F assigns to them distinct

points F (P1) and F (P2) of Π, and

(ii) for every point Q of Π there is a point P of Π so that F assigns P to

Q, i.e., Q = F (P ) for some point P .

If a point Q satisfies Q = F (P ) for some point P in Π, we also say F maps P

to Q, or that Q is the image of P under F . An alternate way of expressing (i)

is therefore that F maps distinct points to distinct points; in pictorial language, such

an F does not “collapse” distinct points into the same point. The second condition

(ii) says that no matter what the point Q may be, it is always equal to the image of

some P under F . This fact can be expressed in a different way, which may be more

intuitive. Given a set S in the plane Π, we will denote by F (S) the collection of all

the points F (P ), where P runs through all the points in S. We call F (S) the image

of S under F . We also say F maps S to F (S). In this terminology, condition

(ii) may be rephrased as saying that the image of the plane under F , F (Π), is the

whole plane Π.

In the mathematics literature, transformations are not required to satisfy either

of the two conditions (i) and (ii). The common terminology to express (i) is that

the transformation F is one-to-one, and that to express (ii) is that F is onto.

A transformation that satisfies both (i) and (ii) is usually called a one-one cor-

respondence. Thus the transformations in these notes are, by definition, one-one

correspondences. For our purposes, it is sufficient to consider only one-one correspon-

dences.

Informally, the dilations of §4 of Chapter 4 are examples of transformations, as

are the three basic isometries, translations, reflections, and rotations. However, the

three basic isometries differ from dilations in that they preserve distance. Formally,

an isometry of the plane is a transformation that preserves the lengths of segments.

Or, an isometry F is a transformation so that the length of any segment is equal to

the length of its image segment. In other words, if F is an isometry and if we denote

the image points of P and Q under F by P ′ and Q′, then the length of the segment
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P ′Q′ is always equal to the length of the segment PQ for any points P and Q. In

terms of the concept of distance on Π introduced in §1, we see that for an isometry

F ,

dist(F (P ), F (Q)) = dist(P,Q) for all P,Q ∈ Π.

It is in this sense that isometries are transformations that preserve distance.

There is one isometry that is distinguished: the identity transformation I so

that I(P ) = P for all P in the plane. Unless stated to the contrary, I will always

stand for the identity transformation.

Next, we introduce a few more concepts. In Chapter 4, we saw many examples

of combining the actions of two basic isometries one after the other. For example,

if ρ is the rotation of 15 degrees around a point O and if ρ∗ is the rotation of 22

degrees around the same point O, then we know that moving a point P first by ρ,

and then by ρ∗ has the net effect of rotating P by a total degree of 15 + 22 around O.

You recognize that if we combine isometries this way often, such verbal descriptions

will get too cumbersome very fast. We have to formalize both the concept and the

notation in order to streamline the discussion.

Formally, If F and G are transformations, we say the transformations F and

G are equal, in symbols F = G, if F (Q) = G(Q) for every point Q ∈ Π.55 The

composite transformation F ◦G (sometimes also called the composition of F

and G) is by definition the transformation which assigns a point P in the plane to

the point F (G(P )), i.e., (F ◦ G)(P )
def
= F (G(P )) for all P ∈ Π. For example, no

matter what F is, we will always have F ◦ I = I ◦ F = F . Of course we should

double-check that F ◦ G so defined is a transformation, i.e., satisfies conditions (i)

and (ii). This is straightforward and involves nothing more than going through the

definition methodically, and is best done by you as an exercise to get acquainted with

the new definitions.

To go back to the previous rotations of ρ and ρ∗, in terms of the notation of

composition, we can now write the combined action as (ρ∗ ◦ ρ)(P ). Notice that in

55Observe that we have now introduced a new meaning to the equal sign, the equality of two
transformations. This is different from everything we have done up to this point, because in the
past we have only used the equal sign between two numbers or two sets. Since this definition is
completely unambiguous, however, there is no need to guess what “equal” means in this case.
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order to express “ρ first”, we have to place ρ right next to P and therefore ρ ends up

being to the right rather than to the left of ρ∗.

Note that if F and G are isometries, so is F ◦ G. Indeed, G being an isometry

means, for any two points P and Q, dist(G(P ), G(Q)) = dist(P,Q). But F is also

an isometry, so dist(F (G(P )), F (G(Q))) = dist(G(P ), G(Q)). Together, we have

that for any two point P and Q,

dist((F ◦G)(P ), (F ◦G)(Q)) = dist(F (G(P )), F (G(Q))) = dist(P,Q)

This then shows that F ◦G is an isometry.

Now we come to the main point: every transformation has another transformation

that “reverses” its action, and vice versa. For example, consider a rotation ρ with

center O and degree e. The rotation ρ′ with the same center O but with degree −e
has the property that if ρ(P ) = Q, then ρ′(Q) = P , and also if ρ′(P ) = Q, then

ρ(Q) = P . One can summarize the situation better with a pair of equations:

ρ(ρ′(P )) = P and ρ′(ρ(P )) = P for any point P .

Recalling that I(P ) = P for every point P , these equations can be rewritten as

ρ ◦ ρ′ = I and ρ′ ◦ ρ = I

Activity (a) For a translation T from A to B, what is the transformation T ∗

so that T ◦ T ∗ = I and T ∗ ◦ T = I ? (b) Same question for a reflection R.

Given a transformation F in general, suppose there is a transformation G so that

both F ◦G = I and G◦F = I, where I is the identity transformation of the plane.

Then we say G is the inverse transformation of F (and of course, also that F is the

inverse transformation of G). Often, we simply say F is the inverse of G. We

have the following theorem.

Theorem Every transformation has an inverse transformation.

We wish to be explicit about the fact that this theorem is true only because a

transformation is, by our definition, both one-to-one and onto.
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Proof Let F be a transformation. We now define a new transformation G,

as follows. Given a point P , G assigns the point Q to P so that, Q is the point

guaranteed by condition (ii) above so that F (Q) = P . Now we have to make sure

G is well-defined (see the second sub-section in §4 of Chapter 1), i.e., insofar as the

definition of a transformation requires that it assigns to each P a unique Q = F (P ),

we must ask whether there is only one such Q. The answer is affirmative, because if

there is another point Q0, Q0 6= Q, so that F (Q0) = P , then condition (i) would be

violated (we have just “collapsed” two distinct points Q and Q0 into the same point

P ). Therefore, there is no such Q0. So G is a well-defined transformation.

Now we must prove that the transformation G satisfies G ◦ F = F ◦G = I. We

first check G ◦ F = I. Take a point P , and we have to prove G(F (P )) = P . Let

Q = F (P ), then by the definition of G, we have G(Q) = P . But this is exactly the

statement that

G(F (P )) = G(Q) = P

So G ◦ F = I. Next we check why F ◦ G = I. For each point P , we have to prove

F (G(P )) = P . Let G(P ) = Q. By the definition of G, G assigns Q to P because

F (Q) = P . It follows that F (G(P )) = F (Q) = P . The proof of the theorem is

complete.

It remains to point out that the standard notation for the inverse transformation

of a transformation F is F−1.

Exercises 5.2

1. If a transformation maps lines to lines, then it maps a pair of parallel lines to a

pair of parallel lines.

2. Prove that if F and G are transformations of the plane, then so is F ◦ G, i.e.,

F ◦G satisfies conditions (i) and (ii).

3. We spoke freely in the text about “the” inverse transformation of a given trans-

formation. This problem legitimizes this language by asking you to prove that the
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inverse of a transformation F , if it exists, must be unique. In other words, suppose

there are two transformations G and G′ so that

F ◦G = I and G ◦ F = I

F ◦G′ = I and G′ ◦ F = I

Then G = G′ (recall: this means G(P ) = G′(P ) for every point P in the plane.)

4. Do this problem using the information of Chapter 4. (a) What is the inverse of a

rotation of 180 degrees (with any center)? (b) Express a rotation of 180 degrees as

the composition of two reflections.

5. (a) Let T be the translation from A to B as shown, and let R be the reflection

across the line ` as shown. Using the information of Chapter 4, what is the inverse

transformation of R ◦ T , and what is the inverse transformation of T ◦R?

`

��
��

��1

A

B

(b) Let F , G be transformations, and let F−1 and G−1 be their respective inverse

transformations. What are the inverse transformations of F ◦G and G ◦ F in terms

of F−1 and G−1.

3 The basic isometries: Part II

Rotations

Reflections

Translations

We will formally introduce in this section the three basic isometries of the plane,

namely, rotations, reflections, and translations, and make a few tentative steps toward
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proving theorems in geometry. We do geometric proofs only selectively at this point.

Our goal, after all, is to do enough geometry so that we can discuss the geometry of

linear equations with ease, and a full-blown course on geometry at this point will be

a distraction. On the other hand, one cannot present mathematical facts without at

least some reasoning to hold them together. So we will present proofs that are truly

basic and instructive.

Please keep in the back of your mind our intuitive discussions of the basic isome-

tries in Chapter 4.They will be very helpful in providing support for the understanding

of the formal mathematics. On the other hand, the following formal discussion does

not logically assume anything from Chapter 4, in the sense that none of the logi-

cal arguments in a proof will make use of any conclusions arrived at by hands-on

experiments alone.

We continue to denote the plane by Π.

Rotations

Let O be a point in the plane and let a number θ be given so that −180 ≤ θ ≤ 180.

Notice that we allow θ to be both 180 and −180. Then the rotation of θ degrees

around O (or sometimes we say with center O) is the transformation ρθ defined

as follows: ρθ(O) = O, and if P ∈ Π and P 6= O, let C be the circle of radius |OP |
centered at O; then

ρθ(P ) is the point Q on C so that if θ ≥ 0, Q is in the counterclockwise

direction of P along C and |∠QOP | = θ◦, and if θ < 0, Q is in the

clockwise direction of P along C and |∠POQ| = |θ|◦.

The case of θ > 0 is illustrated by the following figure:

while the case of θ < 0 looks like this:

Before proceeding further, we must prove that ρθ so defined is indeed a transfor-

mation, i.e., it satisfies conditions (i) and (ii) of §2.

First, condition (i). Let P and M be distinct points in the plane and let ρθ(P ) = Q

and ρθ(M) = N . Then we have to prove Q 6= N . If |OP | 6= |OM |, then there is

nothing to prove because, by definition, |OP | = |OQ| and |OM | = |ON |, so that

|OQ| 6= |ON | and therefore Q 6= N . Now if |OP | = |OM |, then both P and N are
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distinct points on the same circle C around O of radius |OP |. Because ρθ rotates

both P and M along C by θ degrees (clockwise or counterclockwise, depending on

whether θ is negative or positive), Q and N remain distinct. So again Q 6= N , and

condition (i) is satisfied.

Before verifying that ρθ satisfies condition (ii), we make some useful general ob-

servations about rotations. Note that the rotation of 0 degrees around a point is

just the identity transformation I of the plane. If θ and θ′ are numbers so that

−180 ≤ θ, θ′ ≤ 180 and also −180 ≤ θ + θ′ ≤ 180, then relative to the same center

of rotation, the composition of the rotations ρθ and ρθ′ can be seen to satisfy

ρθ ◦ ρθ′ = ρθ+θ′

In particular, for any such θ,

ρθ ◦ ρ−θ = I and ρ−θ ◦ ρθ = I

Therefore ρ−θ is the inverse transformation of ρθ for −180 ≤ θ ≤ 180.

Now we can dispatch condition (ii) of §2. Given a point Q in the plane, we

have to find a point P so that ρθ(P ) = Q. We simply let P = ρ−θ(Q). Then
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ρθ(P ) = ρθ(ρ−θ(Q) = Q, and we have verified that ρθ is indeed a transformation.

Notice that, by choice, we have allowed the two transformations ρ−180 and ρ180 to

be the same transformation. This will not cause confusion.

We make the following assumptions about rotations:

(ρ1) Given any point O ∈ Π and any number θ satisfying −180 ≤ θ ≤ 180, there is

a rotation of θ degrees around O.

(ρ2) Any rotation maps a line to a line, a ray to a ray, and therefore a segment to a

segment.

(ρ3) Any rotation preserves length of segments (and is therefore an isometry) as well

as degrees of angles.

These are all believable in view of the hands-on activities we did in Chapter 4, §3.

Having rotations at our disposal, our next goal is to define the other basic isome-

tries. To this end, we need to know some basic facts about perpendicular lines

and, therefore, have no choice but to begin proving theorems. We will not indulge in

theorem-proving per se, but will only prove enough to define reflections and translations.

Later on, we will just prove enough to understand similarity.

We should point out that, henceforth, all the theorems on plane geometry will be

numbered consecutively by G1, G2, G3, etc., so that you will know how to get started

if you decide to give a coherent account of plane geometry.

Theorem G1 Let O be a point not contained in a line L, and let ρ0 be the rotation

of 180◦ around O. Then ρ0 maps L to a line parallel to itself, i.e., ρ0(L) ‖ L.
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Before we get started on the proof, it will be helpful if you remember the discussion

of questions (i) and (ii) at the end of §3 in Chapter 4. There we actually proved that

if P is a point on L, then ρ0(P ) cannot lie on L. The whole proof of Theorem G1

hinges on this fact. Another thing to note in general is that, if you are ever asked

to prove that a line ` is parallel to another line L, then you know that, in most

cases, a direct proof (one that manages to deduce directly that ` does not intersect

L) is well-nigh impossible. You may wish to try right away a proof by contradiction:

assume that ` intersects L and then deduce an absurd conclusion. The absurdity then

implies that you shouldn’t have made that assumption in the first place. So ` does

not intersect L.

We have used this kind of proof before, e.g., in §3 of Chapter 4. Students tend to

be puzzled by proof by contradiction. Nevertheless, it won’t hurt you to try it a few

times; even if they don’t understand it in middle school, the exposure may help them

understand it later. Sometime the gestation period for understanding is long, but it

is a worthwhile attempt to try to win the war even if you know you will lose a battle

or two.

Proof Suppose ρ0(L) is not parallel to L. We will show that this assumption

leads to a conclusion that contradicts the hypothesis that P does not lie on L. So

ρ0(L) is not parallel to L and they intersect at a point Q. Since Q ∈ ρ0(L), by

definition of ρ0(L), there is a point P ∈ L so that ρ0(P ) = Q. Since ρ0 is a rotation

of 180◦ around O, the three points P , O, and ρ0(P ) are collinear, i.e., P , O, and Q

are collinear. As usual, call this line LPQ. Now, not only is P on L, but Q is also on

L because Q = L ∩ ρ0(L). Thus L and LPQ have two points P and Q in common

and therefore they coincide: L = LPQ (see (L1) of §1). But O also lies on LPQ, so O

lies on L, and this directly contradicts the hypothesis that O is not contained in L.

Therefore ρ0(L) has to be parallel to L.

Theorem G2 Two lines perpendicular to the same line are either identical or

parallel to each other.

Proof Let L1 and L2 be two lines perpendicular to a line ` at A1 and A2,

respectively. If A1 = A2, then as we noted in §1 about the uniqueness of the line
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passing through a given point of a line and perpendicular to that line, L1 and L2 are

identical. So we may assume that A1 6= A2. We need to prove that L1 ‖ L2. We have

just seen how to produce a line parallel to a given line using a rotation of 180 degrees,

so we should at least exploit this fact. Let ρ0 be the rotation of 180 degrees around

the midpoint M of A1A2. If we can show that the image of L1 under ρ0 is L2, then

we know L2 ‖ L1 by virtue of Theorem G1.
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L1 L2 ρ0(L1)

A1 A2

Mq`

To this end, note that ρ0(L1) contains A2 because ρ0(A1) = A2 (ρ0 is an isometry).

We are given that L1 ⊥ `. Since ρ0 is a rotation of 180 degrees and the center of

rotation, which is M , lies on `, we see that ρ0(`) = `. By property (ρ3), which implies

that rotations map perpendicular lines to perpendicular lines, we have ρ0(L1) ⊥ `.

Therefore each of ρ0(L1) and L2 is a line that passes through A2 and perpendicular

to `. Because of the uniqueness of the line perpendicular to a given line at a given

point, we see that, indeed, ρ0(L1) = L2. By Theorem G1, L2 ‖ L1, and Theorem G2

is proved.

Recall that we have introduced the concept of a rectangle as a quadrilateral whose

adjacent sides are all perpendicular to each other. As a result of Theorem G2, we

now have:

Corollary A rectangle is a parallelogram.

Given two lines L1 and L2. A transversal of L1 and L2 is a line ` that intersects

both in distinct points. The following fact rounds off the picture of Theorem G2, and

is also hinted at in the discussion (in §4 of Chapter 4) of the lines on your notebook

papers.
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Theorem G3 A transversal of two parallel lines that is perpendicular to one of

them is also perpendicular to the other.

Proof Let L1 ‖ L2 and let the transversal ` meet L1 and L2 at A1 and A2,

respectively. Assuming L1 ⊥ `, we will prove that L2 ⊥ `.
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Let L3 be a line perpendicular to ` at A2. (Recall that L3 is the angle bisector of the

straight angle with sides lying on ` and with vertex at A2.) By Theorem G2, L3 ‖ L1.

But by hypothesis, L2 ‖ L1. The Parallel Postulate therefore implies that L3 = L2.

Since L3 ⊥ `, we now have L2 ⊥ `. This proves Theorem G3.

For our immediate need in connection with the definition of a reflection, the fol-

lowing consequence of Theorem G3 should be singled out:

Corollary Through a point P not lying on a line ` passes one and only one line

L perpendicular to `.

Proof Take any point A ∈ ` and let L0 be the line passing through A and

perpendicular to `. By the Parallel Postulate, there is a line L passing through P

and parallel to L0.

L0 L

A

qP
`
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By Theorem G3, we have L ⊥ `. To prove the uniqueness of L, suppose another line

L′ passes through P and is also perpendicular to `. By Theorem G2, since these lines

are not parallel (because they have P in common), they have to be identical. Thus

L = L′.

Reflections

We can now define reflection. Given a line L, the reflection across L (or with

respect to L) is by definition the transformation RL of Π, so that:

(1) If P ∈ L, then RL(P ) = P .

