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1 Issues Related to Content Knowledge

All of us share the common goal of improving mathematics education. Where we may

differ is the method we employ to achieve it. The important role of content has slowly

moved to the forefront of mathematics education in recent years due to a confluence of

many factors, and the title of my lecture is meant to be provocative. Because mathemat-

ics is the underpinning of every aspect of mathematics education, including curriculum,

pedagogy, and assessment, I should begin by limiting the scope of this talk: I will only

discuss the teaching of mathematics in grades 5–12.1 Please note that I am not at all

implying that what I am going to say is not applicable to curriculum or assessment, or

that it is false in K–4, but I am trying to avoid the pitfall of being mile wide and inch

deep, to borrow the well-known phrase of Bill Schmidt. The exclusion of K–4 in my

discussion of teaching is due to the fact that, in the early grades, the role of content

knowledge tends to be not as dominant in affecting the quality of mathematics teaching.

That said, let me remove the last vestige of suspense from my talk (if there was any

to begin with) by answering the question of my title right away: yes! I want to drive

home the point that sound pedagogical decisions can only be based on sound content

knowledge.

I should hasten to add that I did not pose this question in a vacuum. Rather, it is

an observation of mine that in the mathematics education mainstream of the past ten or

fifteen years, there is an alarming trend which may be called the mathematics-avoidance

syndrome. Proposals for educational improvement, be it in curriculum, pedagogy, or

assessment, tend to skirt the importance of content. I do not want you to misunderstand

me: everybody talks about content nowadays, but there is a difference between talking

and doing. My observation is that, with a few exceptions (see for example [Ball] and

[Ma]; you must know that in any sociological discussion, every statement would likely

admit a small number of exceptions), people in mathematics education tend not to place

the importance of content front and center.

Because some of you would be mightily annoyed by my last statement, I would like

to ask you to withhold your anoyance until you hear the evidence I am going to present

to you. Your annoyance may be due to a cultural or linguistic misunderstanding of my

message. Perhaps it is not clear what I mean by placing “the importance of content front

and center”. This kind of misunderstanding has happened before. For example, back

in 1997, I was on the Advisory Board of the California Mathematics Project (CMP).

1I could have said 4–12, but I’d rather play it safe.
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After visiting four of the sites, I wrote a report and concluded that those sites (and

most likely CMP as a whole) did not do much in the way of increasing teachers’ content

knowledge, especially elementary teachers’ content knowledge. The accusation caused

an uproar because it was thought that if a site spent time doing mathematics, any kind

of mathematics, then it had to be contributing to teachers’ content knowledge. I had

assumed as obvious the fact that, in this context, “content knowledge” could only mean

the mathematics teachers teach in the classroom, but I was wrong. Only when I looked

back some years later did I begin to understand what the uproar was all about.

I believe most people had no idea back then that there is a nontrivial body of math-

ematical knowledge in arithmetic and beginning geometry that should be taught to

elementary and middle school teachers in a serious and systematic way. Pre-service pro-

fessional development for teachers is, as a rule, inadequate on two fronts. First, it does

not directly address what teachers actually need in the clasroom, and second, it presents

mathematics as a collection of facts but not as a coherent whole, where the coherence

comes from logical reasoning. The in-service professional development in CMP (or, at

least what I got to observe) tended to ignore both kinds of inadequacy and chose to do

“fun” topics such as Eulerian circuit or chi square test. It did not make an effort to help

teachers acquire an understanding of the mathematical coherence of what they teach

in the classroom. I regret that in those days I did not see how to explain to the CMP

community my perception of what had gone wrong in mathematics professional devel-

opment. It was only much later when I started to do inservice professional development

myself and made an effort to teach teachers the mathematics I believe they need (a small

part of this can be seen in [Wu2] and [Wu3]) that I could demonstrate by example what

I had in mind about “increasing teachers’ content knowledge”. I will come back to this

point later in this talk. But I hope that in like manner, if you are willing to keep an

open mind and listen to my parade of facts about the education establishment’s lack of

emphasis on teacher’s content knowledge, you too may come to agree with me.

Let us take a brief look at some of the major ideas regarding the teaching of school

mathematics in the past fifteen years that lend credence to this syndrome. Around

1990, the California Department of Education (CDE) decided that the way to improve

mathematics education was to change pedagogical techniques and make small group

learning and the discovery method the centerpiece of mathematics instruction in every

classroom. The fact that teachers in California (and elsewhere) were in dire need of

better content knowledge was not mentioned. I must add that CDE’s advocacy was

nothing more than a mildly radical interpretation of a prevailing national trend. With
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hindsight, it is clear that an emphasis on pedagogy in an environment where teachers

were ill-equipped to handle the content was a recipe for disaster, all the more so because

the demand put on teachers’ knowledge of mathematics by the discovery method is at

times so enormous as to defeat even professional mathematicians. The consequences of

this particular advocacy of CDE were, as they say, history.

As CDE was making its move, there were also other ideas on how to improve teaching

in the mathematics classroom. One was to concentrate on children’s cognitive capabili-

ties. Notice that, once again, such a recommendation ignores the fact that interpreting

children’s mathematical thinking requires strong content knowledge. In the last few

years, two new developments have emerged. One is a strong advocacy that lesson study

be the principal activity of the professional development of teachers. The other is the

emphasis given to teachers’ acquisition of pedagogical content knowledge (a term intro-

duced in [Shulman]), the kind of special mathematical-pedagogical knowledge teachers

need to have in order to teach well. 2 As far as lesson study is concerned, a friend of mine

mentioned some time ago how distressing it was to witness a group of teachers trying to

refine a lesson plan on teaching fractions when none of them seemed to understand the

mathematics underlying the subject of fractions. Without a firm foundation of content

knowledge, lesson study is an exercise in futility.

The subject of pedagogical content knowledge was featured in a recent article in

Education Week ([Viadero]) devoted to an interview with Deborah Ball on her research

with Heather Hill and Brian Rowan ([H-R-B]) on this subject.3 They studied third grade

classes in many schools and, as such, this study falls outside the concern of my talk.