(2) If P 6∈ L, then RL(P ) is the point Q so that L is the perpendicular

bisector of the segment PQ.
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We hasten to show that the definition is well-defined, in the sense that the as-

signment of RL(P ) to each point P is a transformation. First, is the assignment

P 7→ RL(P ) unique? For P ∈ L, there is no doubt. Suppose now P is not on L. By

the Corollary to Theorem G3, there is a unique line passing through P and perpen-

dicular to L; let us say this line intersects L at S. On the ray RPS, we take a point

Q so that Q and P lie in opposite half-planes of L and so that |PS| = |SQ|. Then

according to (2) above, this Q is RL(P ). Suppose there is another Q′ that satisfies

(2), i.e., L is the perpendicular bisector of PQ′. Then PQ ⊥ ` and PQ′ ⊥ `; therefore

the lines LPQ and LPQ′ are the same because of the uniqueness part of the Corollary

to Theorem G3. It follows that Q′ lies on LPQ, and Q = Q′ because Q and Q′ are

in the same half-plane of L, and |QS| = |Q′S|. Thus the definition of a reflection is

well-defined.
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This may be the right place to pause and reflect on some of the materials in

§1. The preceding discussion draws on the fact that a line divides the plane

into two half-planes and that the concept of a ray is clearly understood. If

you had any doubts about why we bothered to list (L4) and (L5) as part

of our starting point, you may lay these doubts to rest now.

It remains to verify that RL satisfies the conditions (i) and (ii) in the definition of

a transformation. Having done this for rotations, we’d leave this verification as an

exercise.

Reflections enjoy a remarkable property. Fix a line L, and let R be the reflection

with respect to L. Then it is straightforward to check that R◦R = I, where I as usual

denotes the identity transformation of the plane. But this means R is its own inverse.

As in the case of rotations, we make the following entirely plausible assumptions

about reflections:

(R1) Given any line L, there is a reflection with respect to L.

(R2) Any reflection maps a line to a line, a ray to a ray, and therefore a segment to

a segment.

(R3) Any reflection preserves lengths of segments (and is therefore an isometry) as

well as degrees of angles.

We give a simple application of reflections by proving: every point on the per-

pendicular bisector of a segment is equi-distant from the endpoints of the segment.56

Indeed, let ` be the perpendicular bisector of BC and let A ∈ `. We have to prove

|AB| = |AC|. Let R be the reflection with respect to `. By the definition of reflection,

we see that R(B) = C and R(A) = A. Therefore (R2) implies that R(AB) = AC.

By (R3), we have |AB| = |AC|.

56Compare item 10 in §1 of Chapter 4.
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Translations

The last basic isometry to be introduced is translation. Intuitively, the translation

T , along the direction from point A to point B and of distance |AB|, does the following

to an arbitrary point P in the plane: draw the line L passing through P and parallel

to LAB, then on the line L, we mark off the point Q so that |PQ| = |AB| and so that

the direction from P to Q is the same as the direction from A to B. By definition,

Q = T (P ).
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Intuitively, all this is good and well. But in terms of precision, the difficulty with this

description lies in the fact that on L, there is a point Q′ which is also of distance |AB|
from P but the direction from P to Q′ is “opposite” to that from P to Q (see picture

above). The problem becomes one of how to say, precisely, that it is Q and not Q′

that should be defined as T (P ). The following discussion is designed to circumvent

this difficulty. The trick is to observe that ABQP is a parallelogram but ABQ′P

is not. So we begin with a discussion of a key fact about parallelograms that will

eventually make the definition of a translation more meaningful.

To this end, it would be helpful to adopt a common abuse of language: we say two

segments are equal if their lengths are equal, and say two angles are equal if their

degrees are equal. The following will be helpful in our discussion of translations.

Theorem G4 Opposite sides of a parallelogram are equal.

Theorem G4 together with the Corollary to Theorem G2 imply that the opposite

sides of a rectangle are equal. This reconciles the usual definition in school mathe-

matics of a rectangle (a quadrilateral with four right angles and equal opposite sides)

with our definition of a rectangle (a quadrilateral with four right angles). The proof
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of Theorem G4 requires the following lemma.

Lemma If F is a transformation of the plane that maps lines to lines, then for

any two distinct lines L1 and L2, if L1 ∩ L2 = {P} and F (L1) ∩ F (L2) = {Q},
then F (P ) = Q.
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Proof of Lemma Since P ∈ L1, we have F (P ) ∈ F (L1) by the definition of the

image F (L1) of L1 under F . Similarly, F (P ) ∈ F (L2). Therefore F (P ) is a point in

the intersection F (L1)∩F (L2). But by hypothesis, the latter intersection is exactly

the point Q. So F (P ) = Q.

Proof of Theorem G4 This proof, like the proofs of Theorems G1 and G2 and

like many others to come, is nothing but an exploitation of the simple fact that a 180

degree rotation is an isometry that also preserves the degrees of angles. In this case,

we have a parallelogram ABCD. You will see that the 180 degree rotation around the

midpoint of a diagonal reveals a surprising amount of geometric information about

the parallelogram.

Given parallelogram ABCD, we must show |AD| = |BC| and |AB| = |CD|. It

suffices to prove the former. Let M be the midpoint of the diagonal AC:
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Let ρ0 be the rotation of 180 degrees around M . Then ρ0(C) = A so that ρ0(LBC) is

a line passing through A and (by Theorem G1) parallel to LBC . Since the line LAD

has exactly the same two properties by assumption, the Parallel Postulate implies

that ρ0(LBC) = LAD. Similarly, ρ0(LAB) = LCD. Thus,

ρ0(LBC) ∩ ρ0(LAB) = LAD ∩ LCD = {D}

On the other hand, LBC ∩ LAB = {B}. By the Lemma, we have

ρ0(B) = D

Recall we also have ρ0(C) = A. Therefore ρ0(BC) = AD. Since ρ0 is an isometry

(by (ρ3)), we have |BC| = |AD|, as desired.

Remark It may be of interest to add a comment to the preceding assertion that,

because ρ0(B) = D and ρ0(C) = A, we have ρ0(BC) = AD. This is so intuitively

obvious that, at least in the school classroom, it would probably be wise to leave it

as is. As a teacher, however, you should be aware that it is possible to give a precise

proof, which runs as follows. By assumption (ρ2), ρ0 maps the segment BC to the

segment ρ0(BC) which joins ρ0(B) and ρ0(C). Thus ρ0(BC) is a segment which

joins D (= ρ0(B)) to A (= ρ0(C). But AD is a segment joining D to A, and there is

only one segment joining D to A, by (L1). Therefore ρ0(BC) = AD.

Corollary to Theorem G4 The angles of a parallelogram at opposite vertices

are equal.

The proof is already implicit in the proof of Theorem G4, and will therefore be

left as an exercise.

We are now ready to define translation. We first extend the concept of a vector

first introduced in §2 of Chapter 2 from the number line to the plane. Given two

points A and B in Π, the vector AB is the segment AB together with a starting

point A, which is the first letter in AB, and an endpoint B, which is the second

letter in AB.57 In other words, a vector is just a segment together with a direction

57This is the same concept as the one used in calculus on R3, though the notation may be slightly
different.
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from a designated endpoint to the other endpoint. For example, while the segments

AB and BA are the same, the vectors AB and BA are different because they have

different starting points and endpoints. With this understood, given a vector AB, we

define the translation along AB to be the transformation TAB of Π so that:

(1) If P ∈ LAB, then TAB(P ) is the point Q ∈ LAB so that PQ has the

same length and same direction as AB. More precisely, if we regard LAB

as the number line so that the starting point A of AB is 0 and so that the

endpoint B is a positive number (to the right of 0), then Q is the point

on LAB also to the right of P and |PQ| = |AB|.

q q q qP Q A B

(2) If P 6∈ LAB, then TAB(P ) is the point Q obtained as follows. Let L1

be the line passing through P and parallel to LAB. Let L2 be the line

passing through the endpoint B of AB and parallel to the line LAP , which

joins the starting point A of AB and P . The point Q is the intersection

of L1 and L2.
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We will sometimes refer to TAB as the translation from A to B.

A few supplementary comments would make the definition more intuitive. First,

why must L1 and L2 in (2) intersect? Suppose not, then L2 ‖ L1. Now B does not lie

on L1 (because L1 ‖ LAB). Thus through B pass two lines parallel to L1, namely L2

and LAB. By the Parallel Postulate, L2 = LAB. In particular, A ∈ L2 and therefore
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L2 intersects LAP at A. This contradicts the fact that L2 ‖ LAP . Therefore L1 must

intersect L2. Next,

if TAB(P ) = Q, then the distance from P to Q is always equal to the length

|AB|.

This is so if P ∈ LAB (by part (1) of the definition), and if P is not on LAB, by

construction, ABQP is a parallelogram and so by Theorem G4, again |PQ| = |AB|.
Furthermore, LPQ ‖ LAB or LAB = LPQ. In other words, a translation “moves every

point in the plane the same distance and in the same direction.”

Keeping the same notation, we note that if we consider the vector BA, then

for a point P 6∈ LAB, the translation TBA maps the point Q to exactly P because,

according to (2), we obtain TBA(Q) as follows: it is the point of intersection of the

line passing through Q and parallel to LBA (that would be L1 again), and the line

passing through the endpoint A of BA and parallel to LBQ (that would be LAP ). This

point of intersection is of course just P . Therefore for any point P not lying on LAB,

we have

TBA(TAB(P )) = P

By retracing the steps in (1), it is simple to see that the equality TBA(TAB(P )) = P

persists even when P ∈ LAB. Therefore we have

TBA ◦ TAB = I

By switching the letters A and B, we obtain

TAB ◦ TBA = I

This means that for any vector AB, the inverse transformation of the translation TAB

is TBA.

We proceed to make the same assumptions about translations as the rotations

and reflections:

(T1) Given any vector AB, there is a translation along AB.

(T2) Any translation maps a line to a line, a ray to a ray, and therefore a segment

to a segment.
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(T3) Any translation preserves lengths of segments (and is therefore an isometry) as

well as degrees of angles.

Translations have a noteworthy property: the translation TAB maps a line L which

is neither parallel to LAB nor equal to LAB to a line parallel to L itself. Suppose not.

Then L intersects TAB(L) at a point Q. Since Q ∈ TAB(L), there is a point P ∈ L
so that TAB(P ) = Q. But Q is also in L, so P and Q are both in L, and therefore

LPQ = L. If P lies in LAB, then by part (1) of the definition of a translation, Q

is also in LAB and therefore L = LPQ = LAB, and this contradicts the hypothesis

that L 6= LAB. Thus P does not lie in LAB, and by part (2) of the definition of a

translation, we have LPQ ‖ LAB. Therefore L ‖ LAB and this again contradicts the

hypothesis that L is not parallel to LAB. So L is parallel to TAB(L) after all.

We take this opportunity to make a useful observation. Given two parallel lines,

we can now define the distance between them. First, let P be a point not lying on

a line `. The distance of P from the line ` is by definition the length |PQ|,
where Q is the point intersection of the line ` and the line passing through P and

perpendicular to `.

P

Q
`

Now suppose we have parallel lines ` and `′, and P ∈ `′. If P ′ is another point on

`′, then we claim that the distance of P from ` is the same as the distance of P ′ from

`.58 Indeed, let the line passing through P ′ and perpendicular to ` intersect ` at Q′.

By Theorem G2, LPQ ‖ LP ′Q′ . Therefore PQQ′P ′ is a parallelogram. Consequently,

|PQ| = |P ′Q′|, by Theorem G4. This proves the claim.

58This explains why the sleepers (cross ties) across rail tracks can afford to be all of the same
length.
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P

Q
`

`′
P ′

Q′

The common distance from points on one of two parallel lines to the other is called

the distance between the parallel lines.

Exercises 5.3

1. (a) Check that a reflection as defined in this section satisfies conditions (i) and

(ii) in the definition of a transformation. (b) Do the same for translation.

2. In our definition of translation, we drew a picture to show, if TAB(P ) = Q, where

the point Q is. Using exactly the same notation and same picture, show where Q′ is

if TBA(P ) = Q′.

3, Let L be a line in the plane, which may be taken to be the usual number line.

Denote 0 on L by A, and the number 1 on L by B. Let ρ1 be the counterclockwise

rotation of 45◦ around A, and let ρ2 be the clockwise rotation of 90◦ around B. De-

scribe as precisely as you can the line ρ1ρ2(L) and the line ρ2ρ1(L). In particular,

does ρ1ρ2(L) equal ρ2ρ1(L) ?

4. Prove the Corollary to Theorem G4.

5. If ABCD is a parallelogram, prove that ∠ADB and ∠CBD are equal. (Caution:

We have not yet proved anything about “alternate interior angle”, so you cannot use

that fact for this proof. Look instead at the proof of Theorem G4.)

6. Let R be the reflection across the line `. Prove that the image under R of a line

parallel to ` is another line parallel to `. Prove also that if a line L is not parallel to `,

then R(L) always intersects L, in fact, L and R(L) intersect on the line of reflection `.
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7. Explain why, given any three non-collinear points in the plane, there is always a

circle passing through them.59 (Caution: Rest assured that this does not tax your

knowledge of high school geometry, but only your understanding of things we have

done in this section. Be sure you justify every step. For example, why is it necessary

to assume that the three points are not collinear?)

8. Assuming that the lines on your notebook are equi-distant parallel lines, prove

that these lines intercept segments of the same length on any transversal. (Compare

problem 7(b) in Exercises 5.1.)

9. Given a line L, prove that all the points of a fixed distance k from L form two

lines each parallel to L.

4 Congruence

The definition

Congruence criteria

The definition

We begin with a key definition.

Definition A transformation of the plane Π is called a congruence if it is a

composition of a finite number of basic isometries.

Note that since each basic isometry is a transformation, and compositions of

transformations are transformations, a congruence is in particular a transformation.

Congruence is one of the main concepts in the school geometry curriculum. Here are

its most basic properties:

59Compare item 13 in §1 of Chapter 4.
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Theorem G5 (a) Every congruence is an isometry that preserves the degrees of

angles and maps lines to lines. (b) The inverse of a congruence is a congruence. (c)

Congruences are closed under composition in the following sense: if F and G are

congruences, so is F ◦G.

Proof It has been pointed out that every one of the basic isometries has the

following three properties: it is a transformation, it is an isometry, and it maps lines

to lines as well as preserves the degrees of angles. Because these properties persist

under composition, the proof of part (a) of the theorem is straightforward. To prove

part (b), i.e., the inverse of a congruence is a congruence, let a congruence ϕ be the

composition of three basic isometries F ◦ G ◦ H, then it is simple to directly verify

that if ψ = H−1 ◦G−1 ◦F−1, then ψ ◦ϕ = I = ϕ◦ψ. So ψ is the inverse of ϕ. But the

inverse of a basic transformation is a basic transformation (the inverse of a rotation

is a rotation, the inverse of a reflection is itself, and the inverse of a translation is

a translation; see §3), so ψ is also a congruence. A similar statement holds if ϕ is

the composition of any number of basic isometries for exactly the same reason. Part

(c) follows immediately from the definition of a congruence as a composition of basic

isometries. This proves the theorem.

A subset of the plane S is said to be congruent to another subset S ′ of the plane

if there is a congruence ϕ so that ϕ(S) = S ′. In symbols: S ∼= S′. Since the in-

verse of a congruence is a congruence (Theorem G5(b)), and since ϕ(S) = S ′ implies

ϕ−1(S ′) = S, we see that S ∼= S ′ implies S ′ ∼= S. Thus we can speak unambiguously

about two sets S and S′ being congruent since if S ∼= S ′, then also S ′ ∼= S. We

leave as an exercise to show that if S1 is congruent to S2 and S2 is congruent to S3,
then S1 is congruent to S3. This fact is usually expressed by saying that congruence

is transitive.

Example Let S ibe the isosceles triangle shown below. Let R be the reflection

across the line ` and let T be the translation along the vector OA, where O is the

origin and A = (0, 5). Consider the congruence ϕ = T ◦R. What is ϕ(S)?
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By definition, ϕ(S) = T (R(S)). If we denote the set R(S) by K, then K is the

triangle in the lower right corner.
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Now T moves everything up by the length of OA. The thickened triangle is then

T (K), which is ϕ(S).
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It is worth pointing out that this definition of congruence applies not only to

polygons, but to any geometric figures. For example, the following two curves are

congruent because, one can map the left curve onto the right curve by a translation

along PQ followed by a rotation of 90◦. This, and not “same size and same shape”,

is the meaning that the curves are congruent.

P

Q

Congruent triangles occupy a special position in elementary geometry and has

its own special conventions. Denote a triangle ABC by 4ABC. The congruence

notation 4ABC ∼= 4A′B′C′ will be understood to mean — in addition to the

established meaning that the two sets ϕ(4ABC) and 4A′B′C ′ are equal for some

congruence ϕ — that ϕ also satisfies ϕ(A) = A′, ϕ(B) = B′, and ϕ(C) = C ′.

Congruence criteria

It follows from Theorem G5(a) that, if 4ABC ∼= 4A′B′C ′, then ϕ(AB) = A′B′,

ϕ(AC) = A′C ′, and ϕ(BC) = B′C ′, and also that ϕ(∠A) = ∠A′, ϕ(∠B) = ∠B′, and

ϕ(∠C) = ∠C ′. Therefore, again by Theorem G5(a), 4ABC ∼= 4A′B′C ′ implies that

|∠A| = |∠A′|, |∠B| = |∠B′|, |∠C| = |∠C ′|,

and

|AB| = |A′B′|, |AC| = |A′C ′|, |BC| = |B′C ′|.

We now prove the converse. Let it be said that, in this case, the proof of the theorem

is as important as the theorem itself.
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Theorem G6 If for two triangles 4ABC and 4A′B′C ′,

|∠A| = |∠A′|, |∠B| = |∠B′|, |∠C| = |∠C ′|,

and

|AB| = |A′B′|, |AC| = |A′C ′|, |BC| = |B′C ′|,

then 4ABC ∼= 4A′B′C ′.

Proof We will prove that if the triangles ABC and A′B′C ′ satisfy the equalities

of sides and angles as described, then there is a congruence ϕ so that ϕ(4ABC) =

4A′B′C ′. Because we have a precise definition of congruence, all we need to do is to

find translations, reflections, and rotations that map one triangle to the other. What

is worth learning from this proof is the way to break up the rather long process of

finding these basic isometries into a sequence of simpler special cases, and of course,

how to put everything back together at the end. There are three cases to consider.

Case I: The triangles satisfy the special restriction that A = A′, B = B′.

In this case, either C, C ′ are already in the same half-plane of LAB, or they are

in opposite half-planes of LAB. If the former, then we claim that C = C ′, so that

in this situation, we need only let ϕ be I, the identity transformation. To prove the

claim, observe that because |∠CAB| = |∠C ′AB|, the fact that C and C ′ are in the

same half-plane of LAB implies that we have the equality of rays, RAC = RAC′ (see

statement (α) in the discussion of angle measurements in §1).
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In like manner, because |∠CBA| = |∠C ′BA| we have RBC = RBC′ . Therefore

RAC ∩RBC = RAC′ ∩RBC′

which means of course that C = C ′. So in this situation, I(4ABC) = 4A′B′C ′.
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It remains to deal with the case where A = A′, B = B′ but C, C ′ are in oppo-

site half-planes of LAB. Then let R be the reflection with respect to LAB, and let

R(C ′) = C∗. Because R maps A′ and B′ to themselves (they are on LAB), we have

R(4A′B′C ′) = 4A′B′C∗. Now compare the two triangles ABC and A′B′C∗: we have

A = A′, B = B′ as before, but C and C∗ are now in the same half-plane of LAB. Be-

cause R is a basic isometry, all the expected equalities of sides and angles between the

two triangles ABC and A′B′C∗ continue to hold. The preceding consideration there-

fore implies that I(4ABC) = 4A′B′C∗, and therefore, I(4ABC) = R(4A′B′C ′).
Since R ◦R = I, we obtain

R(4ABC) = R(I(4ABC)) = R(R(4A′B′C ′) = 4A′B′C ′

Thus letting ϕ1 be either I or R, depending on whether C, C ′ lie in the same half-plane

or different half-planes of LAB, we have

ϕ1(4ABC) = 4A′B′C ′

and Case I is proved.

Case II: The triangles satisfy only the condition that A = A′, but nothing about

B and B′.

Then there is some number e, −180 < e ≤ 180, so that the rotation ρe around

the point A rotates one ray to the other: ρe(RAB′) = RAB. In the following picture,

e > 0, but if the points B and B′ are interchanged, then we would have to rotate

clockwise from B′ to B and e would be negative.
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Now B and ρe(B
′) (to be called B∗) are two points on the ray RAB, and (because

|AB| = |A′B′| and ρe is a basic isometry) |A′B′| = |ρe(A′B′)| = |AB∗|. Therefore

B = B∗, i.e., B = ρe(B
′). Letting C∗ = ρe(C

′), we get ρe(4A′B′C ′) = 4ABC∗.
Therefore, the two triangles ABC and ABC∗ satisfy the condition of Case I. Conse-

quently, ϕ1(4ABC) = ABC∗ for a basic isometry ϕ1. In other words, ϕ1(4ABC) =
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ρe(4A′B′C ′). Letting ϕ2 be the inverse ρ−e of ρe, and applying ϕ2 to both sides of

this equation, we see that

ϕ2(ϕ1(4ABC)) = 4A′B′C ′

Thus the theorem is also proved for Case II because ϕ2 ◦ ϕ1 is a congruence.

Case III: The general case where no restriction is placed on the triangles ABC

and A′B′C ′.

We may therefore assume that the vertices A and A′ are distinct. Let T be

the translation along the vector A′A; note that T (A′) = A, so that if we define

B∗ = T (B′) and C∗ = T (C ′), then T (4A′B′C ′) = 4AB∗C∗. Now since the triangles

ABC and AB∗C∗ have the vertex A in common, Case II applies. Thus for suitable

basic isometries ϕ1 and ϕ2, we have ϕ2(ϕ1(4ABC)) = 4AB∗C∗, which is of course

equivalent to ϕ2(ϕ1(4ABC)) = T (4A′B′C ′). Let ϕ3 be the inverse translation TAA′

of T . Then we obtain, for the general case of two triangles ABC and A′B′C ′ with

three pairs of equal sides and equal angles, the fact that

ϕ3(ϕ2(ϕ1(4ABC))) = 4A′B′C ′

Letting ϕ be the congruence ϕ3 ◦ ϕ2 ◦ ϕ1, we see that ϕ(4ABC) = 4A′B′C ′. This

completes the proof of Theorem G6.

Theorem G6 is an overkill, in that it is hardly necessary to require the equalities

of all the angles and all the sides of two triangles before we can prove the triangles

are congruent. Typically, it suffices to impose three suitably chosen conditions to get

it done, and the best known of which are SAS, ASA, and SSS. This is quite clear

if one reads the preceding proof carefully and notices that some of the equalities in

the hypothesis did not even get mentioned.. Specifically, by retracing the preceding

proof, one can see without difficulty how to prove the following two theorems.

Theorem G7 (SAS) Given two triangles ABC and A′B′C ′ so that |∠A| =

|∠A′|, |AB| = |A′B′|, and |AC| = |A′C ′|. Then the triangles are congruent.

Theorem G8 (ASA) Given two triangles ABC and A′B′C ′ so that |AB| =

|A′B′|, |∠A| = |∠A′|, and |∠B| = |∠B′|. Then the triangles are congruent.
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Consider the proof of Theorem G8, for example. If we examine the proof of

Theorem G6 closely, we will see that all we ever use are the assumptions that

|AB| = |A′B′|, |∠A| = |∠A′|, and |∠B| = |∠B′|

This is because in Case 1, these are the only facts we need to guarantee that C = C ′

if C and C ′ are in the same half-plane of LAB, and that the reflection across LAB

maps C ′ to C if C and C ′ are in opposite half-planes of LAB. Moreover, the proofs of

Case II and Case III depend only on the ability to map A′ and B′ onto A and B and

on the truth of Case I. Therefore the remaining assumptions about |AC| = |A′C ′|,
|BC| = |B′C ′|, and |∠C| = |∠C ′| are never invoked. This in essence disposes of

Theorem G8. The proof of Theorem G7 can be carried out along the same line. We

will therefore leave the details to an exercise. There is a third theorem of this genre,

SSS, to the effect that two triangles with three pairs of equal sides are congruent.

The proof of SSS requires a bit more preparation and will be given in the Appendix.

We have defined the concepts of isometry and congruence, and it is time that

we clarify the relationship between the two. As noted in Theorem G5, a congruence

preserves the degrees of angles whereas an isometry, by definition, only preserves dis-

tance and has nothing to say about degrees of angles. It is a fact, one that will not

be proved here, that every isometry of the plane is a congruence. In other words,

every isometry turns out to be nothing but the composition of a finite number of

basic isometries. This underscores the importance of the basic isometries: they are

all you need to know about isometries of the plane. Moreover, this also implies that

if a transformation of the plane preserves distance, then it must be a congruence and

therefore it automatically preserves degrees of angles. This is not an obvious fact.

You should be careful at this point, however, because until we can prove this fact, we

cannot assume that an isometry preserves degrees of angles.

Exercises 5.4

1. Prove that congruence is transitive.

2. Let ABCD be a parallelogram. Then 4ABD ∼= CDB.
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3. Let M be the midpoint of a segment AB and let D be a point on the perpendicular

bisector of AB. Show that the ray RDM is the angle bisector of ∠ADB.

4. Using the notation and picture of the Example in this section, exhibit R(T (S)).

Is it equal to T (R(S))?

5. Any two circles of the same radius are congruent. (Caution: This is a slippery

proof. Be very precise.)

6. (a) Prove Theorem G7. (b) Prove Theorem G8.

7. Two rectangles with two pairs of equal sides are congruent, i.e., there is a congru-

ence that maps one to the other. (Caution: Be very careful with what you write

down.)

8. The angle bisector from a vertex of a triangle is perpendicular to the opposite

side if and only if the two sides of the triangle issuing from this vertex are equal.

(Note that by the Crossbar Axiom, there is no question that the angle bisector must

intersect the opposite side.)

9. Let ABCD be a parallelogram. If a diagonal is an angle bisector (e.g., BD bisects

∠ABC), then all four sides of ABCD are equal. (Note: Such a parallelogram will

turn out to be a square, but we won’t be able to prove that until we know a few more

things about the angle sum of a triangle.)

10. Explain why two triangles with two pairs of congruent sides and one pair of con-

gruent angles need not be congruent. (We note that, on the other hand, two triangles

with two pairs of equal angles and a pair of equal sides must be congruent. This is

so because one can prove that the sum of (the degrees of) angles in a triangle is 180

degrees; therefore, the third pair of angles of these two triangles must be equal as

well, and Theorem G8 applies.)
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5 A brief pedagogical discussion

In a middle school classroom, if congruence and dilation (which will be formally

taken up in the Chapter 6) are going to be taught at all, they should be taught in a way

that is closer to Chapter 4 than to Chapter 5 and Chapter 6.60 For example, the idea

of the proof of Theorem G6 can be conveyed much more easily by moving concrete

models of identical triangles across the blackboard than by the rather formidable

symbolic notations of the above proof. Another example is the use of transparencies

in Chapter 4 to get across the concepts of the basic isometries: it is much better suited

to a middle school classroom than the precise definitions of this chapter. Therefore,

for the immediate needs of teaching middle school geometry, Chapter 4 is a better

model than Chapters 5 and 6, and it is strongly suggest that you plan your lessons

according to Chapter 4, at least to the extent possible. It is much more important to

build up students’ geometric intuition than overwhelm them with technicalities.

For the purpose of professional development, however, Chapters 5 and 6 are indis-

pensable. Chapter 4 is an intentionally oversimplified version of geometry; the gain of

wider accessibility is achieved at the price of possible mathematical distortions. If you

do not know the mathematics in Chapters 5 and 6, you will be misled into thinking

that the oversimplifications in Chapter 4 are the norm, and soon you will be teaching

a distorted version of the basic isometries. You may have noticed that the discussion

in Chapter 4 begins with translations and ends with rotations, whereas the order is

reversed in this chapter. That is no accident. Translations are conceptually simpler

than rotations, but it so happens that pinning down with mathematical precision the

concept of “direction” (which is needed for the definition of translations) requires

more work than defining a circle (in the definition of a rotation). This is why in a

mathematically correct presentation of the basic isometries, translation has to come

last, and a teacher should be well aware of that.

There is a broader reason why we believe that you as a teachers should know the

materials of Chapters 5 and 6 before you teach the materials of Chapter 4. The fact,

not generally recognized, is that it takes more knowledge to simplify and distill the

60Added October, 2011: The Common Core Standards have now made this approach to school
geometry—specifically the geometry of grade 8 and high school—a reality in the schools. The
geometry curriculum in middle and high schools, as described in these standards, is very close to
the content of Chapters 4–6. This gives fresh incentive to the learning of this material.
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essence of something than to tell it verbatim. Thus, if you are going to take the

challenge of writing a three-page synopsis of War and Peace, you’ll need a thorough

knowledge of the whole book and an understanding of Tolstoy’s intentions in order

to compress in the short space of three pages what Tolstoy had the luxury of more

than a thousand pages to convey. Every word must count. So it is that when you try

to give middle school students a taste of geometry, every word must count, and you

had better get it right from the start. Reading and understanding Chapters 5 and 6

will give you a better perspective on these geometric facts and concepts. They will

decrease the likelihood that you will mislead your students.

Appendix

Our goal is to prove the standard theorem that two triangles whose three pairs

of corresponding sides are equal must be congruent (SSS). The three theorems, SAS

(Theorem G7), ASA (Theorems G8), and now SSS, form the cornerstone of the

discussion of triangles in the high school geometry curriculum. The proof of SSS

requires some simple properties of isosceles triangles.

First, some definitions. Recall that a triangle is isosceles if it has (at least) two

equal sides. If in 4ABC, |AB| = |AC|, we will, for convenience, refer to A as the

top vertex and ∠A as the top angle. The angles ∠B and ∠C are the base angles,

and side BC is the base. Recall also that, for a general triangle, the line passing

through A and perpendicular to BC is called the altitude on BC or sometimes, the

altitude from A. Sometimes, the segment AD, where D is the point of intersection

of this perpendicular line with BC, is also called the altitude from A. This is a

typical example of the same term being used in school mathematics for two different

purposes.
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There is no such ambiguity about the next definition, however. The segment join-

ing a vertex to the midpoint of the opposite side is by definition a median of the

triangle.

Lemma (a) Isosceles triangles have equal base angles. (b) In an isosceles tri-

angle, the perpendicular bisector of the base, the angle bisector of the top angle, the

median from the top vertex, and the altitude on the base all coincide.

To put assertion (b) of the Lemma in context, observe that in a general triangle,

the following four lines are distinct: the angle bisector AZ of angle ∠A, the median

AM and the altitude AD on BC, and the perpendicular bisector NM of the side BC

opposite A. See the picture below. It is therefore remarkable that in the case of an

isosceles triangle, all four lines would collapse into one at least for the base and the

top angle.

�
�
�

�
�
�
�

@
@
@
@
@
@
@
@
@
@
@
@
@@

PPPPPPPPPPPPPPPPPPPP

�
�
�
�
�
�
�
�

B
B
B
B
B
B
B
B
B
Bq���
�
�
�
�
�
��

�
�
��

A

B

C

M

D
Z

N

�
�
PP

��
PP

Proof Let |AB| = |AC| in 4ABC, and let the angle bisector of the top angle

∠A intersect the base BC at Z.61 Let R be the reflection across the line LAZ .

�
�
�
�
�

\
\
\
\
\

A

B Z C

Since |∠BAZ| = |∠CAZ|, and since reflections preserves the degrees of angles, R

maps the ray RAB to the ray RAC . Let B′ be the point on the ray RAC so that R(B) =

61The fact that the angle bisector of ∠A intersects BC is implied by the Crossbar Axiom.
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B′. Since A is on the line of reflection, R(A) = A so that |AB| = |R(AB)| = |AB′|.
By hypothesis, |AB| = |AC|, and therefore|AC| = |AB′|. Since C and B′ are both

on the same ray RAC . we have R(B) = C. Now it is also true that R(Z) = Z and

R(A) = A because Z and A lie on the line of reflection of R, so R(BZ) = CZ and

R(BA) = CA (a reflection maps a segment to a segment). Therefore R(∠B) = ∠C.

Since a reflection preserves the degree of angles, |∠B| = |∠C|. This proves part (a).

For part (b), observe that since LAZ is the line of reflection and R(B) = C,

R(∠AZB) = ∠AZC and R(BZ) = (CZ)

Therefore |∠AZB| = |∠AZC| = 90◦, and |BZ| = |CZ|, so that LAZ is the perpen-

dicular bisector of BC. Since LAZ is, by construction, also the angle bisector of ∠A,

every statement in (b) follows. The proof is complete.

As an application of the Lemma, we can now prove the SSS criterion of triangle

congruence.

Theorem (SSS) Given triangles ABC and A′B′C ′. If the three sides are pair-

wise equal, i.e., |AB| = |A′B′|, |AC| = |A′C ′|, and |BC| = |B′C ′|, then the triangles

are congruent.

Proof As in the case of the SAS and ASA theorems, we break up the proof into

three steps, going from a special case to the most general.

Case I. The two triangles satisfy in addition, A = A′ and B = B′.

Case II. The triangles satisfy in addition, A = A′.

Case III. The general case.

Case I. In this case, there are two possibilities.

(1) C and C ′ are in opposite half-planes of LAB.

(2) C and C ′ are in the same half-plane of LAB.

If (1) holds, then the fact that |AC| = |A′C ′| implies that |∠ACC ′| = |∠AC ′C| (see

Lemma). Likewise, the fact that |BC| = |B′C ′| implies that |∠BCC ′| = |∠BC ′C|.
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Now there are three possibilities for the two triangles; two are shown below, and the

third one is similar to the picture on the right but with AC (respectively, A′C ′) as

the longest side of 4ABC (respectively, 4A′B′C ′).
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We claim that |∠ACB| = |∠AC ′B|. Indeed, in the situation of the left picture, we

have

|∠ACB| = |∠ACC ′|+ |∠BCC ′| = |∠AC ′C|+ |∠BC ′C| = |∠AC ′B|,

whereas in the situation of the right picture,

|∠ACB| = |∠BCC ′| − |∠ACC ′| = |∠BC ′C|+ |∠AC ′C| = |∠AC ′B|.

It is clear that the third possibility alluded to above can be handled exactly as in

the picture on the right. The claim is proved. Thus 4ACB ∼= 4AC ′B by SAS

(Theorem G7). Consequently, |∠CAB| = |∠C ′AB| and AB is the angle bisector of

the isosceles triangle AC ′C and hence the perpendicular bisector of segment CC ′, by

the Lemma again.

LetR be the reflection across LAB, then by the definition of a reflection, R(C ′) = C

while R(A′) = A and R(B′) = B. Therefore R(4A′B′C ′) = 4ABC, and the

triangles are congruent, as desired.

If (2) holds instead, then we claim C = C ′, so that 4ABC = 4A′B′C ′. To prove

the claim, again let R be the reflection across LAB. Let R(A′) = A0, R(B′) = B0,

and R(C ′) = C0. Of course, A0 = A and B0 = B, but now C0 and C are on

opposite half-planes of LAB. The preceding discussion of possibility (1) implies that

R(4A0B0C0) = 4ABC. But R ◦R = identity, so

4ABC = R(4A0B0C0) = R(R(4A′B′C ′) ) = 4A′B′C ′ ,

exactly as claimed, and Case I is completely proved.
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Case II. the two triangles have one pair of corresponding vertices in common,

say, A = A′.