Recall that I am concentrating on grades 5–12. But insofar as the article will be read

as a general statement about teaching, it becomes important that we take its message

seriously.

This article suggests that pedagogical content knowledge is the gold standard of

teaching we have been waiting for. As the ultimate goal in good teaching, the idea that

every teacher should possess pedagogical content knowledge to a high degree cannot be

faulted. But in the context of the current state of professional development when we

are very far from getting every math teacher to know the minimum content knowledge,

leave alone the requisite pedagogical content knowledge, the basic message of this article

2It is well to note that the concept of “pedagogical content knowledge” is yet to be precisely defined;
see the footnote on p. 12 of [H-R-B].

3During the NCTM Annual Meeting in April of 2005, Deborah Ball informed me that, in fact, the
Hill-Rowan-Ball article [H-R-B] is about teachers’ content knowledge, not pedagogical content knowl-
edge.
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will likely be misunderstood. Take, for instance, the following passage near the end of

the article. It reads:

The results also suggest that efforts afoot now to require teachers to take

particular math courses — or to open up the field to individuals who might

have degrees in math but no education training — could be on the wrong

track.

“While those may be nice ideas,” Ms. Ball said, “these results suggest that

might not be the most promising way to think about improving math in-

struction.”

Because one thinks of teachers’ content knowledge in terms of what they learn from

the math courses they take, to most readers the the message is likely to be interpreted

as asserting that, in order to improve the teaching of mathematics in general, teachers

should bypass the attainment of mathematical knowledge (for who wants to be on the

wrong track?) and make an all-out assault on pedagogical content knowledge instead.

I find this subliminal message of the preceding passage disturbing. There is by now

a realization that the most important step in improving mathematics teaching is to

bolster teachers’ content knowledge by directly teaching them the mathematics they

need in the classroom. (For an account of the history of this development, see the

beginning of [Wu1]; a more detailed discussion of this issue can be found in Chapter 10

of [Kilpatrick] — especially pp. 375-6, — Chapters 1 and 2 of [MET], and [Wu1]). To

get an idea of what kind of mathematics is considered to be the kind of “mathematics

teachers need in their classroom”, consider the anecdote given at the beginning of the

Ed Week article [Viadero] of Ball’s personal experience:

As a young teacher in an East Lansing, Mich., elementary school, Deborah

Loewenberg Ball realized teaching mathematics required a special kind of

knowledge. Unfortunately, she didn’t have it.

Take long division, for example.

“There was no way of explaining to students what the procedure means, and

what they’re really doing,” said Ms. Ball . . .

The tone of the article suggests that the explanation for the long division algorithm is

part of a teacher’s pedagogical content knowledge. The truth of the matter is that it is

straightforward mathematics, namely, the repeated application of the common division-

with-remainder. It is given in some of the recent mathematics textbooks written for
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elementary teachers such as §3.5 of [Wu 1], [Beckmann], [Jensen] and [P-B]. At this

point, you may wish to recall my experience with CMP recounted earlier, especially

regarding the discussion about increasing teachers’ content knowledge.

The reality at present is that the professional development culture has not yet fully

embraced the idea that there is an urgent need to focus on teaching straightforward

mathematics to our teachers, partly because this culture does not yet recognize that

there is a nontrivial body of mathematical knowledge on the level of K–12 that should

be taught to teachers in a serious and systematic way. For this reason, the seductiveness

of the Ed Week article about pedagogical content knowledge may mislead school district

administrators and professional developers into abandoning the basic mission of teaching

mathematics in favor of pursuing pedagogical content knowledge.

I do not believe a teacher can have pedagogical content knowledge without a firm

command of “content knowledge” in the sense just described. The question then becomes

one of how to help teachers acquire the requisite content knowledge. The experiences

of myself and other mathematics colleagues who are engaged in professional develop-

ment work all attest to the fact that learning the mathematics is very difficult for most

teachers, and it does not make good sense to handicap their effort by asking them to

also acquire pedagogical content knowledge at the same time. If we ask teachers to run

before they can walk, they will fall flat on their faces. By asking them instead to first

understand the mathematics they have been teaching for years, we may hope to put

them on the path of professional growth so that they would acquire the needed peda-

gogical content knowledge gradually. One person’s experience may not serve as a valid

guide, but what I have observed among teachers I have taught bears out this learning

trajectory (cf. [B-W]).

It should not be difficult to put my personal belief as outlined in the preceding

paragraph to the test. Let me therefore put forth two conjectures. If we are to measure,

in grades 5–12, the correlation not only between good pedagogical content knowledge

and good teaching, but also between good content knowledge and good teaching, the two

sets of data would be highly correlated. In addition, I also believe that, still with grades

5–12, those teachers with good content knowledge include those with good pedgagogical

content knowledge. Why these conjectures are relevant is that, if they are true, then

we would be able to offer the following procedure for improving school mathematics

education:

Good mathematics instruction requires good teachers, and good teachers are

those with good pedagogical content knowledge who, in turn, are predominantly
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those with good content knowledge. Improvement of school mathematics edu-

cation therefore begins with teaching teachers the mathematics they need.

The virtue of this simple procedure is that by putting content knowledge in the limelight

as the key to improving mathematics education, we can finally put the proper focus on

this stumbling block in mathematics education. Coincidentally, the presence of the re-

cent mathematics textbooks for teachers cited above should make this task a little easier.

2 Further Considerations

I have by now touched on all the main points of my lecture, and it remains for me to

summarize them:

(1) The most difficult step in becoming a good teacher is to achieve a firm

mastery of the mathematical content knowledge.

(2) Without such a mastery, good pedagogy is impossible.

(3) A firm mastery of the content opens up the world of pedagogy and offers

many more effective pedagogical possibilities.