HH
HHH

HHHH

qA = A′ B

B′

Let % be the rotation around A that brings the ray RAB′ to the ray RAB. Because

|AB| = |A′B′| by hypothesis, %(B′) = B. Therefore if we denote %(A′), %(B′) and

%(C ′) by A0, B0 and C0, respectively, then the triangle ABC and A0B0C0 have two

pairs of corresponding vertices in common, namely, A = A0 and B = B0. By Case I,

there is a congruence ϕ so that ϕ(4A0B0C0) = 4ABC. Hence

4ABC = ϕ(4A0B0C0) = ϕ( %(4A′B′C ′) ) = (ϕ ◦ %)(4A′B′C ′)

This shows the triangles ABC and A′B′C ′ are congruent.

Case III. Finally, we deal with the general case. Let T be the translation that

maps A′ to A, and denote T (A′), T (B′) and T (C ′) by A0, B0, and C0, respectively.

Then T (A′) = A and 4A0B0C0 = T (4A′B′C ′). But 4A0B0C0 and 4ABC now

have a pair of corresponding vertices in common because A0 = A. By Case II, there

is a congruence ϕ so that ϕ(4A0B0C0) = 4ABC. Therefore

4ABC = ϕ(4A0B0C0) = ϕ(T (4A′B′C ′) ) = (ϕ ◦ T )(4A′B′C ′)

Hence we have proved the congruence of the triangles ABC and A′B′C ′ in general

when they have three pairs of equal sides. The proof of Theorem G26 is complete.

As an immediate application of SSS, we have the following two corollaries. Their

proofs are simple enough to be left as exercises.

Corollary 1 A quadrilateral is a parallelogram ⇐⇒ its opposite sides are equal.

Corollary 2 A rhombus is a parallelogram.
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Chapter 6: Dilation and Similarity

§1 The fundamental theorem of similarity (p. 297)

§2 Dilation: Part II (p. 306)

§3 Similarity (p. 317)
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This chapter introduces the other basic concept in school geometry: similarity.

Like congruence, similarity has not fared well in school mathematics. Middle school

students are taught that two geometric figures are similar if they are the same shape

but not the same size. Then when they get to high school, they are told that similar-

ity means equal angles and proportional sides. In other words, suddenly “similarity”

becomes synonymous with the “similarity of triangles”. What such instructions leave

behind is a vacuum about what it means for two geometric shapes, which are not

polygons (e.g., two ellipses), to be similar. Consequently, there is a high probability

that, upon graduation from high school, students’ understanding of similarity con-

sists of two disconnected sound bites: a definition of similar triangles in terms of

proportional sides and equal angles, and a conception of “same shape but not the

same size” for anything other than triangles. What seems to have passed unnoticed

is the fact that a correct description of similarity, one that is discussed below, can

be easily introduced in middle school through ample hands-on experiments plus a

judicious amount of reasoning. In any case, we have to get rid of “same shape but

not same size” in the school classroom.

A quick perusal of §5 of the last chapter may lend some perspective on the mate-

rial of this chapter.

1 The Fundamental Theorem of Similarity

The purpose of this section is to give a partial explanation of the following Fun-

damental Theorem of Similarity (FTS). This theorem dominates the whole

discussion of similarity.

Theorem G9 (FTS) Let 4ABC be given, and let D, E be points on AB and

AC respectively. If

|AB|
|AD|

=
|AC|
|AE|

(and their common value is denoted by r), then DE ‖ BC and

|BC|
|DE|

= r
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First of all, a remark about terminology. The number r is generally referred to

as the scale factor. The statement above on DE ‖ BC is a standard abuse of

notation for LDE ‖ LBC , i.e., the line containing the segment DE is parallel to the

line containing the segment BC. We will continue to use this abuse of notation for

the rest of this book.

In applications, it is sometimes more convenient to assume, instead of
|AB|
|AD| =

|AC|
|AE| , the equivalent condition

|AD|
|DB|

=
|AE|
|EC|

See problem 1 of Exercises 5.1.

In this section, will we give a proof of this theorem for the special case of r = 2,

i.e., for the case that D and E are midpoints of AB and AC, respectively. The

complete proof of FTS for all fractional values of r can be given now, and the only

reason for not giving it is that the rather intricate reasoning would be too much of

a distraction at this point. Note that, as usual, we have to appeal to FASM for the

validity of FTS for all positive numbers r rather than just fractional values.

We should point out a different formulation of FTS which is sometimes more con-

venient for applications:

Theorem G10 (FTS*) Let 4ABC be given, and let D ∈ AB. Suppose a line

parallel to BC and passing through D intersects AC at E. Then

|AB|
|AD|

=
|AC|
|AE|

=
|BC|
|DE|
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The simple proof that, because of the presence of the Parallel Postulate, Theo-

rems G10 follows from Theorem G9 and that, conversely, Theorem G9 follows from

Theorem G10 will be left as an exercise.

The proof of FTS for the special case of r = 2 requires some preparation in the

form of the following procession of theorems. Notice the striking fact that every single

one of them relies on the fact that a rotation of 180 degrees preserves distance and

degrees of angles.

Theorem G11 Let O be a point on a line L, and let % be the rotation of 180◦

around O. Then % maps each half-plane of L to its opposite half-plane.

Proof Let the half-planes of L be L+ and L−. The theorem says

%(L+) = L− and %(L−) = L+

It suffices to prove the first assertion, i.e., %(L+) = L−. Let us first prove that

%(L+) ⊂ L−. So let P be a point in L+, and we will prove %(P ) ∈ L−. On the line

LPO joining P to O, let Q be the point on the other half-line of LPO relative to O so

that the distance from O to P is equal to the distance from O to Q. It follows that

Q = %(P ).
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Now the segment PQ contains a point of L, namely, O, so P and Q are in opposite

half-planes of L (see (L4) in §1). Since P ∈ L+, we have Q ∈ L−, i.e., %(P ) ∈ L−,

as claimed. Next we need to prove that L− ⊂ %(L+). Thus given Q ∈ L−, we must

show that there is a point P ∈ L+ so that %(P ) = Q. We reverse the preceding

argument: Join Q to O to obtain the line LQO, and on this line, take the point P

on the other half-line relative to O so that P , Q are equi-distant from O. Then by

definition, %(P ) = Q. Since the segment PQ contains a point of L (namely, O), P

and Q have to be in opposite half-planes. Thus P ∈ L+, and the proof is complete.

Let L and L′ be two lines meeting at a point O. On L (resp., L′), let P , Q

(resp., P ′, Q′) be points lying on opposite half-lines determined by O, as shown in

the following figure.
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Then the angles ∠POP ′ and ∠QOQ′ are called opposite angles.62 We have:

Theorem G12 Opposite angles are equal.

Proof We make use of the preceding figure. The proof is rather trivial: each of

the two numbers, |∠POP ′| and |∠QOQ′|, when added to |∠P ′OQ| is 180 because

∠POQ and ∠P ′OQ′ are both straight angles. So |∠POP ′| = |∠QOQ′|. We want to

give a different proof, however, because our purpose is to demonstrate how to make

use of basic isometries to prove theorems. In this case, we argue as follows. Con-

sider the rotation % of 180◦ around O. Clearly %(ROP ) = ROQ and %(ROP ′) = ROQ′ .

Therefore %(∠POP ′) = ∠QOQ′. Since % preserves angles (by assumption (%3) of

rotations), we have |∠POP ′| = |∠QOQ′|.

The next two theorems give characterizations of a parallelogram that will prove

to be useful. The first one says that parallelograms are the quadrilaterals whose di-

62Most school textbooks in the U.S. call these vertical angles.
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agonals bisect each other.

Theorem G13 Let L and L′ be two lines meeting at a point O. P , Q (resp.,

P ′, Q′) are points lying on opposite half-lines of L (resp., L′) determined by O. Then

|PO| = |OQ| and |P ′O| = |OQ′| ⇐⇒ PP ′QQ′ is a parallelogram.
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Proof We will prove that if |PO| = |OQ| and |P ′O| = |OQ′|, then PP ′QQ′

is a parallelogram; the converse will be left as an exercise. As usual, let % be

the rotation of 180◦ around O. Then % interchanges the rays of LPQ with ver-

tex at O. Thus %(ROP ) = ROQ, so that %(P ) ∈ ROQ. But % is an isometry, so

|%(OP )| = |OP |, or written differently, |O%(P )| = |OP |. By hypothesis, |OP | = |OQ|,
so |O%(P )| = |OQ|. Since both %(P ) and Q are in ROQ, we conclude that %(P ) = Q.

Similarly, %(P ′) = Q′, so that %(PP ′) = QQ′. By Theorem G1, PP ′ ‖ QQ′. In the

same way, we can prove PQ′ ‖ P ′Q. This proves that PP ′QQ′ is a parallelogram, as

desired.

Theorem G14 A quadrilateral is a parallelogram ⇐⇒ it has one pair of sides

which are equal and parallel.

Proof The fact that a parallelogram has a pair of sides which are equal and

parallel is implied by Theorem G4. We prove the converse. Let ABCD be a quadri-

lateral so that |AD| = |BC| and AD ‖ BC. We have to prove that ABCD is a

parallelogram. It suffices to prove that AB ‖ CD. Let % be the rotation of 180

degrees around the midpoint M of the diagonal AC.
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As usual, %(A) = C by the definition of %, and %(LAD) ‖ LAD, by Theorem G1.

Therefore %(LAD) is a line passing through C and parallel to LAD itself. Since LBC

is also a line passing through C and parallel to LAD, the Parallel Postulate implies

that %(LAD) = LBC . At this juncture, we only know that %(D) lies in LBC , but we

are going to show that, in fact, %(D) = B. To this end, observe that on the line

LBC , there are now three points: B, %(D), and C, and of course C coincides with

%(A). We want to show that %(D) also coincides with B. Since % is an isometry,

|%(AD)| = |AD|. But |AD| = |BC| by hypothesis, so |%(AD)| = |BC|. Since % maps

a segment to a segment, this equality says % maps AD to a segment in LBC of length

|BC| joining %(A) (which is just C) to %(D).

B C

%(D)?%(A)

But BC is also a segment of length |BC| that has C as an endpoint, so to prove

%(D) = B, we have to prove that on the line LBC , both B and %(D) lie in the same

half-line of line LBC with respect to C. By Theorem G11, D and %(D) must lie in

opposite half-planes of LAC . Since D and B also lie in opposite half-planes of LAC , B

and %(D) must lie in the same half-plane of LAC , and therewith, also on the same ray

RCB (for the reason that the intersection of the closed half-plane of LAC containing B

with the line LBC is the ray RCB). Hence B and %(D), being two points of the same

distance from C on the same ray RCB, must coincide, i.e., %(D) = B. Coupled with

the fact that %(C) = A, we see that %(CD) = AB, and therefore, %(LCD) = LAB.

But according to Theorem G1, %(LCD) ‖ LCD. Hence LAB ‖ LCD, as desired.

Remark In the preceding proof, the fact that B and D lie in opposite half-

planes of the diagonal line LAC was taken for granted. This assumption allowed us to

conclude that B = %(D). This assumption was made in the proof because the proof
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of this intuitively obvious fact is too intricate to be of interest in a middle school

classroom.

We are finally in a position to prove the special case of FTS when r = 2:

Theorem G15 Let 4ABC be given, and let D and E be midpoints of AB and

AC, respectively. Then DE ‖ BC and |BC| = 2|DE|.
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Proof It is not obvious, but the key idea is to look for a point F on the ray RDE

so that |DE| = |EF |. (Once you buy into this idea, you can do variations on this

theme and come up with different proofs.)

Consider the rotation % of 180 degrees around E. Since A and C are equi-distant

from E, as are D and F , we have %(CF ) = AD. Since % is an isometry, |CF | = |AD|,
but since |AD| = |DB| by hypothesis, we have |CF | = |DB|. On the other hand, by

Theorem G1 of Chapter 4, §3, CF ‖ AD, which is of course the same as CF ‖ BD.

The quadrilateral DBCF therefore has a pair of sides which are equal and parallel.

By Theorem G14, DBCF is a parallelogram. Thus DF ‖ BC, which is the same as

DE ‖ BC. Furthermore, |DF | = |BC| (Theorem G4), and since |DE| = |EF |, we

have |BC| = 2|DE|. The proof is complete.

Theorem G15 has a surprising consequence: if ABCD is any quadrilateral, then

the quadrilateral obtained by joining midpoints of the adjacent sides of ABCD is

always a parallelogram. (See problem 4 in Exercises 5.1 immediately following).

Because of the importance of Theorem G15 in our work, we will give a second

proof using translations. The strategy is to first prove a special case of Theorem G10

(FTS*), and then use it to get at Theorem G15. So our first task is to prove the

302



following theorem.

Theorem G15* Let 4ABC be given and let D be the midpoint of AB. Suppose

a line parallel to BC passing through D intersects AC at E. Then E is the midpoint

of AC and 2|DE| = |BC|.
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Proof Let T denote the translation along the vector AD. Because |AD| = |DB|
by hypothesis, the definition of T implies that T (D) = B. From §3 of Chapter

4, we also know that T maps any line L not parallel to AD to another line parallel

to L itself. Therefore T (LDE) is a line passing through B and parallel to DE. By

hypothesis again, we already know LBC ‖ DE. By the Parallel Postulate, we see that

T (LDE) = LBC . In particular, T (E) is a point F on BC, i.e.,

T (E) = F

Therefore we have T (DE) = BF . Because T is an isometry, we have also

|DE| = |BF |

Now consider T (LAC). Because T (A) = D and T (E) = F , it follows that T (AE) =

DF and T (LAC) = LDF . Using once more the fact that a translation is an isometry

that maps a line to another line parallel to itself, we have

DF ‖ AC, and |AE| = |DF |

Since DE ‖ BC by hypothesis, DFCE is a parallelogram and therefore,

|DE| = |FC| and |DF | = |EC|
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by Theorem G4. Since |DE| = |BF |, the first equality implies 2|DE| = |BC|. Since

also |AE| = |DF |, the second equality implies E is the midpoint of AC. The proof

of Theorem G15* is complete.

Now we prove Theorem G15 again. Using the notation and picture of that the-

orem, we draw a line L through D parallel to BC. By what we have just proved,

L passes through the midpoint E of AC and therefore DE ‖ BC. Also we already

know that 2|DE| = |BC|. We are done.

Exercises 6.1

1. Let D and E be points on sides AB and AC, respectively, of 4ABC. Prove:

|AB|
|AD|

=
|AC|
|AE|

⇐⇒ |AD|
|DB|

=
|AE|
|EC|

⇐⇒ |AB|
|DB|

=
|AC|
|EC|

2. Finish the proof of Theorem G13 by proving that the diagonals of a parallelogram

bisect each other, in the sense that their point of intersection is the midpoint of

each diagonal. (Caution: Be careful.)

3. Let D, E, F be the midpoints of sides AD, AC, and BC, respectively, of 4ABC.

Then the four triangles ADE, DBF , DEF , EFC are all congruent.
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4. If ABCD is any quadrilateral, then the quadrilateral obtained by joining mid-

points of the adjacent sides of ABCD is always a parallelogram.
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5. Let L1, L2, and L3 be three mutually parallel lines, and let ` and `′ be two distinct

transversals. If the two segments intercepted on ` by L1, L2, and by L2, L3 are of the

same length, then the same is true of the corresponding segments intercepted on `′.

(There are many ways to prove this, but the most natural is to make use of Theorem

G15*.)

6. Use the idea in the proof of Theorem G15, but do not assume FTS, to prove

that if in triangle ABC, D and E are points on AB and AC respectively, so that

|AB| = 3|AD| and |AC| = 3|AE|, then DE ‖ BC and |BC| = 3|DE|.

7. (a) FTS (Theorem G9) implies FTS* (Theorem G10). More precisely, this means:

assume everything we have proved up to and including Theorem G9 and prove The-

orem G10. (b) FTS* (Theorem G10) implies FTS (Theorem G9). More precisely,

this means: assume everything we have proved up to and including Theorem G8,

plus Theorem G10, and prove Theorem G9. (The standard mathematical statement

that succinctly summarizes (a) and (b) is that “Theorem G9 and Theorem G10 are

equivalent”.)

8. Given positive numbers a and b, prove that there exists a rectangle whose sides

have lengths a and b. (Don’t skip any steps!)

9. Let F be the midpoint of the side BC of 4ABC. Then AF is the angle bisector

of ∠A if and only if AB and AC are equal.

10. Let ABCD be a parallelogram. Then B, D lie in opposite half-planes of the

diagonal AC, or more correctly, lie on opposite half-planes of the line LAC .

11. Let A = (a, a′) and B = (b, b′). Prove that the midpoint of the segment AB is

(
a+ b

2
,
a′ + b′

2
).

2 Dilation: Part II
We have been considering isometries almost exclusively thus far. Now we have to
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look seriously into an important class of transformations that are not isometries.

Definition A transformation D of the plane is a dilation with center O and

scale factor r (r > 0) if

(1) D(O) = O.

(2) If P 6= O, the point D(P ), to be denoted simply by Q, is the point on

the ray ROP so that |OQ| = r|OP |.

As already noted back in Chapter 4, a dilation with center at O maps each point by

“pushing out” or “pulling in” the point along the ray from O to that point, depending

on whether the scale factor r is bigger than 1 or smaller than 1. In particular, each

ray issuing from O is mapped into itself.

We hasten to confirm that a dilation so defined is a transformation as claimed,

i.e., that D satisfies the two defining properties of a transformation:

(i) if P1 and P2 are distinct points of Π, then D assigns to them distinct

points D(P1) and D(P2) of Π, and

(ii) for every point Q of Π there is a point P of Π so that D assigns P to

Q, i.e., Q = D(P ) for some point P .

To see that (i) is true, first observe that if one of the two distinct points P1 and P2

is equal to O, let us say P1 = O, then P2 6= O. By the definition of D, D(P2) 6= O.

Since D(P1) = D(O) = O, we see that D(P1) 6= D(P2). Thus we may assume that

neither P1 nor P2 is equal to O. If P1 and P2 lie on different rays issuing from O, then

by the definition of D, the points D(P1) and D(P2) remain on different rays and are

therefore not equal to each other. If on the other hand, P1 and P2 lie on the same

ray issuing from O, let D(P1) = P ′1 and D(P2) = P ′2. Then

|OP ′1| = r |OP1| 6= r |OP2| = |OP2|

and hence P ′1 6= P ′2, i.e., D(P1) 6= D(P2).

To see that (ii) is true, let Q be given. If Q = O, then D(Q) = Q. We may there-

fore assume that Q 6= O. On the ray ROQ, let P be chosen so that |OP | = (1/r)|OQ|.
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Then by the definition of D, D(P ) = Q. We have therefore proved that a dilation,

so defined, is a transformation.

A fundamental property of dilations, one that makes possible the simple drawings

of the dilation of rectilinear figures, is the following. It will be clear from this and

subsequent proofs related to dilation that the FTS and the Parallel Postulate lie at

the heart of the matter.

Theorem G16 Dilations map segments to segments. More precisely, a dilation

D maps a segment PQ to the segment joining D(P ) to D(Q). Moreover, if the line

LPQ does not pass through the center of the dilation D, then the line LPQ is parallel

to the line containing D(PQ).

Proof Let D have center O and scale factor r. If LPQ passes through O, then

either P and Q lie on the same side of O or they lie on opposite sides of O. In either

case, the fact that D maps PQ to the segment in LPQ from D(P ) to D(Q) follows

immediately from the definition of a dilation. We therefore assume that LPQ does

not pass through O. Let P ′ = D(P ), Q′ = D(Q).
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Let U be any point of PQ, and we will show that D(U) is on P ′Q′. Let U ′ = D(U).

Consider 4OP ′U ′. Because D maps P and U to P ′ and U ′, respectively,

|OP ′|
|OP |

=
|OU ′|
|OU |

= r

By FTS, LPU ‖ LP ′U ′ . Denoting LPQ by L, this says LP ′U ′ ‖ L. If we apply the same

reasoning to 4OP ′Q′, we get

|OP ′|
|OP |

=
|OQ′|
|OQ|

= r
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and, therewith, also LP ′Q′ ‖ L. Denoting LP ′Q′ by L′, we therefore have L′ ‖ L. Thus

both L′ and LP ′U ′ are lines passing through P ′ and parallel to L. By the Parallel

Postulate, LP ′U ′ = L′, and in particular, U ′ lies on L′. The fact that U ′ lies in the

segment P ′Q′ follows from the crossbar axiom: the latter implies that, because U lies

in ∠POQ, the ray ROU must meet the segment P ′Q′ at some point, which then must

be U ′ because two distinct lines meet only at one point. We pause to observe that

we have also proved in the process that L′ ‖ L, assuming L does not contain O.

Next, we show that P ′Q′ ⊂ D(PQ). Let U ′ ∈ P ′Q′. Let U be the intersection of

ROU ′ and L. For exactly the same reason as before, U ∈ PQ. We now prove that

D(U) = U ′. If we can prove that

|OU ′|
|OU |

= r

then by the definition of D, we would have D(U) = U ′. To prove this, let V be the

point on ROU so that |OV | = r|OU |. In 4OP ′V , we have |OP ′|/|OP | = r, so that

|OP ′|
|OP |

=
|OV |
|OU |

By FTS, LP ′V ‖ LPU , or what is the same thing, LP ′V ‖ L. Since L′ is also a

line passing through P ′ and parallel to L, the Parallel Postulate again dictates that

L′ = LP ′V . So V in fact lies on L′, and as it also lies on the ray ROU , we see that

V = U ′. Thus from |OV | = r|OU |, we conclude that |OU ′|/|OU | = r, as desired.

The proof of Theorem G16 is complete.

There are two useful corollaries of this theorem.

Corollary 1 A dilation maps lines to lines, and rays to rays.

Proof of Corollary 1 Given a line L, we must prove that D(L) is also a line.

Let P , Q be points on L. The theorem says D(PQ) is the segment P ′Q′, where

P ′ = D(P ) and Q′ = D(Q). Let L′ be the line containing P ′Q′. Let U ∈ L, we will

prove that D(U) ∈ L′. We may assume that U lies outside PQ, in which case, we

may assume without loss of generality that Q ∈ PU .
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Let U ′ = D(U). Theorem G16 implies that D(PU) is the segment P ′U ′. Since

Q ∈ PU , Q′ ∈ P ′U ′. Thus if L∗ denotes the line containing P ′U ′, then P ′ and Q′

both belong to L′ and L∗. Therefore L′ = L∗, and therefore also U ′ ∈ L′. We have

proved that D(L) ⊂ L′. It remains to prove that L′ ⊂ D(L). Let U ′ ∈ L′, and we

let U be the point of intersection of ROU ′ and L. If we let V = D(U), then we prove

exactly as before that V = U ′, so that D(L) = L′.

The fact that D maps rays to rays is proved in the same manner.

Corollary 2 Let triangles ABC and A′B′C ′ be given. If a dilation D maps

the vertices to vertices, then it also maps the triangle to the triangle. Precisely: if

D(A) = A′, D(B) = B′, and D(C) = C ′, then D(4ABC) = 4A′B′C ′.

Proof of Corollary 2 Recall that 4ABC is the union of the segments AB, BC,

and AC. Thus the conclusion means we must prove D(AB) = A′B′, D(BC) = B′C ′,

and D(AC) = A′C ′. But this follows immediately from Theorem G16 and the hy-

pothesis that D(A) = A′, D(B) = B′, and D(C) = C ′.

Armed with Theorem G16, we see that it is very simple to draw the image of a

segment by a dilation, a fact that we already discussed in Chapter 4. Indeed, to draw

the image of a segment AB by a dilation D, simply find the image points D(A) and

D(B) of the endpoints and then draw the segment joining D(A) to D(B). Here is an

example with a scale factor of 2.5.
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In the picture, A′ = D(A), B′ = D(B), and C ′ = D(C).

What about the dilation of curved figures? On draws dilated figures through the

choice of data points in the original figure as we saw in §4 of Chapter 4.

The following theorem summarizes the remaining basic properties of dilations.

Theorem G17 Let D be a dilation with center O and scale factor r. Then:

(a) The inverse transformation of D is the dilation with the same center O but

with a scale factor 1/r.

(b) For any segment AB, |D(AB)| = r|AB|.
(c) D maps angles to angles and preserves degrees of angles.

remark Observe the delicate point that the statements of part (b) and part (c)

depend on the validity of Theorem G16 and its Corollary 1. Indeed, without knowing

that D(AB) is a segment, the notation |D(AB)| would not even make sense (because

the notation |σ| only makes sense when σ is a segment or an angle), and without

knowing that D maps rays to rays, we would not know that D maps angles to angles.

Proofs of parts (a) and (b) (a) Let D′ be the dilation with center O and scale

factor 1
r
. From the definition of a dilation, it is easy to check that D◦D′ = I = D′◦D.

Thus D′ is the inverse transformation of D.

Part (b) has been implicitly proved in the proof of Theorem G16. Indeed, in the no-

tation above, if P ′ = D(P ) and U ′ = D(U), then we have shown that D(PU) = P ′U ′.
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If we look at4OP ′U ′, then FTS implies that |P ′U ′|/|PU | = r, i.e., |D(PU)| = r|PU |.
Since P and U are arbitrary points, (b) is proved.

For the proof of part (c), we need to first get to know something about parallel

lines and angles. First some definitions.

Let two distinct lines L1, L2 be given. Recall that a transversal of L1 and L2 is

any line ` that meets both lines in distinct points. Suppose ` meets L1 and L2 at P1

and P2, respectively. Let Q1, Q2 be points on L1 and L2, respectively, so that they lie

in opposite half-planes of `. Then ∠Q1P1P2 and ∠P1P2Q2 are said to be alternate

interior angles of the transversal ` with respect to L1 and L2.

((((
(((

((((
(((

E
E
E
E
E
E
E
E
E
E
E
EE

L1

L2

`

P1

P2
Q2

R2

S

s

s

Q1

An angle which is the opposite angle of one of a pair of alternate interior angles

is said to be the corresponding angle of the other angle. For example, because

∠Q1P1P2 and ∠P1P2Q2 are alternate interior angles and because ∠SP2R2 in the

above figure is the opposite angle of ∠P1P2Q2, ∠SP2R2 is then the corresponding

angle of ∠Q1P1P2.

In the school classroom, we suggest that alternate interior angles be defined simply

by drawing a picture as above and pointing to ∠Q1P1P2 and ∠P1P2Q2. The correct

definition (the one just given), using the precise concept of the half-planes of a line,

may be pointed out as a side remark to open students’ minds to the potential of com-

plete logical precision. It will be seen presently that we need such precision because

we want to present logically complete proofs of several theorems, including the one on

the angle sum of a triangle. A overwhelming majority of school students would not

take kindly to the need of such precision in the proofs of theorems (as we will do in
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the proof of Theorem G18 and later in Chapter 11), because they would consider the

investment of so much effort into something so visibly obvious to be ridiculous. So

some compromise in the school classroom would be advisable. The purpose of this book

is, however, to expand your mathematical horizon for teaching in schools by supplying

you with a solid foundation on all things directly related to the K-12 classroom. Ac-

quiring the ability to reason through such bread-and-butter issues as alternate interior

angles with precision would certainly serve this purpose admirably.

The basic theorem about parallel lines and angles is the following:

Theorem G18 Alternate interior angles of a transversal with respect to a pair

of parallel lines are equal. The same is true of corresponding angles.
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`

P1

P2Q2 R2

S

s
s

Q1

qM

Proof We continue to use the above notation. Let M be the midpoint of P1P2,

and let % be the rotation of 180 degrees around M . Because %(P1) = P2, %(L1) is

a line passing through P2. By Theorem G1, %(L1) ‖ L1, and the hypothesis says

L2 is also a line passing through P2 and parallel to L1, the Parallel Postulate says

%(L1) = L2. By hypothesis, the rays RP1Q1 and RP2Q2 lie in opposite half-planes of

`, and by Theorem G11, % maps each half-plane of ` to its opposite half-plane. Thus

%(RP1Q1) = RP2Q2 . Of course, %(RP1P2) = RP2P1 . Hence, %(∠Q1P1P2) = ∠P1P2Q2,

and since % preserves degrees of angles, |∠Q1P1P2| = |∠P1P2Q2|. The proof is the

same for the other pair of alternate interior angles. The last assertion of the theorem

about corresponding angles follows from Theorem G12. We have proved Theorem

G18.
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Remark Those readers who are familiar with some high school geometry may be

very tempted at this point to immediately use Theorem G18 to prove the well-known

fact that the sum of (the degrees of) angles in a triangle is 180◦. The argument goes as

follows. Given 4ABC, draw a line DE through A that is parallel to BC, as shown:

�
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J

ED
A

B C
s

s
?

?

By Theorem G18, |∠DAB| = |∠B| and |∠CAE| = |∠C|, so that

|∠B|+ |∠BAC|+ |∠C| = |∠DAB|+ |∠BAC|+ |∠CAE| = 180◦

This would seem to finish the proof. Let us affirm that this intuitive argument is

indeed how a high school student should remember why the angle sum of a triangle is

180. For a teacher to really come to grips with the delicate points about Euclidean

geometry, however, it is necessary to point out that for Theorem G18 to be applicable,

we must first prove that ∠B and ∠DAB are alternate interior angles, as are ∠C and

∠CAE. See the italicized remarks above Theorem G18.

We can finally finish the proof of part (c) of Theorem G17. Since D maps

rays to rays, it maps angles to angles. Given ∠PQR, let D(RQP ) = RQ′P ′ and

D(RQR) = RQ′R′ , so that D(∠PQR) = ∠P ′Q′R′. We have to prove that

|∠PQR| = |∠P ′Q′R′|
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Without loss of generality, we may assume that both have positive degree. We

claim that LQ′P ′ must intersect LQR. If not, then LQ′P ′ ‖ LQR. But we already know

from part (b) that LQ′R′ ‖ LQR. Thus we have two distinct lines LQ′P ′ and LQ′R′

passing through Q′ and parallel to LQR, and this contradicts the Parallel Postulate.

Thus LQ′P ′ intersects LQR. In the interest of notational economy, let the point of

intersection continue to be denoted by R, as shown. By Theorem G16, LQR ‖ LQ′R′
and LQP ‖ LQ′P ′ . Therefore, according to Theorem G18 about corresponding angles,

(notation as in the preceding figure) |∠PQR| = |∠ARB| = |∠P ′Q′R′|, as desired.

The following converse of Theorem G18 will also be useful; the proof is sufficiently

straightforward to be left as an exercise.

Theorem G19 If the alternate interior angles of a transversal with respect to

a pair of distinct lines are equal, then the lines are parallel. The same is true of

corresponding angles.

To conclude this discussion of dilation, it would be pleasant to report that a

composite of two dilations (with respective centers) is also a dilation (with perhaps

some other center), but unfortunately such is not the case. An example will be given

in an exercise below.

Exercises 6.2

1. (a) The dilation of a convex set is a convex set. (b) The dilation of a polygon is

a polygon. (c) The dilation of a regular polygon is a regular polygon.

2. Prove Theorem G19.

3. Let ABCD and A′B′C ′D′ be two quadrilaterals. Suppose there is a point K so

that the rays RKA, RKB, RKC , RKD contain A′, B′, C ′, D′, respectively. Assume

also
|KA|
|KA′

=
|KB|
|KB′

=
|KC|
|KC ′

=
|KD|
|KD′|
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If ABCD is a square, then so is A′B′C ′D′. (Caution: Be careful what you say and

how you say it.)

4. Let O be a point not on a given circle C with center K. Let D be the dilation

with center O and scale factor r. Prove that the image D(C) is a circle, and that the

center of D(C) is the image under D of the center of C. (Caution: This is a slippery

proof. Follow the precise definitions of a circle and a dilation.)

5. Let D and E be the midpoints of AB and AC, respectively, of 4ABC, and let

K be the midpoint of DE (see picture below). Let D be the dilation with center A

and scale factor 1
2 . (a) If % is the rotation of 180◦ around K, describe precisely the

figure D(%(4ABC)). (b) If T is the translation along AD, describe precisely the

figure T (D(4ABC)). (c) How are the figures in (a) and (b) related?
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7. Let P and Q be two distinct points in the plane and let DP , DQ be two dilations

with center at P , Q respectively, and with scale factor 1
2

and 2, respectively. Prove

that DP ◦ DQ is not a dilation. (Hint: Suppose DP ◦ DQ is equal to a dilation DX

with center X, then DP ◦DQ maps X to X. On the other hand, there is no point Y

so that (DP ◦DQ)(Y ) = Y .)

8. Let P and Q be two distinct points in the plane and let DP , DQ be two dilations

with center at P , Q respectively, and with scale factor r and s, respectively. If rs 6= 1,

prove that there is a point X so that (DP ◦DQ)(X) = X. (In fact, in this case, the

composition DP ◦DQ is a dilation with center X, but the proof requires some tools

that we have not yet developed.)
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3 Similarity

Let S and S ′ be two sets in the plane.

Definition We say S is similar to S ′, in symbols, S ∼ S′, if there is a dilation

D so that

D(S) ∼= S ′

More precisely, S ∼ S ′ means there is a congruence ϕ and a dilation D so that

ϕ ◦D maps S to S ′, i.e., ϕ(D(S)) = S ′. A composition ϕ ◦D of a congruence ϕ and

a dilation D is called a similarity. The scale factor of the similarity ϕ ◦D is by

definition the scale factor of the dilation D.

The fact that we define a similarity as a composite ϕ ◦ D, where ϕ is

a congruence and D is a similarity, is a matter of convention: we could

have equally well defined a similarity by composing D and ϕ in the reverse

order, i.e., D ◦ ϕ. But of course, once so defined, one must be consistent

throughout. One can prove that the two definitions are equivalent, in the

sense that for any two sets S and S ′, ϕ(D(S)) = S ′ for some congruence

ϕ and dilation D if and only if there is a congruence ϕ′ so that D(ϕ′(S)) =

S ′; see the Lemma at the end of this section.

This situation is somewhat reminiscent of the definition of the multiplica-

tion of whole numbers, e.g., 3× 5 can be defined either as 5 + 5 + 5, or

3 + 3 + 3 + 3 + 3 + 3, but once we fix the definition, we should not change

it without explicitly invoking the commutativity of multiplication.

We call attention to the fact that in the definition of similarity, a congruence (and

not just an isometry) is used. Although every congruence is an isometry, at this stage,

we still do not know whether an isometry is a congruence or not. So the advantage

of a congruence over an isometry (at this stage) is that a congruence has an inverse

and it also preserves the degrees of angles.

We will eventually prove that if S ∼ S ′, then also S ′ ∼ S. Thus one can speak

unambiguously of two subsets being similar. Since this proof is somewhat off the

main line of reasoning, we will postpone this discussion until the end of this section.
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Let us reflect a bit on the formal definition of similarity. It would not do to

adopt a more restrictive definition of similarity by declaring simply that two figures

are “similar” if one is the dilation of the other, because in our own minds, if after

dilating a figure A to obtain figure B and B is congruent to figure C, then we would

still consider A and C to be “similar”. Therefore we need the concept of congruence

in order to give a legitimate definition of similarity. For this reason, the concept of

congruence must be firmly in place before we can discuss similarity. At this point,

you may wish to review the examples of dilation given in the preceding section, and

reaffirm that there is a routine procedure to draw a figure similar to a given one (no

matter what it is) with any specified scale factor.

We note explicitly that, although most of our attention will be lavished on tri-

angles, this definition of similarity gives us a precise conception of what it means

when we say one object (regardless of its shape) is similar to another. For example,

it follows directly from the definition that all circles are similar to each other (see

Exercise 5.3 below).

This concept of similarity applies not only to any geometric figure in the plane,

but to figures in higher dimensions as well.

As in the case of congruence, the notation with the similarity of triangles, by

tradition, is made to carry more information. We say4ABC ∼ 4A′B′C′ if there

is a similarity F so that

F (A) = A′, F (B) = B′, F (C) = C ′

In other words, 4ABC ∼ 4A′B′C ′ means not only that there is a similarity F so

that the sets F (4ABC) and 4A′B′C ′ are equal, but that F specifically maps A to

A′, B to B′, etc.