Before elaborating on these further, let me make sure you know what I am not

saying, because this is as important as what I do say. I am not saying that knowing

mathematics is all it takes to be a good teacher. Anyone who has gone through a

four-year mathematics program in any university knows all too well that this is not

true. What I do assert, on the other hand, is that if you can achieve a full grasp of

the relevant mathematics, then you would be in an excellent position to become a good

teacher. It is to be regretted that such a message has not been forcefully conveyed in

mathematics education.

The lack of appreciation of the centrality of content knowledge in mathematics edu-

cation is of course not limited to the recent ideas concerning teaching that I recounted

above. Among the many other examples I can cite, let me direct your attention to three

of them. The first is the deterioration of the quality of the mathematics in high school

geometry classrooms. It is certainly no news, and it has been even documented in a

paper written by an educator in 1988 ([Schoenfeld]), that proofs in high school geom-

etry have often been replaced by rote memorization of what-the-teacher-says. In other

words, many teachers no longer know what proofs are about and consider a geometric
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proof to be nothing more than a regurgitation of procedures dictated by the teacher.

In the context of mathematics education, such a crisis in teacher’s content knowledge

demands to be urgently addressed. Yet, for the past fifteen years, this mathematical

problem was left completely unattended while the mathematics education research of

many other topics have fluorished as never before. There is a more thorough discussion

of the issues surrounding the teaching of geometry on pp. 309-310 of [Wu4].

A second example is the announcement by the U.S. Department of Education in

October of 1999 that ten mathematics programs were to be regarded as Exemplary or

Promising. If a program can be considered among the ten best the nation has to offer, it

may be taken for granted that the mathematics of each of these ten programs meets the

minimum standard of being coherent and free of significant errors. Yet, to take the most

obvious example, the mathematics of Mathland, one the five Promising programs, can

be objectively demonstrated to be shallow, incomplete, incoherent, and not infrequently

just plain wrong. So how did this travesty come about? In a recent authoritative

publication from the National Research Council On Evaluating Curricular Effectiveness

([Confrey-Stohl]), the inattention to mathematical content in the review process of the

U.S. Department of Education is revealed. The Department appointed an Expert Panel

to set up a procedure for examining the evidence of success of the submitted programs.

According to Richard Askey of the University of Wisconsin, in the 48 reviews of the

initial 12 exemplary or promising programs, “no mention of any mathematical errors

was made” (see p. 79 of [Confrey-Stohl]).

Now you must understand that any of the existing curricula, old or new, is so riddled

with errors that it would take a superhuman mental effort to blot them out. How

then did the dozen or so Expert Panel members and almost 95 Quality Control Panel

members manage not to notice any of these glaring errors? One reason may be because

there was only one mathematician on the Expert Panel, and only two on the Quality

Control Panel. Without panel members who were able to spot the errors, the panel

was led to call programs ”exemplary” even though they contained serious mathematical

errors.

A third example is the way blatant mathematical flaws in mathematics lessons are

handled in some recent well-known case books, e.g., [Barnett], [Merseth], and [Stein].

These books would first present a lesson taken from a real classroom, and the facilita-

tor (i.e., commentator on the lesson) would suggest directions that discussions of such

a lesson might take in a professional development environment. In principle, this is

certainly a powerful way to make teachers aware of the elements of good teaching. In
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an overwhelming majority of the cases in these case books, however, the mathemat-

ical flaws of a lesson are either completely ignored or glossed over in the facilitator’s

comments while attention is lavished on non-mathematical issues,4 such as pedagogical

skills, the teacher-student interface, students’ thinking, etc. If we believe that the pur-

pose of mathematics education is to teach students correct mathematics rather than to

showcase excellent pedagogical strategies without regard to content, then the possibility

is very real that these three volumes would corrode the concept of mathematics teaching

and lead a generation of teachers astray. Of particular concern is the fact that these

case books are very well received in the educational mainstream. Does content really

play such a small role in mathematics education? For lack of space, I will refer to [Wu6]

for a more thorough discussion of these case books.

You may recall that the title of my talk is “Must content dictate pedagogy?” My

original intention was to hand out three cases at the beginning of my talk, one from

each of the three case books mentioned above, and then discuss them with you after you

have looked them over. I wanted to show you, in a concrete way, how a well-intentioned

pedagogical decision in the classroom can be betrayed by faulty content knowledge, and

how a deeper understanding of the underlying mathematics could lead to change in the

pedagogical approach and render a lesson more clear and more understandable. But

I subsequently decided that I should not penalize you for attending my talk by giving

you such hard work. Instead, I will try to illustrate why content dictates pedagogy

by showing you three statements from the education literature about recommended

pedagogical strategies on teaching:

the comparison of (finite) decimals,

multiplication of fractions, and

division of fractions.

Then I will show you how a better grasp of the content in each case naturally leads to

a different pedagogical strategy and, of course, a mathematics lesson that is easier to

understand.

Notice that I have chosen to limit myself to mathematics of grades 5–7 for this

purpose. Were I free to choose among materials in grades 5–12, the horizon would be

limitless. Examples from school algebra, for instance, would fill a separate article (see

section two in [Wu5]).

4Which can of course be important too.
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3 The Comparison of (Finite) Decimals

The first example we wish to look at is the comparison of decimals. Let it be understood

that, throughout this discussion, a decimal is automatically assumed to be a finite deci-

mal. Students’ ignorance of decimals, to the point of not knowing that 0.09 is smaller

than 0.2, has inspired a whole industry on how to increase students’ conceptual under-

standing of this topic. The following is a commentary5 on this very issue of teaching

decimals in middle school with conceptual understanding:

The decimal point indicates that we are beginning to break our unit — one

— into tenths, hundredths, thousandths, and so on. But the number one,

not the decimal point, is the focal point of this system. So really, 0.342 is

342 thousandths of one. Put another way, 0.3 is three-tenths of 1, while 3 is

three ones, and 30 is three tens, or 30 ones. But by the same token that 0.3

is three-tenths of one, 3 is three-tenths of 10, 30 is three-tenths of 100, and

so on up the line. Or starting further down, 0.003 is three-tenths of 0.01,

while 0.03 is three-tenths of 0.1. Moving in the opposite direction, 3000 is 30

hundreds, 300 is 30 tens. 30 is 30 ones, 3 is 30 tenths, 0.3 is 30 hundredths,

0.03 is 30 thousandths, and so on.

All of this might sound more confusing than it really is. To compare 0.45 and

0.6, students are often told to “add a zero so the numbers are the same size.”

(Try figuring out what this might mean to a student who does not really

understand decimal numbers in the first place!) This strategy works, but

since it requires no knowledge of the size of the decimal numbers, it does not

develop understanding of number size. Instead of annexing zeros, couldn’t

we expect students to recognize that six-tenths is more than 45 hundredths

because 45 hundredths has only 4 tenths and what’s left is less than another

tenth?

Let me paraphrase the main points of this commentary:

(A) To insure that students understand decimal numbers, we should teach

5I am trying to criticize a prevailing trend in mathematics education. For this purpose, I have to
select from the education literature certain passages that illustrate this trend to form the basis of my
criticism. When a passage comes from individuals, I will omit any explicit citation because my message
would not be enhanced by the added knowledge of authorship. On the other hand, when a passage
comes from a central document such as [PSSM], then an explicit citation is very relevant because [PSSM]
is nothing if not synonymous with a major trend.
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them the meaning of place value by using the language of tenths, hundredths,

thousandths, etc.

(B) The usual way of comparing, for example, 0.45 and 0.6 through the

routine of “add a zero so numbers are the same size” does not require a

knowledge of the size of decimal numbers nor develop an understanding of

number size and should therefore be avoided.

(C) The comparison of 0.45 < 0.6 can be understood through the use of

verbal descriptions such as: “six-tenths is more than 45 hundredths because

45 hundredths has only 4 tenths and what’s left is less than another tenth”.

I have a different take on this situation. I think most of the blame on students’

non-learning of decimals can be placed squarely on the following two facts: (i) decimals

are mostly taught as a topic independent of the subject of fractions, and (ii) no clear and

precise definition of a decimal is ever given. For example, the preceding commentary

implies that to understand decimals, it sufffices to concentrate on tenths, hundredths,

thousandths, etc,. of the unit 1, but nowhere does it say what a decimal really is. In

the learner’s mind, a decimal becomes something elusive and ineffable: it is something

one can talk about indirectly, but not something one can say outright what it is. This

violates the basic principle of literalness in mathematics, WYSIWYG, i.e., what you see

is what you get. If we cannot say explictly what a decimal is, then it is not a concept we

can expect students to understand. Put differently, if we expect students to be able to

fluently compute with decimals, then we have an obligation to tell them what a decimal

is.

Let us therefore begin with a definition of decimal: it is a fraction6 whose denomina-

tor is a power of 10. (Recall that we are in middle school so will freely use the language

appropriate to this level. But of course “a power of 10” is a very simple concept to define

in any case.) Historically, this was exactly how decimals arose; they used to be called

decimal fractions (as distinct from common fractions, which are the fractions of

today). Here are some examples of decimals:

271638

104
,

6

10
,

45

102
,

730

105

6This means it is a number of the form m
n , where m, n are whole numbers and n 6= 0. More precisely,

each m
n (with fixed m, n) is the point on the number line obtained by dividing each of the segments

[0, 1], [1, 2], [2, 3],. . . into n parts of equal length, and m
n is the m-th subdivision on the number line to

the right of 0.
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Because one gets tired of writing the denominators (which are all so similar), the follow-

ing convention of abbreviations for these decimals is commonly accepted in the English

speaking countries:

27.1838, 0.6, 0.45, 0.00730

The convention is easy to describe: omit the denominator, but keep track of the power

of 10 (say 5) in the denominator by counting 5 times from the last digit on the right

of the numerator and place a dot in front of that digit. That dot is referred to as the

decimal point, of course. The 0 in front of the decimal point in case there is no nonzero

digit to its left is added purely for the purpose of clarity, e.g., 0.6 in place of .6. In case

the number of digits in the (whole number) numerator is smaller than the power of 10

in the denominator, just add the appropriate number of 0’s to the left of the first digit

of the numerator to keep track of this power. For example, for 730
105 , the power is 5 and

there are only three digits in 730, so we add two zeros in front of 730, getting 00730,

and then place the decimal point in front of the 0 on the left, thus: 0.00730

Incidentally, we see immediately that 0.00730 is the same as 0.0073, because by

definition,

0.00730 =
730

105

while

0.0073 =
73

104
.

Since 730
105 = 73

104 because of equivalent fractions, we have 0.00730 = 0.0073. In a similar

fashion, we see why adding zero’s to the right of the decimal point does not change a

decimal. For example, 0.6 = 0.60 = 0.6000000.

Let us see in what way a precise definition of a decimal can facilitate the the com-

parison of decimals. Consider the original example in the quoted commentary, 0.45 and

0.6. By definition, what we are comparing are the two fractions

45

100
and

6

10
.

We know the fundamental fact concerning the comparison of fractions: rewrite them as

two fractions with the same denominator (made possible by equivalent fractions). In

this case, both denominators are powers of 10, so it is trivial to arrive at a common

denominator, which is the denominator with the larger power of 10 (i.e., 100 in this

case, which is of course 102). This we have a comparison of

45

100
and

60

100
.
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But clearly, 45 < 60, so
45

100
<

60

100
.

In terms of the decimal-point notation, we therefore have 0.45 < 0.6.

Once the basic principle of comparison is understood, it is a no-brainer to compare

any two decimals. For example, 0.0120481 and 0.0097. These are the fractions

120481

107
and

97

104
,

which we proceed to rewrite as

120481

107
and

97000

107
.

The comparison of size is immediate: 120481 is bigger than 97000, so 0.0120481 > 0.0097.