Theorem G20 Given two triangles ABC and A′B′C ′, their similarity, i.e.,

4ABC ∼ 4A′B′C ′, is equivalent to the following equalities:

|∠A| = |∠A′|, |∠B| = |∠B′|, |∠C| = |∠C ′|

and
|AB|
|A′B′|

=
|AC|
|A′C ′|

=
|BC|
|B′C ′|
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Remark It is in the proof of this theorem that we get to see why a similarity is

defined as the composition ϕ ◦D of a congruence ϕ (and not just an isometry) and

a dilation D. It follows from Theorems G5 and G17 that a similarity preserves the

degrees of angles, and this fact accounts for the validity of Theorem G20. We again

emphasize that at this point we do not know if an isometry preserves the degrees of

angles or not.

Proof If we have 4ABC ∼ 4A′B′C ′, then the assertions about angles and sides

follow from Theorems G5 and G17. For the converse, we prove something stronger:

Theorem G21 (SAS for similarity) Given two triangles ABC and A′B′C ′.

If |∠A| = |∠A′|, and
|AB|
|A′B′|

=
|AC|
|A′C ′|

then 4ABC ∼ 4A′B′C ′.

Proof of Theorem G21 If |AB| = |A′B′|, then the hypothesis would imply

|AC| = |A′C ′| and we are reduced to the SAS criterion for congruence. Thus we

may assume that |AB| and |A′B′| are not equal. Suppose |AB| < |A′B′|. Then the

hypothesis that |AB|/|A′B′| = |AC|/|A′C ′| implies |AC| < |A′C ′|. On A′B′, let B∗

be the point so that |A′B∗| = |AB|. Similarly, on A′C ′, let C∗ be the point satisfying

|A′C∗| = |AC|.
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By SAS for congruence (Theorem G7), 4A′B∗C∗ ∼= 4ABC. Let ϕ be the con-

gruence that maps 4A′B∗C∗ to 4ABC. Moreover, if r denotes the common value
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of |AB|/|A′B′| and |AC|/|A′C ′|, then the dilation D with center A′ and scale factor

r maps A′ to A′ of course, but also B′ to B∗ because by the definition of dilation,

D(B′) is the point on the ray RA′B′ so that the distance of D(B′) from the center A′

is

r |A′B′| = |AB|
|A′B′|

|A′B′| = |AB| = |A′B∗|

Thus D(B′) = B∗. Similarly, D(C ′) = C∗. Thus D maps 4A′B′C ′ to 4A′B∗C∗,
thanks to Corollary 2 of Theorem G16. Hence, we have:

(ϕ ◦D)(4A′B′C ′) = ϕ(D(4A′B′C ′)) = ϕ(4A′B∗C∗) = 4ABC

This shows that 4A′B′C ′ ∼ 4ABC.

We next give the proof of the most easily applied criterion of similarity: AA for

similarity.

Theorem G22 (AA for similarity) Two triangles with two pairs of equal an-

gles must be similar.

Remark Of course as soon as we prove that the sum of angles in a triangle is

180◦, then knowing the equality of two pairs of angles is seen to be equivalent to

knowing that all three pairs of angles are equal. This is why this criterion is some-

times cited as the AAA criterion.

Proof Let two triangles ABC and A′B′C ′ be given. We may assume |∠A| = |∠A′|
and |∠B| = |∠B′|. Then we must prove that 4ABC ∼ 4A′B′C ′. If |AB| = |A′B′|,
then the hypothesis would imply 4ABC ∼= 4A′B′C ′ because of the ASA criterion

for congruence (Theorem G8). Thus we may assume that |AB| and |A′B′| are not

equal. Suppose |AB| < |A′B′|. On A′B′, choose a point B∗ so that |A′B∗| = |AB|,
and let the line parallel to B′C ′ and passing through B∗ intersect A′C ′ at C∗. By

Theorem G18, |∠A′B∗C∗| = |∠B′| which, by hypothesis, is equal to |∠B|. Since

also |∠A′| = |∠A| by hypothesis, 4A′B∗C∗ ∼= 4ABC by ASA for congruence. In

particular, |A′C∗| = |AC|, by Theorem G5.
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We now claim that
|A′B′|
|A′B∗|

=
|A′C ′|
|A′C∗|

Once we prove this, we will see that the triangles A′B′C ′ and ABC satisfy the con-

ditions of SAS for similarity (Theorem G21) and are therefore similar. In order to

prove the preceding equality, we take a point C0 on A′C ′ so that

|A′B′|
|A′B∗|

=
|A′C ′|
|A′C0|

By FTS, LB∗C0 ‖ LB′C′ . Then the two lines LB∗C0 and LB∗C∗ both have the property

that they are parallel to LB′C′ and they pass through B∗. By the Parallel Postu-

late, LB∗C0 = LB∗C∗ , which implies C0 = C∗. The equality that |A′B′|/|A′B∗| =

|A′C ′|/|A′C0| then becomes the sought-for equality |A′B′|/|A′B∗| = |A′C ′|/|A′C∗|.
The proof of Theorem G22 is complete.

Finally, we return to the discussion of S ∼ S ′ for two sets S and S ′. By definition,

this means that there is a dilation D and a congruence ϕ so that ϕ(D(S)) = S ′. In

this definition, the order of S and S ′ seems to matter, S first and S ′ second, because

to say instead S ′ ∼ S would mean that there is a dilation D′ and a congruence ψ so

that ψ(D′(S ′)) = S. It is not obvious how to conclude from ϕ(D(S)) = S ′ that

ψ(D′(S ′)) = S for some D′ and ψ. Why is this so bad? Because if indeed it is the

case that S ∼ S ′ and S ′ ∼ S do not hold simultaneously, then we cannot say “the two

sets S and S ′ are similar”, but must be careful to say “S is similar to S ′ ” or “S ′ is

similar to S” and make a distinction between the two. Life would then be unbearably

complicated.

We salvage the situation by proving that S ∼ S ′ must imply S ′ ∼ S. In standard

terminology, this says similarity is a symmetric relation. The crux of the matter
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is the following lemma:

Lemma Let D be a dilation and ϕ a congruence. Then there is a dilation D′ so

that D ◦ ϕ = ϕ ◦D′.

This is almost the statement that D and ϕ commute, but it doesn’t quite say that

because D′ is not going to be D in general. In fact, it is not difficult to see what D′

must be if the lemma is true. Indeed, D ◦ϕ = ϕ ◦D′ implies that D′ = ϕ−1 ◦D ◦ϕ.

This then tells us how to define D′ in order to prove the Lemma. All it remains is

therefore to prove that this D′ so defined must be a dilation. Here is a hint: If D has

center O and scale factor r, let ϕ(O′) = O. Then show that D′ has center O′ and

scale factor r. We leave the details of the proof of the Lemma and also the proof that

S ∼ S ′ must imply S ′ ∼ S to an exercise.

Exercises 6.3

1. Let D, E, F be the midpoints of the sides BC, AC, AB, respectively, of a triangle

ABC. Then 4DEF ∼ 4ABC with a scale factor of 2.

2. [This problem generalizes problem 6 of Exercises 5.1.] Assume FTS. Let L1, L2,

and L3 be three mutually parallel lines, and let ` and `′ be two distinct transversals

which intersect the three parallel lines at A1, A2, A3, and B1, B2, B3, respectively.

Then
|A1A2|
|A2A3|

=
|B1B2|
|B2B3|

3. Prove that all circles are similar to each other. (Caution: Don’t skip steps.)

4. Prove that two rectangles are similar to each other if and only if either the ratios

of their sides are equal or the product of these ratios is 1. Precisely, let the lengths

of the sides of one rectangle be a and b, and those of the other be a′ and b′; then the

rectangles are similar if and only if either a
b = a′

b′ or a
b ·

a′

b′ = 1.
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5. Let L and L′ be two lines intersecting at a point O. Take any point P on L, and

let the line passing through P and perpendicular to L′ meet L′ at a point P ′. Then

the ratio
|PP ′|
|OP ′| is independent of the position of P on L, i.e., if Q is another point on

L, and if the line passing through Q and perpendicular to L′ meets L′ at a point Q′,

then
|PP ′|
|OP ′|

=
|QQ′|
|OQ′|

6. (a) (AAS) Suppose two triangles have two pair of equal angles. If they have a

pair of equal sides, then they are congruent. (b) Let |∠B| = |∠C| in 4ABC. Then

|AB| = |AC|. (c) Every point on the angle bisector of an angle is equi-distant from

both sides of the angle.

(Note: In some sense, these three assertions should be proved in the setting

of congruence, not similarity; any theorem related to similar triangles

requires the FTS, which is a more sophisticated theorem than anything

about congruent triangles. That said, the virtue of this problem is that

you get to see at least another approach to these standard facts.)

7. Suppose we have two parallel lines L and L′, and a point O not lying on either

line. Let three lines passing through O intersect L and L′ at points A, B, C, and A′,

B′, C ′, respectively.
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(This picture puts O between L and L′, but O could be anywhere.) Prove that

|AB|
|A′B′|

=
|BC|
|B′C ′|

=
|AC|
|A′C ′|

322



8. Suppose you are a teacher in middle school and you are handed a textbook series

that takes up similarity in grade 7 and congruence in grade 8. (Such a series exists.)

(a) Do you believe such a curricular decision is defensible? Explain. (b) If you are a

seventh grade teacher, what would you do? (Obviously there will be no unique answer

to part (b), but the idea is that you had better start thinking about such real-world

situations because the world out there is full of curricula that make no sense, and

your ability to adjust is, alas, part of your responsibility.).

9. (a) Write out a detailed proof of the Lemma at the end of this section. (b) Write

out a complete proof of the fact that, for any two sets S and S ′, if S ∼ S ′, then S ′ ∼ S.

10. Suppose for three sets S1, S2, and S3, we have S1 ∼ S2, and S2 ∼ S3. Prove that

S1 ∼ S3. (In standard terminology, this says similarity is a transitive relation.)
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Chapter 7: Length and Area

§1 The concept of measurement (p. 326)

§2 Length (p. 332)

§3 Area (p. 339)
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1 The concept of measurement

In this section, we want to give a general overview of the subject of geometric

measurements: length, area, and volume. Very roughly, a geometric measurement

assigns a number to a geometric figure that serves to indicate the “size” of the figure

relative to that particular measurement. For example, a general curve will have a

positive length and a general planar region will have positive area, but the same

curve will have zero area and the same region will have zero volume. Each geometric

measurement is thus an assignment of a number to a geometric figure. Can this

assignment be done at will? If not, what are the guiding principles that help decide

what it is? These are the questions we want to discuss in this section.

Length, area, and volume come up naturally in normal conversations and are rou-

tinely used in all phases of daily life. For this reason, the corresponding mathematical

definitions carry an additional burden: they must prove their worth by producing

measurements in familiar situations that are consistent with this common knowledge.

Take the case of length, for instance. To each curve C, we would like to assign a

number |C| so that, if C is one of the common curves such as a square or a circle,

then |C| is the length of C as we know it. Thus, if we denote the length of a curve

C by |C|, this number |C| must be consistent with our intuition of what “length”

should be. Let us amplify on the last statement: the length function clearly cannot

be randomly defined because people would not take kindly to a function that assigns

to the following curve on the left a “length” that is smaller than that for the curve

on the right even if they cannot articulate, precisely, what “length” means:

Therefore we are going to formulate set of characteristic properties that such an as-

signment is expected to possess, and then we start from scratch — very much in the

spirit of §1 of Chapter 5 — by looking at the simplest curves. We will determine what

length each one should have in view of these characteristic properties, and then go on

to more complicated curves and decide anew what lengths these should be assigned.

325



And so on. We will do the same with area.

Mensuration formulas for length, area and volume belong to the oldest part of

mathematics, and for a good reason. They met some basic human needs at the dawn

of civilization, such as measuring land for farming and measuring grains for bar-

tering. The earliest mathematical records of the oldest civilizations — Babylonian,

Egyptian, Chinese, and Indian — contain area formulas of rectangles and triangles.

These formulas are therefore part of the staple of the school mathematics curricu-

lum. Unfortunately, they also belong to the most misunderstood part of the school

curriculum. One reason is that although the concepts of length, area, and volume

seem to be straightforward in an intuitive sense, they become quite complex with any

attempt at a more precise understanding. Students need careful explanations of these

concepts in ways that are grade-level appropriate as well as mathematically sensible.

Because most school curricula rarely rise to the challenge, students are left with the

proverbial concept of it area, for example, as length times width. On a more sophis-

ticated level, most students believe that they know what the number π is because

it is just circumference divided by diameter. They do not stop to reflect that they

have no way of explaining what “circumference” is other than to put a string around

a cylinder.

This chapters will try to elucidate the concepts of length and area. We will

try to navigate a middle course between what is correct and what is pedagogically

feasible for middle school students. In general, we will restrict the discussion to the

most common geometric objects, which are fortunately very well-behaved in the sense

that the curves are never too wriggly and the surfaces are never too rugged, so that

we can stay on the intuitive level without having to attend to some serious logical

difficulties. You are therefore forewarned that some technical details will be missing

in this chapter, but that the main ideas are nevertheless correct.

The first, and critical step in performing any measurement is the choice of a unit,

which in the context of geometry is, by definition, the geometric object to which we

assign the numerical value 1.63 Once such a unit has been chosen, the length or area

63This echoes the corresponding situation in the definition of the number line: we have to fix
a choice of the point 1 (in addition to 0) before we can fix the positions of the remaining whole
numbers.
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of every geometric figure becomes a “comparison” of this figure with the unit. How

to do this “comparison” is then our main concern.

Limiting ourselves now to the specific measurements of length, area, and volume,

we state some general principles governing these measurements. These principles are

supposed to be so self-evident that you all subscribe to them. (Compare the discus-

sion of (L1)–(L6) in §1 of Chapter 5.) There are four of them, and we call them the

Fundamental Principles of Geometric Measurements. We start with a fixed

collection of geometric figures, be they curves, planar regions, or solids in space.

To each figure G in this collection, we assign a number |G|, called its geometric

measurement; if G is a curve, |G| is its length, if G is a planar region, |G| is its

area, and if G is a solid, |G| is its volume.

(M1) There is a fixed figure G0 in the collection, to be called the unit figure, so

that |G0| = 1. In more detail:

For length, the unit figure is the unit segment, i.e., [0, 1].

For area, the unit figure is the unit square, i.e., a square whose sides are

of length 1.

For volume, the unit figure is the unit cube, i.e., a rectangular solid all

of whose sides have length 1.

(M2) If a figure A in the collection has geometric measurement a, and a figure B

in the collection is congruent to A, then the geometric measurement of B is also a.

In other words, length, area or volume is the same for congruent figures.

In view of (M2), we will adopt the usual abuse of language and also call any

segment, rectangle, and rectangular solid that is congruent to the unit segment, unit

square, and unit cube, respectively, a unit segment, unit square, and unit cube, re-

spectively.

It is a good idea in teaching to bring out the direct relevance of congruence to the

discussion of length, area, and volume. A common problem in school mathematics is

to make students learn some concepts but fail to show what these concepts are good
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for. In this case, students get to see that congruence is more than a fancy way to say

“same size and same shape”. Rather, it deserves to be learned because it lies at the

foundation of something that matters to them: geometric measurements.

(M3) (Additivity) Geometric measurement is additive in the sense that if a

figure G is the union of two other figures in the collection, G1 and G2, so that the

intersection G1 ∩G2 is contained in the boundaries of G1 and G2, then the geometric

measurement of G is the sum |G| = |G1|+ |G2|. More precisely:

If two curves intersect at at only their endpoints and their lengths are known,

then the length of their union is equal to the sum of their lengths.

Thus the length of the curve below obtained by joining the curve

C1 and the curve C2 at the point p is the sum of the length of

C1 and the length of C2:

C1

C2

r
p

If two planar regions intersect only at (part of) their respective boundary curves,

then the area of their union is equal to the sum of their areas.

Thus the area of the region below, which is the union of R1 and

R2, is equal to the sum of the area of R1 and the area of R2:

R
R

1

2
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If two solids in 3-space intersect only at (part of) their respective boundary sur-

faces, then the volume of their union is equal to the sum of their volumes.

Thus, for example, the volume of the solid which is the union

of the two rectangular solids V1 and V2, with parts of their

boundaries in common, is the sum of the volume of V1 and the

volume of V2:
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We should not fail to point out that (M3) is what lies behind how we teach area

in elementary school. For example, we have a rectangle whose sides have lengths 2

and 3. We can therefore draw the following picture:

Ideally, a teacher in 4th grade would point out that the area of this rectangle, accord-

ing to (M3), is the sum of the areas of the 2 rows of 3 unit squares; because of what

students have just learned about whole-number multiplication, there are 2 × 3 such

unit squares. Therefore, the area of the rectangle is equal to 2× 3.

There is a fourth property that is equally basic, but which is more sophisticated

and, at the same time, more difficult to articulate precisely. We are going to announce

it in the following tentative form, with the understanding that it will be further clar-

ified in each discussion of length and area.
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(M4) Given a geometric figure G in the collection. Suppose {Gn} is a sequence

of geometric figures in the same collection such that {Gn} converges to G, in a sense

to be made precise. Then |Gn| → |G|.

The meaning of “convergence” in the sense of numbers or geometric figures will

be taken in the intuitive sense, and will usually be very transparent in context. The

naive content of (M4) is so appealing that we can give a simple illustration, using

informal language, of the basic idea involved in the case of area. Suppose we have

a square S whose side has length π and we want to know the area |S| of S. Now if

the length of the side is a fraction, say 22
7

instead of π, then what we learned from

Theorem 1 and 2 in §4 of Chapter 1 is that the area of S must be 22×22
7×7 , which is

approximately 9.87755, and we are done. But π is not a fraction, so have to rely

on the validity of (M4) to compute the area of this square. We get an increasing

sequence of fractions (an) so that lim an = π. For example, since there is a decimal

expansion of π,

π = 3.14159 26535 89793 23846 26433 83279 . . .

we may let a1 = 3.1, a2 = 3.14, a3 = 3.141, . . . a14 = 3.14159 26535 8979, and in

general, an = the first (from the left) n + 1 digits of the decimal expansion of π. In

any case, the explicit value of each member of the sequence is immaterial and what

is important is that we have a sequence of increasing fractions converging to π. Then

let Sn be the square whose side has length an. We may picture Sn as the dotted

square in the following:

an︷ ︸︸ ︷︸ ︷︷ ︸
π

As n → ∞, the boundary of Sn gets arbitrarily close to the boundary of S because

an → π, and Sn fills up S, so that it would be reasonable to describe this phenomenon
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as “Sn converges to S”. Intuitively, the “area of S” is the limit of the areas |Sn|. Since

the area of Sn is (an)2, we can easily believe that

lim
n
|Sn| = lim

n
(an)2 = lim

n
an lim

n
an = π · π = π2

Therefore the area |S| of S is π · π = π2, and the main substance of (M4) in this

special case is to guarantee that this intuitive understanding is correct. Needless to

say, π2 is what we normally consider to be the area of S.