To summarize: the comparison of decimals — in accordance with the proposed strat-

egy — is reduced to the comparison of whole numbers. This strategy makes explicit the

relationship between decimals and whole numbers. I may add that this same relationship

elucidates the concept of the place value of decimals, e.g.,

4.215 =
4215

103
=

(4× 103) + (2× 102) + (1× 10) + 5

103

= 4 +
2

10
+

1

102
+

5

103

In other words, the place value of decimals is nothing more than a rewrite of the place

value of the numerator when the decimal is expressed as a fraction according to its def-

inition. The pronounced advantage of this approach to the concept of place value of

decimals is that students only need to learn about the place value of whole numbers,

and nothing more. The place value of decimals becomes a consequence. At a time when

mathematics education tries to preach the virtue of interconnectedness, this approach

to decimals should be given serious consideration for this reason alone.

Recall that the recommended pedagogical strategy of the commentary for teaching

045 < 0.6 (i.e., item (C) above) is to explain that “six-tenths is more than 45 hun-

dredths because 45 hundredths has only 4 tenths and what’s left is less than another

tenth”. I am not at all convinced that most students find such verbal explanations easy

to follow. (I certainly didn’t.) Moreover, this strategy won’t work well with the com-

parison of 0.0120481 > 0.0097, and would be even more awkward with comparisons of

(say) 0.000068485749123 and 0.0000685. This is hardly the only drawback of the verbal
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approach to teaching middle school mathematics when you consider how one would try

to explain what the decimal

0.12345678901223334444

is. The recommendation in item (A) of strictly using words such as hundredths and

thousandths for the attainment of understanding would clearly be inappropriate, but

according to our definition above, this decimal is nothing more than the fraction

12345678901223334444

1020
.

One should not dismiss offhand, in my opinion, the psychological advantage — in the

context of learning — of knowing that any decimal, no matter how unwieldy, is something

concrete that one can explicitly write down. It would be instructive as well as interesting

to have some research done to confirm the importance of such an advantage.

It may be argued that in school mathematics, one never comes across decimals such as

0.12345678901223334444. But this seemingly senseless example actually raises a serious

issue: should we pass off partial information as the complete information? In the case at

hand, the verbal approach to decimals is obviously efficient for handling simple decimals

such as 0.6 and 0.45, but as we have just seen, it does not enable students to handle

decimals in general. Therefore the teaching of decimals in terms of verbal descriptions

only provides part of the knowledge about decimals that students need. In middle school,

students must begin to acquire the concept of generality because algebra is looming in

the immediate horizon. If they confuse knowing a few special cases (of a concept or skill)

with knowing the general case, their chances of learning algebra would be minimal. It

is a heartening recent development that mathematics educators are beginning to take

note of the need to distinguish special cases from the general case (cf. [Car-Rom]).

Thus when we canonize the verbal approach to decimals as one that brings conceptual

understanding to students, and do so with no further qualifications, we are guilty of

misleading our students. To avoid any misunderstanding of this message, let me illustrate

with the same example of 0.45 < 0.6. Suppose the symbolic argument as given above is

already in place, then it would be entirely appropriate for a teacher to emphasize that

the symbolic computation

0.45 =
45

100
<

60

100
=

6

10
= 0.6

includes the statement that 0.45 is 45 copies of a hundredth, whereas 0.6 is 60 copies of a

hundredth, and this is the reason for the validity of the inequality 0.45 < 0.6. So in this
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simple case, the verbal information succeeds in reinforcing the symbolic information. No

doubt, verbal interpretation has its place in middle school mathematics education, but

it is not a replacement of symbolic arguments.

To emphasize the fact that the preceding pedagogical recommendation is for grade

5 and up, I would recommend, by contrast, that the teaching of decimals (up to two

decimal places) to third graders be accomplished by the use of money without any formal

definition of a decimal. Thus 0.45 is simply 45 cents and 0.6 is six-tenths of a dollar,

and third graders are welcome to simply count six-tenths of a dollar and 45 cents to see

that 0.6 is more. By the time these third graders get to middle school, however, they

need to reconcile naive discussions with more formal ones, and the 45 cents of yesteryear

should be clearly identified with the decimal fraction 45
100

.

The argument against replacing the precise symbolic approach with the use of verbal

descriptions should be pushed further. A critical step in this symbolic argument is

the equality that 60
100

= 6
10

, which in decimal notation is 0.60 = 0.6. The commentary

disparages the use of the last equality for the reason that “since it requires no knowledge

of the size of the decimal numbers, it does not develop understanding of number size”

(see item (B) above). Such a statement is incorrect because — as we have explained —

one rewrites 0.6 as 0.60 (i.e., 6
10

as 60
100

) in this case because, to compare two fractions,

one should rewrite them as fractions with the same denominator. Such an understanding

about fractions is truly basic. Therefore rewriting 0.6 as 0.60 in this particular context,

far from being a mindless rote procedure, is based on a conceptual understanding of the

situation at hand. Students ought to learn how to use this procedure and, of course, the

reason behind this procedure.

Mathematics relies on the symbolic language, and we have the responsibility as math-

ematics educators to make our middle school students fluent in the use of symbols. The

undesirability of using only the words tenths, hundredths, and thousandths to teach dec-

imals in middle school, in place of the symbolic definition of a decimal, can in fact be

understood from the historical perspective. The earliest form of algebra, it may be ar-

gued, is the Algebra of al-Khwarizmi (circa 780–850 A.D.). It is perhaps not commonly

known that al-Khwarizmi presented algebra entirely verbally, without the use of any

letter-symbols, because the symbolic language was non-existent in his time as well as

much later. Here is a typical passage:

.. a square and 10 roots are equal to 39 units. The question therefore in this

type of equation is about as follows: what is the square which combined with

ten of its roots will give a sum total of 39? The manner of solving this type
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of equation is to take one-half of the roots just mentioned. Now the roots

in the problem before us are 10. Therefore take 5, which multiplied by itself

gives 25, an amount which you add to 39 giving 64. Having taken then the

square root of this which is 8, subtract from it half the roots, 5 leaving 3.

The number three therefore represents one root of this square, which itself,

of course is 9. Nine therefore gives the square. ([Rosen])

If you find this a little painful to read, then know that European mathematicians

of the twelfth century also shared your pain.7 Progress towards the use of symbolic

notation was slow, however, and it wasn’t until the one hundred years preceding the

publication of Descartes’ Discours in 1637 that the modern symbolic notation was es-

sentially consolidated. In this notation, what al-Khwarizmi wrote can be rendered this

way (his “root” is what we call the unknown):

If a number x satisfies x2+10x = 39, what is x2? We have x2+10x+(10
2
)2 =

39 + (10
2
)2, so that x2 + 10x + 25 = 64. Thus (x + 5)2 = 82. Taking square

roots gives (x + 5) = 8, so x = 8− 5 = 3 and x2 = 9.

This is easier to read for most of us, and it is undoubtedly more clear. More importantly,

anyone who cannot make sense of the symbolic version has not yet mastered middle

school mathematics.

I hope I have made my point: the use of symbols is the gateway to mathematics,

and the use of purely verbal descriptions, while it has its place in a pedagogical context,

cannot replace the symbolic language. The realization that, in middle school, we have to

develop students’ fluency in the use of symbols is also part of teachers’ content knowedge.

This realization, together with the awareness of the need for precise definitions and the

WYSIWYG principle, lead to a different way of teaching decimals which is at once more

precise, more clear, and perfectly general.

4 Multiplication of Fractions

In this and the next section, we look at the multiplication and division of fractions, two

topics which have invited the intense scrutiny of many mathematics educators because

these topics have a reputation of being difficult to teach.

7al-Khwarizmi’s algebra was translated from Arabic into Latin around 1150.
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We have seen in the last section the importance of precise definitions. Unhappily, a

precise definition of the product of two fractions k
`

and m
n

(k, `, m, n are whole num-

bers and ` 6= 0, n 6= 0) is generally missing in textbooks and professional development

materials. This is again a violation of the basic WYSIWYG principle of mathematics

(see preceding section). If students and teachers do not know what kind of an object

the product of two fractions is, how can they work with the concept beyond making

computations by rote? Nevertheless, educators forge ahead under this handicap. The

education literature has a surplus of suggestions on how to deal with the pedagogical

problem of helping students and teachers achieve a conceptual understanding of multi-

plying fractions in the absence of a precise definition. One approach to do this in middle

school is the following:

We know that teachers and most other adults in our country have a limited

understanding of the meaning of multiplication and division of fractions.

. . . Teachers who are interested in changing this situation must first approach

these topics themselves in ways that are very different from all their previous

experiences with mathematics learning. They must completely reformulate

their ideas about teaching the topics. . . .

The medium for this rethinking is language. How can we think about some-

thing for which we have no words? . . .

Multiplication of fractions is about finding multiplcative relationships be-

tween multiplicative structures. When students partition a continuous whole

such as a circle, they actually find part of parts in the process. In order to

create fourths, for example, a student’s first create halves. The student then

cuts the halves in half to create fourths. In so doing the student can verbalize

that one-half of one-half is one-fourth. Later the symbolization can be con-

nected back to the paritioning experience, first in written language and then

with symbols. One-half of one-half is one-fourth; 1
2

of 1
2

is 1
4
; 1

2
× 1

2
= 1

4
.

We witness once again an attempt to use verbal descriptions to achieve mathemat-

ical understanding.8 An added difficulty in this case is that it is impossible to make

sense of “finding multiplcative relationships between multiplicative structures.” What

8Let me point out in passing that there is an unacceptable lack of precision in the statement “partition
a continuous whole such as a circle”. Is the paritioning in terms of area or shape, or something else?
Look at the case “Two green triangles” on p. 86 of [Barnett] to see the kind of confusion such linguistic
imprecision can lead to.
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is a “multiplicative structure”, and in what sense is the collection of fractions a “mul-

tiplicative structure”? What constitutes “finding multiplcative relationships” in this

context? Moreover, the explanation of 1
2
× 1

2
= 1

4
is supposed to be valid for the product

of any two fractions, but such an explanation suffers from multiple mathematical diffi-

culties. Has it explained to the reader what is the product of any two fractions? And if

the reader is not already predisposed towards believing the simple fact that 1
2
× 1

2
= 1

4
,

would this explanation make any sense? For example, how would the same explanation

work in trying to explain 2
19
× 83

17
= 166

323
?

What we need is a definition of multiplying fractions that is mathematically valid

and, at the same time, sufficiently intuitive for middle school students. There is not a

unique way to accomplish this, but the following will serve (see §7.3 of [Wu3]). We start

with two concrete fractions 2
3

and 8
5
. By common practice, we compute the weight of

“two-thirds of eight-fifths kilograms of rice” by computing 2
3
× 8

5
. On the other hand,

a little reflection would reveal that what “two-thirds of eight-fifths kilograms of rice”

means in the context of everyday communication is that if we divide the eight-fifths of

a kilogram of rice into three equal parts by weight, then it is the weight of two of these

parts. We now turn this interpretation around and adopt it as the precise definition of

the product 2
3
× 8

5
.

Definition of 2
3

× 8
5
: 2

3
× 8

5
is the size of 2 of the parts when an object of size 8

5

is divided into 3 equal parts.9

Please note right away that, strictly according to this definition, 2
3

of an object of

size 8
5

has size equal to 2
3
× 8

5
. In other words, this definition of the product of fractions

is designed to capture the normal linguistic usage of “of”. This is distinctly different

from the pedagogical fiction that one can “prove” that the preposition “of” carries with

it the meaning of fraction multiplication, as is sometimes claimed in the professional

development literature.