2 Length

The length of a segment

Lengths of polygonal segments

Lengths of curves

Circumference of a circle

Length of a segment

We begin with the measurement of the lengths of the simplest curves: line seg-

ments. We know that the length of the unit segment is 1, by (M1). By (M2), the

length of any segment congruent to [0, 1] is also 1. Now let AB be an arbitrary seg-

ment in the plane64. How to determine the length |AB| explicitly? It is necessary to

bring out the fact that we are not interested in knowing the measurement in principle.

Were that the case, use a congruence to bring AB to the number line so that A is at

0, then the point B falls on some number t and of course we know from (M2) that

|AB| = t. But t is not the answer to the problem until we can prescribe an algorithm

to determine what t is, precisely. In the subject of geometric measurements, the goal

is always to have explicit determination of the measurement. This is the reason for

the various length, area, and volume formulas in the subject.

Back to AB, let us say t falls between 4 and 5. Let the segment [4, t] be denoted

by L1:

64Or in 3-space if we expand our horizon to 3-space. There is no difference in the reasoning.
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0 1 2 3 4 56
t

L1

By the principle of additivity (M3), we have t = 4 + |L1|. We have to measure the

length of L1. Because the unit segment is too long, we have to introduce a smaller

unit for this purpose. By common convention, the new unit to use in this context is

0.1, or what is the same thing, the length one part in a partition of the unit segment

into 10 congruent parts. Thus we have the division points 4.1, 4.2, . . . , 4.9. Let us

say t falls between 4.3 and 4.4. Denote the segment [4.3, t] by L2. After magnification,

we get a picture that looks like this:

4 4.1 4.2 4.3 4.46
t

L2

Since L1 is [4, t], by (M3) again, we have |L1| = 0.3 + |L2|, and therefore

|AB| = 4 + 0.3 + |L2|

Since |L2| is smaller than 0.1, we now handle L2 in exactly the same way: we

measure it by using a yet smaller unit, which is 0.01, i.e., the length of one part when

[4.3, 4.4] is partitioned into 10 congruent parts. Suppose t falls exactly on the 6th

division point after 4.3. After magnification again, the picture is the following:

4.30 4.31 4.36 4.37 4.40
?

tL2

This means geometrically that exactly 6 of the 0.01-units can be fitted into L2, so

that by (M3), |L2| = 6× 0.01 = 0.06. We therefore have

|AB| = 4 + 0.3 + 0.06,

which is of course equal to 4.36.

332



Of course, the measurement process may never end, in the sense that t may never

fall exactly on any of the division points corresponding to units of lengths 0.01, 0.001,

0.0001, . . . For example, in the preceding example, t could have fallen between 4.364

and 4.365, with a segment L3 left over:

4.360 4.361 4.364 4.365
?

tL3

By (M3) again,

|AB| = 4 + 0.3 + 0.06 + +|L3|,

with |L3| < 0.001, and the process continues. If it never ends, then the preceding

description yields an algorithm that gives the length of AB as an infinite decimal.

Lengths of polygonal segments

Having described how to measure segments, we proceed to measure something

on the next level of complexity. By a polygonal segment A1A2 · · ·An, we mean

a sequence of segments A1A2, A2A3, . . .An−1An, with the understanding that these

segments need not be collinear and intersections among them are allowed. The points

A1, A2, . . .An are called the corners of A1A2 · · ·An. We will limit our discussion to

polygonal segments in the plane, but everything we say in fact makes perfect sense

in 3-space.
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In accordance with (M3), the length |A1A2 · · ·An| of A1A2 · · ·An should be defined

as the sum

|A1A2 · · ·An| = |A1A2|+ |A2A3|+ · · ·+ |An−1An|.
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In the case of an n-gon, it is the polygonal line A1A2 · · ·AnAn+1, where An+1 = A1

(but with the additional condition that the sides do not intersect each other except

at the endpoints between consecutive sides). The length of this polygonal segment

is just the sum of the lengths of all the sides of the polygon, i.e., the perimeter of

the polygon. Here is a regular 8-gon inscribed in a circle, in the sense that all the

vertices of the polygon lie on the given circle.

=
9

2

3

4

5

6

7

8
A

A

A A
1

A

A

A

A

A

In any case, we know how to compute the lengths of all polygonal segments at

this point.

Lengths of curves

Polygonal lines, with the exception of a finite number of corners, are linear (i.e.,

straight) objects. We now must confront a general, non-straight curve. We have

not given a precise definition of what a “curve” is, and will not attempt to do so

because, incredible as it may seem, it is a complicated mathematical concept. In

school mathematics, the curve of greatest interest is without doubt the circle. If you

keep the circle in mind whenever we talk about a curve, and you will not be too far

wrong. We shall therefore proceed on an intuitive level where curves are concerned,

but everything to be said will be correct as soon as some technical details are in place.

Most curves are not polygonal lines, e.g., a circle or an ellipse. To determine the

length of curves in general, we are guided by (M4) to adopt the following technique

of measurement:
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Extend our knowledge from the known (polygonal lines) to the unknown (gen-

eral curves) by approximating the unknown quantity with a sequence of the

known quantities.

In greater detail, this means the following. Since we already know how to compute the

lengths of polygonal segments, we will use these to compute the length of any piecewise

smooth curve. The basic idea is that a curve C can be approximated by polygonal

segments whose vertices lie on C. We say a polygonal segment P = Q1Q2 · · ·Qn is a

polygonal segment on C if its ordered sequence of vertices Q1, Q2, . . . , Qn belong

to C and Q1 and Qn are the endpoints of C. Here is an example with n = 6:
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5

Q

Q
4

Q
3

Q
2

Q
6

Q

Now the basic (and trivial) observation is that the approximation of C by such a

polygonal segment would improve if the distance between each pair of adjacent ver-

tices decreases. We illustrate this fact by drawing a new polygonal segment on C (the

dotted one) with only a single vertex inserted between any two of the preceding Qi’s.

It is now intuitively clear that if a polygonal segment on a given C has the property

that the distance between any pair of adjacent vertices of the polygonal segment is

extremely small, then the polygonal segment would become almost indistinguishable

from C itself. Therefore to get a good approximation of a given curve by use of

polygonal segments on it, we have to make sure that the distance between every

pair of adjacent vertices is small. One way to do this is is to specify that the mesh

of a polygonal segment P = Q1Q2 · · ·Qn (in symbol: m(P )) is small, where, by

definition, m(P ) is the maximum of the lengths {|Q1Q2|, |Q2Q3|, . . . , |Qn−1Qn|}.
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Thus if m(P ) is small, then the distance between any pair of adjacent vertices of P ,

being at most equal to m(P ), must be small as well.

Let {Pn} be a sequence of polygonal segments on a curve C. We say {Pn} con-

verges to C (in symbol: Pn → C) if m(Pn) → 0. A few more experiments with

such polygonal segments would convince you that it is entirely reasonable to define

the length |C| of a curve C to be the “limit” of |Pn| as n gets increasingly large, if

Pn → C. In symbols:

|C| def
= lim

n→∞
|Pn| if Pn → C. (9)

There is a precise technical meaning of “limit”, but here it suffices to understand it

in the intuitive sense. But note that in a real sense, you are already used to seeing

the concept of limit in action: the above description of how to measure the length of

a segment by successively measuring the left-over segments L1, L2, L3, . . . to arrive

at an infinite decimal is in fact a limiting process. In this case, the value of |AB| is

the limit of the sequence of finite decimals 4, 4.3, 4.36, 4.365, . . . . . . Moreover, it is a

theorem (that we shall not be able to prove here) that this limit does not depend on

the choice of the sequence of P1, P2, . . . . . . so long as the maximum distances between

adjacent corners of Pn get arbitrarily small as n gets large. This freedom in the choice

of these P1, P2, . . . is important: it means that in a given geometric situation, we can

judiciously pick a sequence of points P1, P2, . . . to facilitate the evaluation of the limit

in equation (9). We will see an example of this in the next sub-section.

We have elected to omit a technical detail from the definition (9) of curve length,
namely, that the class of curves under consideration is what is known as the rectifiable
curves, which are exactly the curves for which the limit in definition (9) always makes
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sense regardless of the choice of the approximating polygonal lines. The curves you
encounter in daily life are almost certainly rectifiable.

Circumference of a circle

We illustrate the discussion in the preceding sub-section by considering the length

of a circle of radius r, which is usually called the circumference of the circle. Let

such a circle be denoted by C(r). Among all possible approximating sequences of

polygonal lines to the circle, one is distinguished, namely, the sequence of regular

n-gons inscribed in this circle as n gets large.65 Let Rn denote the perimeter of a

regular n-gon inscribed in this circle. Then the definition in (9) when specialized to

this situation becomes:

|C(r)| = lim
n→∞

Rn

We digress to consider the effect of a dilation on length. Let Ds be a dilation of

scale factor s around a point O. Then every segment L is dilated to a segment Ds(L).

According to Theorem G17 of Chapter 6, |Ds(L)| = s|L|. If now P is a polygonal

segments A1A2 · · ·An, thenDs(P ) is the sequence of segments Ds(A1A2), Ds(A2A3),

. . . , Ds(An−1An), so that,

|Ds(P )| = |Ds(A1A2)|+ |Ds(A2A3)|+ · · ·+ |Ds(An−1An)|
= s|A1A2|+ s|A2A3|+ · · ·+ s|An−1An|
= s(|A1A2|+ |A2A3|+ · · ·+ |An−1An|)
= s|P |.

In other words, for any polygonal line P ,

|Ds(P )| = s |P | (10)

If C is any curve and Pn is an approximating sequence of polygonal lines of the curve

Ds(C), then by the definition (9), |Ds(C)| = limn→∞ |Ds(Pn)|. Taking (10) into

account, we have

|Ds(C)| = s lim
n→∞

|Pn| = s|C| ,

65The proof that the sequence of inscribed regular n-gons approximates the circle in the sense
that its mesh decreases to 0 is tedious. We will not spend time on such a proof at this juncture.
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where the last step uses the definition in (9) again. Thus for any curve C,

|Ds(C)| = s |C| (11)

Now if C is C(r), a circle of radius r, then you can convince yourself that

Dr(C(1)) = C(r) for any r (see problem 4 in Exercises 6.2). Therefore, by (11),

|C(r)| = r|C(1)| (12)

Recall that C(1) is called the unit circle. We see that to measure the circumference

of any circle, it suffices to measure the circumference of the unit circle. At this point,

it would be legitimate to define the number π to be 1
2
|C(1)|, but because the limit in

(9) does not lend itself very well to experimentation, we prefer to define π differently

as the area of the unit circle. This will be done in the next section.

Up to this point, the advantage of choosing the perimeter of an inscribed regular

n-gon on the circle as an approximating sequence of polygonal segments on the circle

is not apparent, but it will be very apparent when we simultaneously deal with cir-

cumference and the area of (the region enclosed by) the circle in the next section.

3 Area

The concept of area

Standard area formulas

Dilation and area

Area of general regions

π and the area of a circle

Geometric approximations of π

The measurement of area is special among geometric measurements in dimensions

greater than 1 in that the area of the most common rectilinear figures (i.e., polygons)

can be computed exactly without the use of limits provided we assume that the area of
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a rectangle is the product of the (lengths of the) sides. The area formulas of triangles,

trapezoids, etc., lie at the core of the school mathematics curriculum. Accordingly,

they occupy a place of honor in this section. A second noteworthy feature of this

section is the clarification of the number π and the relationship between the circum-

ference of a circle and the area of (the region enclosed by) a circle.

The discussion of area in this section takes place in a given plane.

Concept of area

There is a wide latitude in the choice of a unit for the measurement of area, but the

standard unit figure is the unit square, i.e., the square whose sides are all of length 1.

Nothing else has comparable simplicity and ease of having several of them “packed”

together to fill a region. If the unit of length is an inch or a cm (centimeter), then

it is customary to call the area of the unit square a square inch or square cm,

respectively. The reason for the nomenclature is self-explanatory. In the following

discussion, however, we will omit any reference to the name of the explicit unit of

length being used (inch or cm or whatever), and will in particular not mention the

unit of area as square inch or square cm, or in fact any other name.

By (M3), the area of a given region R in a plane Π (which will be fixed from now

on) is, intuitively, the number of unit squares, or fractional parts of a unit square,

that can tile R in the sense that R can be expressed as the union of a number of

these squares or fractional parts of squares which intersect each other at most at (part

of) the edges. As illustration, we saw in §1 how (M3) leads to the computation of the

areas of rectangles whose sides have whole-number lengths. As another illustration,

let us compute the area of the following region R0 consisting of a rectangle in the

middle with width 1 and height 1
2
, and two congruent isosceles right triangles with

each leg (a side not facing the right angle) having length 1
2
. Please remember that at

this point, we do not know any area formulas for triangles or rectangles so that this

computation has to be carried out using only (M1) – (M3).
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By (M3),

area of R0 = area of two triangles + area of middle rectangle

We now use (M2) to find out the individual areas on the righthand side. Because the

unit square has area 1, the following figure shows a partition of the unit square into

8 congruent right triangles with A, B, C, D being the midpoints of the respective

sides (for the asserted congruence, see problem 2 in Exercises 5.4).
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By assumption (M2), all 8 triangles have equal area. Thus the partition divides

the unit square into 8 equal parts (in terms of area), so that by the definition of a

fraction, each triangle represents 1
8

(of unit area). The two triangles of R0, each being

congruent to each of these 8 triangles, therefore have area 1
8

each (by (M2) again).

Moreover, the following simple division of the unit square into two parts by joining

the midpoints of two opposite sides
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gives rise to 2 congruent rectangles, each congruent to the rectangle in R0. Again

by (M2), the two rectangles have equal area and therefore each is 1
2

in terms of the

unit (square). By (M2), this means the rectangle in R0 has area 1
2
. Putting all these

together, we have:

area(R0) = area(two triangles) + area(rectangle)

= (
1

8
+

1

8
) +

1

2
=

3

4

Standard area formulas

The whole discussion in this sub-section hinges on the simple statement that

area of rectangle = product of the (lengths of the) sides

The validity of this formula when both sides have fractional lengths follows from The-

orem 2 in §4 of Chapter 1. By FASM, this formula remains valid even when the sides

of the rectangle have arbitrary lengths.

It is astonishing how much useful information can be extracted from this simple

formula alone. We will show how to exploit this area formula to compute the areas

of triangles, parallelograms, trapezoids, and in fact any polygon at least in principle.

We begin with triangles. Consider a right triangle 4ABC with AB ⊥ BC. We

compute its area by expanding it to a rectangle. Let M be the midpoint of AC.

HH
HHH

HHH
HHH

HHH
HH

B

A

C

D

qM

We observe that if ρ denotes the rotation of 180◦ around M so that ρ(C) = A,

ρ(A) = C and ρ(B) = B, then the quadrilateral ABCD is in fact a rectangle, for
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the following reason. From ρ(BC) = AD we conclude AD ‖ BC, and from ρ(AB) =

CD we conclude AB ‖ CD (Theorem G1, Chapter 5). This shows ABCD is a

parallelogram. Since AB ⊥ CD, we also have AB ⊥ AD because a line perpendicular

to one of two parallel lines is perpendicular to both (Theorem G3, Chapter 5) . So

|∠BAD| = 90◦. Similarly, |∠ADC| = |∠DCB| = 90◦, and ABCD is a rectangle.

Now, the rotation ρ maps 4ABC to 4CAD, (M2) implies that the two triangles

have the same area. Thus the usual argument with (M3) proves that

area(4ABC) =
1

2
area(ABCD).

By the area formula of a rectangle, we get,

area(4ABC) =
1

2
|AB| · |BC|.

Recall that AB and BC are called the legs of 4ABC. We therefore have:

area of right triangle =
1

2
· product of (the lengths of ) its legs

Next, let 4ABC be arbitrary and let AD be the altitude from the vertex A

to BC (i.e., the segment which joins A to the line BC and is perpendicular to line

LBC). We now obtain two right triangles, 4ABD and 4ACD, so that the preceding

formula becomes applicable. Then there are two cases to consider: D is inside the

segment BC, and D is outside BC. See the figures:
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In either case, AD is called the height with respect to the base BC. By the usual

abuse of language, height and base are also used to signify the lengths of AD and

BC, respectively. With this understood, we shall prove in general that

area of triangle =
1

2
(base × height)
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For convenience, we shall use h to denote |AD|. Then this is the same as proving

area(4ABC) =
1

2
|BC| · h

In case D is inside BC, we use (M3) and refer to the figure above to derive:

area(4ABC) = area(4ABD) + area(4ADC)

=
1

2
|BD| · h+

1

2
|DC| · h

=
1

2
(|BD|+ |DC|) h

=
1

2
|BC| · h

In case D is outside BC, we again use (M3) and refer to the figure above to obtain:

area(4ABD) = area(4ACD) + area(4ABC)

This is the same as

1

2
|BD| · h =

1

2
|CD| · h+ area(4ABC).

Therefore,

area(4ABC) =
1

2
|BD| · h− 1

2
|CD| · h

=
1

2
(|BD| − |CD|) h

=
1

2
|BC| · h

Thus the area formula for triangles has been completely proved.