Now, once we agree on a definition of 2
3
× 8

5
, we are bound by this definition to give

an explanation of why 2
3
× 8

5
= 2×8

3×5
strictly on the basis of this definition. In other words,

if we take 2 of the parts when an object of size 8
5

is divided into 3 equal parts, then

9I have intentionally made the definition as conversational as possible. A more formal version would
begin with a definition of a fraction as a point on the number line obtained by the procedure described
in Footnote 6. Then by definition, 2

3 ×
8
5 is the 2nd division point away from 0 when the segment [0, 8

5 ]
is divided into 3 segments of equal length.
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we have to explain why the size of these 2 parts is

2× 8

3× 5

We first ask, if 8
5

is divided into 3 equal parts, how big is one part? We use equivalent

fractions to compute:

8

5
=

3× 8

3× 5
=

8

3× 5
+

8

3× 5
+

8

3× 5

Therefore the size of one part has been explicitly displayed as 8
3×5

. The size of 2 of the

parts is thus
8

3× 5
+

8

3× 5
=

2× 8

3× 5
,

as desired.

I hope you see that the reasoning in this special case is perfectly general, so that if

we define k
`

× m
n

to be the size of k of the parts when an object of size m
n

is divided

into ` equal parts, then in like manner, we can show

k

`
× m

n
=

km

`n

We shall refer to this formula as the product rule. In most books, the product rule

is the starting point of the discussion of fraction multiplication. Such discussions typ-

ically leave the meaning of multiplication undefined, but there would usually be some

vague statement about the conceptual understanding of multiplication in a contextual

situation. The inherent danger of such a presentation is that, if there is no explanation

of why the product rule is true as a result of a precise meaning of multiplication, many

students would silently entertain the notion that there is nothing special about “×” and

the same formula must remain true if “+” is used instead, i.e., the formula

k

`
+

m

n
=

k + m

` + n

must likewise be true. As is well-known, this kind of error is common, and we should rec-

ognize it for what it is: the inevitable consequence of faulty content in the mathematics

instruction.

Once the product rule is established, then we can round off the picture by explaining

why the area of a rectangle with sides of lengths k
`

and m
n

is k
`
× m

n
. (See §7.1 of [Wu3] for

details.) Notice that the multiplication of fractions is used in everyday life principally

in two contexts: in computing the area of a rectangle, and in computations of the type
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“how much is two-thirds of eight and half pounds of rice?” At this point, therefore, all

the essential elements of fraction multiplication have been covered.

Let me make explicit the main points of this discussion. Our charge was to make

sense, for middle school students, of what it means to multiply two fractions. Rather

than relying on unfathomable verbal descriptions about finding “multiplcative relation-

ships between multiplicative structures”, we follow the dictates of mathematics by first

formulating a precise definition of fraction multiplication. We adopted the most common

linguistic interpretation of the preposition “of” as the official definition of this concept.

Then on the basis of this definition, we showed — or at least gave an indication of the

reasoning — why the product rule must be correct and why the area of a rectangle is

given by the product of the sides. In short, we have given an explicit mathematical

development of this concept at the level of middle school. This mathematical approach

to the multiplication of fractions is superior to the linguistic approach quoted at the be-

ginning of this section in that it can be followed logically, step-by-step, without resorting

to claims about “multiplicative relationships between multiplicative structures.”

It remains to answer a question that must be on the lips of some of you in the au-

dience: is it realistic to go through the explanations of the product rule and the area

formula of a rectangle for middle school students? The answer is a qualified yes, in the

sense that explanations using concrete numbers (such as what we did with 2
3
× 8

5
= 2×8

3×5
)

must be given starting with grade 6. I have already indicated one reason why this

must be so: teaching multiplication without explanations begs the question of why not
4
7

+ 3
11

= 4+3
7+11

. In addition, students need explanations to firm up their knowledge

of multiplication, because (as we shall see in the next section) without such a secure

knowledge, they cannot hope to understand the division of fractions. As to whether the

symbolic explanations of the general case of the product rule (e.g., k
`
× m

n
= km

`n
) and the

general rectangle area formula should be given to sixth graders, that would depend on

what kind of students are in the class. For seventh graders, however, such symbolic ex-

planations should be an integral part of the instruction because seventh graders need to

be exposed to the ideas of generality and abstraction in order to be prepared for algebra.

5 Division of Fractions

“Invert and multiply” may well be the phrase that inspires the most loathing in elemen-

tary and middle schools. The soul-searching in the mathematics education literature
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on how to make this skill more palatable tends to be pedagogical in nature, with little

or no attention given to the mathematical content of this procedure. Usually one tries

to over-simplify or short-circuit some aspects of the imbedded mathematics. I will now

show you why neither over-simplification nor short-circuiting is necessary if the concept

of division is clearly understood, starting with the division of whole numbers.

Here is the pedagogical recommendation on the teaching of fraction division in middle

school taken from [PSSM] (p. 219):

A common way of formally justifying the “invert and multiply” procedure

is to use sophisticated arguments involving the manipulation of algebraic

rational expressions — arguments beyond the reach of many middle-grade

students. This process can seem very remote and mysterious to many stu-

dents. Lacking an understanding of the underlying rationale, many students

are therefore unable to repair their errors and clear up their confusions about

division of fractions on their own. An alternative approach involves helping

students understand the division of fractions by building on what they know

about the division of whole numbers. If students understand the meaning

of division as repeated subtraction, they can recognize that 24 ÷ 6 can be

interpreted as “How many sets of 6 are there in a set of 24?” This view of

division can also be applied to fractions, as seen in [the following figure]. To

solve this problem, students can visualize repeatedly cutting of 3/4 yard of

ribbon. The 5 yards of ribbon would provide enough for 6 complete bows,

with a remainder of 2/4, or 1/2, yard of ribbon, which is enough for only 2/3

of a bow. Carefully sequenced experiences with problems such as these can

help students build an understanding of division of fractions.

If 5 yards of ribbon are cut into pieces that are each 3/4 yard long to

make bows, how many bows can be made?

0 1 2 3 4 5

1 2 3 44 5 6 2/3

Let me isolate a few keys points made in the preceding passage:

(a) To understand “invert and multiply”, one needs to understand sophisti-

cated arguments involving rational algebraic expressions.
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(b) Understanding the division of whole numbers would lead us to understand

the division of fractions as repeated subtraction.

(c) One can see easily that 1/2 yard of ribbon is 2/3 of a bow of length equal

to 3/4 of a yard.