Most textbooks mention the first case but not the second, thereby teaching stu-

dents only half of what they need to know (e.g., the proof of the area formula for

trapezoids below gives one indication why the second case is important).

Next the area of a parallelogram ABCD. Drop a perpendicular from A to the

opposite side BC. Call it AE. Two cases are possible, as shown below.
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AE is the height of the parallelogram with respect to the base BC. From the end

of §3 in Chapter 5, we know that |AE| does not change if another point on AD

replaces A. As before, height and base are also used to designate the lengths of

these segments. The formula to be proved is then:

area of parallelogram = base × height

The proof for both cases goes as follows. Draw the diagonal AC and let M be the

midpoint of AC.
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The usual argument shows that the rotation of 180◦ around M maps 4ABC to

4CDA. So (M2) implies that area(4ABC) = area(4CDA). By (M3):

area(ABCD) = area(4ABC) + area(4CDA)

= 2 · area(4ABC)

= 2 · 1

2
(|BC| · |AE|)

= |BC| · |AE|

as desired.

We also get the formula for the area of a trapezoid ABCD with AD ‖ BC.
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Let DE ⊥ BC. Then note that |DE|, being the distance between the parallel lines

LAD and LBC , is also the height of 4ABD with respect to the base AD , and is

called the height of the trapezoid. Again we denote the height by h. The segment

AD and BC are called the bases of the trapezoid. We are going to prove that the

area of a trapezoid is 1
2

the height times the sum of bases. Precisely,

area(ABCD) =
1

2
h { |AD|+ |BC| }

This is because:

area(ABCD) = area(4BAD) + area(4BDC)

=
1

2
h · |AD|+ 1

2
h · |BC|

=
1

2
h {|AD|+ |BC|},

as claimed. Note that in this proof, we needed the area formula of a triangle whose

altitude with respect to the given base (i.e., the height of 4BDA with respect to the

base AD) may fall outside the base (in the above picture, of course it does). This is

why one must know the proof of the area formula of a triangle for this case too.

The purpose of these area formulas is not just to derive them for their own sake,

although that would be entirely justified since they are answers to natural mathemat-

ical questions. However, they serve a deeper purpose. We shall show presently that

triangles are the basic building blocks of polygons, and as such, the more we know

about triangles the better. For example, given any quadrilateral, adding a suitable

diagonal would exhibit the (inside of the) quadrilateral as the union of (the inside

of) two triangles which only have a side in common but no overlap otherwise. In
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the following pictures, the dashed line is a diagonal of the quadrilateral. Incidentally,

notice that in the figure on the right, the other diagonal would not lead to the desired

result, so one knows that the choice of this diagonal cannot be made at random.
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This turns out to be a universal phenomenon. To state what is know, we have

to introduce a definition. As usual, the word “polygon” will be abused to mean

also the polygonal region it encloses; same for “triangle”. With this understood,

a triangulation of a polygon is a union of the polygon as a finite collection of

triangles {Ti}, i = 1, 2, . . . , k, so that any two of these Ti’s either do not intersect,

or they intersect at a common vertex, or they intersect at a (complete) common

edge. For example, the following is not a triangulation of the big polygon because the

left triangle does not intersect any of the three triangles on the right at a complete

common edge or at a common vertex:
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Theorem Every polygon has a triangulation.

The proof is not entirely trivial. A simple example of a polygon such as the

following should be enough to reveal why the proof of the Theorem has to be a

complicated business.
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While it is not difficult to improvise and find a way to connect the vertices of this

polygon to produce a triangulation, it is not obvious, by looking at this polygon, how

to describe a general procedure that would always produce a triangulation of a given

polygon. Such a proof is given in Theorem 15 of Chapter 3, A. Beck, M. N. Bleicher,

D. W. Crowe, Excursions into Mathematics, Worth Publishers, 1969, or A. K. Peters,

Ltd., 2000.

Once a polygon is given a triangulation, the additivity of area (M3) implies that

the area of any polygon is the sum of the areas of the triangles in its triangulation and

therefore can be computed by use of any area formula of a triangle. With hindsight,

the computations of the area formulas for trapezoids and parallelograms above are

now seen to be nothing other than a simple application of this basic idea. In any

case, the Theorem, together with the area formula of a triangle, assure us that we

can compute the area of any polygon, at least in principle. This is enough for us to

go on.

It remains to remark on the significance of the ability to compute the area of all

polygonal regions. To this end, we have to recall the general guideline of §1 that

there is little difference between the developments of the length, area, and volume

functions. With this in mind, we recall the fact that, in the case of length, the ability

to compute the length of all polygonal segments enabled us to compute the length of

non-rectilinear curves by taking limits: we approximate a general curve by polygonal

segments on the given curve, and use the lengths of these polygonal segments to

approximate the length of the curve. Now polygonal regions are to area roughly what
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polygonal segments are to length. This is why as soon as we can compute the areas

of all polygonal regions, we are free to approximate an arbitrary planar region by

polygonal regions and use the areas of the latter to compute the area of the former.

Therefore, in principle, we have a well-defined procedure to get an approximate value

of the area of any region.66

We will put these ideas to use. In the special case of the disk, we get the classical

formula for its area, which then turns out to finish the computation of the circumfer-

ence of a circle as well (see the end of §2). But we first digress to discuss the effect

of dilation on area.

Dilation and area

Before we give the definition of the area of a general region, we pause to discuss

the effect of a dilation of ratio r on the area of a polygon. In principle, this discussion

will be subsumed under a similar discussion for the case of a general region which is

not necessarily a polygon. But by discussing it now, we wish to expose the elementary

character of everything that is related to the area of a polygon. There is no analogous

phenomenon in dimensions 3 and up.

So let D be a dilation with scale factor r. If ABCD is a rectangle whose sides

have lengths a and b, then D(ABCD) is also a rectangle because a dilation preserves

degrees of angles (Theorem G17, Chapter 6), and a rectangle is by definition a quadri-

lateral with four right angles. Furthermore, the sides of D(ABCD) have lengths

ra and rb (again Theorem G17, Chapter 6). Therefore, the area of D(ABCD) is

(ra)(rb) = r2(ab). In other words, if D is a dilation of ratio r and R is a rectangle,

then

area of D(R) = r2 · area(R)

Suppose now ABC is a triangle with height AD and base BC. Let D(4ABC) =

4A∗B∗C∗, and let D(D) = D∗. We claim A∗D∗ is the height of 4A∗B∗C∗ relative

to base B∗C∗. This is because dilations preserve angles and therefore A∗D∗ ⊥ B∗C∗.

66At least those for which “area” is meaningful.
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Thus if 4ABC has height h and base b, then D(4ABC) has height rh and base rb.

Therefore

area of D(4ABC) =
1

2
(rh)(rb) = r2

(
1

2
ab

)
.

In other words,

area of D(triangle) = r2 · area of triangle

Since the area formulas of parallelograms and trapezoids were proved by using the area

formula of a triangle, it follows that the areas of D(parallelogram) and D(trapezoid)

are both r2 times the original parallelogram and trapezoid, respectively.

In general, we compute the area of a polygon by triangulating it and apply (M3).

So if a polygon P is triangulated into k triangles T1, T2, . . . , Tk, then D(P) is also

triangulated into k triangles D(T1), D(T2), . . . , D(Tk), so that by (M2),

area(D(P)) = area(D(T1)) + area(D(T2)) + · · ·+ area(D(Tk))

= r2 area(T1) + · · · r2 area(Tk)

= r2 ( area(T1) + · · · area(Tk))

= r2 area(P).

To summarize: if D is a dilation with scale factor r, then

area of D(polygon) = r2 · area of polygon (13)

We will put this formula to good use in the next sub-section.

Note that since a similarity is the composition of a dilation and a congruence and

congruence preserves area (by (M2)), formula (13) implies that a similarity with scale
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factor r also changes area by a factor of r2.

Area of general regions

We next tackle the concept of area for a non-polygonal region.

Let R be any region.67 Then the definition of the area of R will not be as

elementary as that of a polygon. We shall imitate the procedure used in the definition

of the length of a curve in §2 by extending what we know (i.e., area of a polygon)

to what we don’t know (i.e., area of a general region). Thus with R given, we will

construct a sequence of regions P1, P2, . . . , each of which is a union of polygons and

satisfies the following condition:

(BC) The boundary of each Pn gets arbitrarily close to the boundary of

R as n gets sufficiently large.

In the most common geometric figures that come up in school mathematics, it is

usually obvious how such a sequence can be constructed. We will be examining the

case of the circle presently.

Following the guideline of (M4), we define for a general region R:

area(R) = lim
n→∞

area(Pn)

where the sequence of regions Pn satisfies condition (BC). As in the case of curves,

the limit on the right is independent of the particular sequence P1, P2, . . . that is

chosen so long as condition (BC) on the Pn’s is satisfied.

The best illustration of this definition may be that of (the region enclosed by) a

circle C. Two approximating sequences of Pn’s for the circle naturally suggest them-

selves:

Sequence A: Inscribed polygons. Let P3 be a regular 3-gon inscribed in

C, P4 be a regular 4-gon inscribed in C, and in general, let Pn be a regular n-gon

67Throughout this discussion, the boundary of the region is tacitly assumed to be a “nice” curve,
such as a “piecewise smooth” curve. This assumption is always satisfied by the regions that come
up naturally in school mathematics and, for this reason, will not be mentioned again.
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inscribed in C for every n. (We start with P3 because there are no polygons of 1 or 2

sides.) Then it is intuitively obvious that condition (BC) is satisfied for this sequence

Pn. While this fact can be proved, we will not pursue it because it is not particularly

educational.

Before defining the second sequence, we need to first introduce the notion of a

grid. Let there be a collection of horizontal lines and also a collection of vertical

lines. These two collections of mutually perpendicular lines then partition the plane

into rectangles whose sides are horizontal and vertical. Furthermore, these rectangles

intersect only along a side, or not at all. These two collections of lines are said to

form a grid on the plane, and the rectangles are called the rectangles in the grid.

Here is an example of a grid and a rectangle in the grid (the thickened rectangle):

The reason we are interested in grids is due to the fact that they can be used to

introduce a sequence of approximating polygons to any region. Given a region R, we

can start with a fixed grid, and define P1 to be the union of all the rectangles in the

grid that are completley inside R. See the thickened contour below:
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R

Next we add lines to the lattice grid by inserting one or more lines between any

two existing adjacent parallel lines. This gives a new grid and P2 is now defined to

be the union of all the rectangles in the new grid which are completely inside R. See

the new thickened contour:

R

Similarly, we repeat the process of adding lines to the preceding grid. P3 is by

definition the union of all the rectangles in the new grid that lie completely inside R.

And so on.

We have essentially described the second sequence of regions we would use to ap-

proximate circles.
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Sequence B: grid squares. Given a circle, we use a grid consisting of hori-

zontal and vertical lines so that the distance between adjacent lines is a fixed number,

say 1. Thus the smallest rectangles in the grid are all squares with sides of length 1.

Let P1 be the union of all the squares in the lattice grid lying inside the circle. Dou-

ble the number of lines in the lattice grid by adding a center lines between adjacent

parallel lines, and define P2 to be the union of all the squares lying completely inside

the circle. Next add center lines to the preceding grid, and define P3 to be the union

of all the squares in the new grid which lie inside the circle. And so on. We will put

this sequence to use in the last sub-section of this section.

It is intuitively obvious that in either case, the sequence of polygonal regions {Pn}
can get as close to the circle C in the sense of condition (BC) as we please.

π and area of circles

We now specialize the considerations of the preceding sub-section to the unit

circle C(1) of radius 1. Before giving the details, it may be helpful to explain what

we are going to do and why we zero in on the unit circle.

We have seen in equality (12) of §2 that as soon as the length |C(1)| of the unit

circle is known, the length of an arbitrary circle of radius r will also be known: it

is r times that of the unit circle. Moreover, we shall prove (cf. (15) below) that an

analogous statement is true also for area: the area of the circle of radius r is r2 times

that of the unit circle. Geometric measurements of any circle therefore come down

to those of the unit circle.

We compute the area of C(1) by using Sequence A. Then each Pn is a regular

n-gon inscribed in C(1). Let the length of its side be sn and let the length of the

segment from the center of C(1) perpendicular to a side of Pn be hn.
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Thus Pn is paved by n congruent triangles each with height hn and base sn, i.e.,

these triangles overlap only on their boundaries. Thus by (M3),

area(Pn) =
1

2
hnsn + · · ·+ 1

2
hnsn︸ ︷︷ ︸

n

= n

(
1

2
hnsn

)
=

1

2
hn(nsn)

Now the boundaries of Pn form a sequence of polygonal segments that approximate

the unit circle C(1) as a curve in the sense of §2. The length of this polygonal segment,

i.e., the perimeter of Pn, is nsn as there are n sides in a regular n-gon and each

side has length sn. As n approaches infinity (i.e., gets larger and larger), the vertices

of the regular n-gon get closer and closer together so that the distances between the

corners of Pn get arbitrarily small. According to definition (9) in §2, we see that the

limit of (nsn) as n approaches infinity is the length of the curve C(1). Moreover, as

n approaches infinity, the base of the triangle gets shorter and shorter and therefore

gets closer and closer to the circle C(1), so that the height hn approaches the radius

of C(1), which is 1. Therefore,

area(C(1)) = lim
n→∞

area(Pn)

= lim
n→∞

1

2
hn(nsn)

=
1

2
· 1 · |C(1)|
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where |C(1)| denotes as usual the length of C(1). Hence,

area(C(1)) =
1

2
|C(1)| (14)

At this point, we introduce the number π with the following definition:

π = area(C(1)).

Then (14) implies that the circumference of the unit circle is

|C(1)| = 2π

Consider now a dilation Dr with scale factor r. We know from §2 that Dr(C(1))

is a circle C(r) with radius r and that |C(r)| = r · |C(1)| (by (12)). Hence by (14),

we have obtained the well-known formula for the circumference of a circle of radius

r:

|C(r)| = 2πr

We now look into the area of Dr(C(1)). Let P1, P2, . . . be a sequence of polygons

inscribed in C(1) satisfying condition (BC) above. Note that Dr(P1), Dr(P2), . . . is

also a sequence of polygons inscribed in the circle Dr(C(1)) which satisfies condition

(BC). Therefore,

area C(1) = lim
n→∞

area(Pn)

area (Dr(C(1))) = lim
n→∞

area(Dr(Pn))

However, we know from (13) in the subsection Dilation and area that

area(Dr(Pn)) = r2 area(Pn).

Thus,

area (Dr(C(1))) = lim
n→∞

area(Dr(Pn))

= lim
n→∞

r2 area(Pn)

= r2 lim
n→∞

area(Pn)

= r2 area C(1)

= r2 π
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But, as noted, Dr(C(1)) = C(r), the circle of radius r. Thus, we have:

area (C(r)) = r2 area (C(1)) = π r2

We note that the same reasoning proves the more general statement that, for any

region R,

area(Dr(R)) = r2 area(R) (15)

Geometric approximations of π

We will approximate the area of a circle by Sequence B. The grid specified in that

sequence is now realized by the grid on a graph paper.

We start by drawing a quarter unit circle on a piece of graph paper. In principle,

you should get the best graph paper possible because we are going to use the grids

to directly estimate π. Now, perhaps for the first time in an honest mathematics

textbook, you are going to get essential information about something other than

mathematics: the grids of some of the cheap graph papers are not squares but non-

square rectangles, and such a lack of accuracy will interfere with a good estimate of

π. If you are the teacher and you are going to do the following hands-on activity, be

prepared to spend some money to buy good graph paper.

So to simplify matters, suppose a quarter of a unit circle is drawn on a piece of

graph paper so that the radius of length 1 is equal to 5 (sides of the) small squares,

as shown. (Now as later, we shall use small squares to refer to the squares in the

grid.)

The square of area 1 then contains 52 small squares. We want to estimate how many

small square are contained in this quarter circle. The shaded polygon consists of 15

small squares in the grid. There are 7 small squares each of which is partially inside

the quarter circle. Let us estimate the best we can how many small squares altogether

are inside the quarter circle. Among the three small squares in the top row, a little

more than 2 small squares are inside the quarter circle; let us say 2.1 small squares.

By symmetry, the three small squares in the right column also contributes 2.1 small

squares. As to the remaining lonely small square near the top right-hand corner,

there is about 0.5 of it inside the quarter circle . Altogether the non-shaded small
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squares contribute 2.1 + 2.1 + 0.5 = 4.7 small squares, so that the total number of

small squares inside the quarter circle is

15 + 4.7 = 19.7

The unit circle therefor contains about

4× 19.7 = 78.8 small squares

Now π is the area of the unit circle, and we know that the area of 25 small squares is

equal to 1. So the total area of 78.8 small squares is

78.8

25
= 3.152

Our estimate of π is that it is roughly equal to 3.152. Taking the value of π

to be 3.14159, accurate to 5 decimal digits, the percentage error of this estimate is

approximately equal to
3.152− 3.14159

3.14159
∼ 0.33%

While a relative error of 0.33% is very impressive, this experiment is not convincing

because the percentage of guesswork needed to arrive at the final answer is too high.

With a very fine and accurate grid (this is where you spend money to get good graph

papers), one can reasonably get the unit 1 to be equal to anywhere between 25 to 50

small squares. Then the percentage of guesswork needed to estimate what happens
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to the small squares near the circle will be greatly reduced (though the counting of

the total number of small squares can get dizzying).

In general, with the unit 1 equal to n small squares, then n2 small squares have a

total area of 1. If there are, after some guessing, k small squares in a quarter circle,

then there are 4k small squares in the unit circle. Thus the area of the unit disk is

π ∼ 4k2

n2

The relative error rarely exceeds 1%.

It is recommended that all students do this activity so that they get a firm con-

ception of what π is. Of course, this is only the beginning. As they learn more

mathematics, their conception of π will broaden. Nevertheless, they need a good be-

ginning. By contrast, most students only know “π is the ratio of circumference over

diameter” when they have no idea what “circumference” means or how to go about

measuring circumference accurately.

Exercises 7.3

1. A square and a rectangle have the same area, and the length of the rectangle

is four times as long as the height. Which has the larger perimeter and by how much?
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