I will proceed to show you why the first two points, (a) and (b), are based on an erroneous

understanding of the concept of division. To this end, I too will go over the division of

whole numbers.

What does it mean when we say 36 ÷ 9 = 4? It means there are 4 groups of 9 in

36. So 36 = 9 + 9 + 9 + 9, which is the same as 36 = 4× 9. Of course, if we start with

36 = 4 × 9 instead, then 36 is already given as 4 groups of 9 so that, according to the

usual presentation of division in elementary school, we would have 36÷ 9 = 4. We may

therefore summarize this discussion by saying that

36÷ 9 = 4 is exactly the same as 36 = 4× 9.

This seemingly trite statement actually expresses a mathematical truth that is, unfortu-

nately, not emphasized or not even recognized in elementary school mathematics. It is

this: when we teach students the concept of division after they have learned the multipli-

cation of whole numbers, all we do is nothing more than teaching them an alternate way

of expressing multiplication.10 In other words, in mathematical terms, there is nothing

new in division beyond rewriting multiplication.

The same consideration then extends to the division of arbitrary whole numbers. In

general, if a, b, c are whole numbers, c 6= 0, then replacing the division symbol ÷ by the

fraction bar and omitting the × symbol between letters (we are in the context of middle

school mathematics), we have:

a
c

= b is exactly the same as a = bc.

We emphasize once more that, in mathematics, division has no independent existence as

it is only a rewriting of multiplication.

We should mention in passing that, once we are in possession of this correct un-

derstanding of division, we can explain two vexing issues connected with division in

10I am obliged to point out that what this says is not the same as the glib statement that “division
is the inverse of multiplication”. The latter does not make sense, literally, because both division and
multiplication are binary operations and there is thus no possibility of one being the inverse of the
other. It is a matter of precision: what we say here is that the two statements 36÷9 = 4 and 36 = 4×9
are interchangeable so that knowing either one is exactly the same as knowing the other.
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elementary grades. The first is why among whole number, we cannot write down ex-

pressions such as 7 ÷ 5. This is because there is no multiplicative statement of the

kind 7 = A × 5 for a whole number A. More generally, if a whole number a is not a

multiple of another whole number c, then we cannot write down a÷ c because there is

no multiplicative statement of the kind a = bc for a whole number b. This explanation

deserves to be stressed in grades 2 to 4, but it usually is not. A second issue is why one

cannot divide by 0 (notice that in the preceding statement about a
c

= b, we stipulated

that c 6= 0). Indeed, to be able to write, for example, 36÷ 0 = b for some whole number

b, we must be able to write 36 = b× 0 to begin with. But this is impossible because 36

is not 0, whereas b× 0 is always 0. Of course, this in turn begs the question of why not

consider 0÷0. Let us say 0÷0 = b for some whole number b, then this means 0 = b×0.

But any number b would make this equality valid, for instance 0 = 1×0 and 0 = 2×0.

Again by our understanding of division, these two equalities would mean 0÷0 = 1 and

0÷ 0 = 2. In fact, the same reasoning shows that 0÷ 0 = x for any number x. This

is an absurd situation that must be avoided. So we rule out division by 0.

From this perspective on division, we come to understand that the usual division-

with-remainder algorithm is actually a misnomer: it is not about division in the sense

described above at all (except for the special case of remainder 0) but about something

different and something special to the whole numbers.11 The interpretation of division

among whole numbers as repeated subtraction comes from treating division from the

point of view of division-with-remainder. As we have emphasized, this is an incorrect

way to look at division on a conceptual level. There is in addition another level of logical

difficulty with this way of looking at the division of fractions, as we proceed to point

out.

Consider the case of dividing 23 by 4 (allowing fractions as answers now); the answer

is of course 53
4
. But we can obtain 53

4
this way: write out the division-with-remainder

of 23 divided by 4: 23 = (5 × 4) + 3, then from the quotient 5 and remainder 3, we

can construct the answer: 5 + 3
4
, which is of course 53

4
. We may paraphrase this process

by saying that there are 5 copies of 4 in 23, with a 3 left over, so that the answer of

23 divided by 4 is 5 + 3
4
. What the above passage from [PSSM] does is to mimic this

process in the context of the division of fractions. Thus, to divide 5
4

by 2
3
, we perform

something like the division-with-remainder by writing down

5

4
=
(
1× 2

3

)
+

7

12
11Or something like whole numbers. In mathematics, we have a name for these objects: Euclidean

domains.
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That is to say, there is a maximum of 1 copy of 2
3

in 5
4
, with 7

12
left over. Now, to imitate

the case of whole numbers, we are going to declare that the division of 5
4

by 2
3

is equal

to 1 + 7/12
2/3

. Unfortunately, this process gets stuck at this point because, whereas in the

preceding case of whole numbers we could rely on our knowledge of fractions to make

sense of the 3
4

in 5 + 3
4
, now we cannot make sense of the 7/12

2/3
in 1 + 7/12

2/3
because

what we set out to do was precisely to make sense of divisions such as 7/12
2/3

. In short, the

writers of [PSSM] used circular reasoning to explain the division of fractions.

The circularity would have been more prominently exposed had we considered a di-

vision such as 1
4

divided by 2
3
, because in that case there would have been no repeated

subtraction to begin with, and this attempted explanation of fraction division would

have run aground at the outset.

Let us now do the division of fractions correctly. The key point is that, so far as

division is concerned, there should be no conceptual difference between division among

whole numbers and division among fractions because both whole numbers and fractions

are part of the real numbers. (This is an example of the so-called longitudinal coherence

of the curriculum in [Wu1], where one may find a more extensive discussion of this

circle of ideas.) Therefore the meaning of division between fractions should be entirely

analogous to that among whole numbers, i.e., we can simply imitate what we have just

learned about the division of whole numbers. Life then becomes very simple: if A, B,

C are fractions and C 6= 0, then by definition

A
C

= B is exactly the same as A = BC.

At the risk of being redundant, let me repeat: in order to find out if it is true that
A
C

= B, by definition, all one has to do is to check if A = BC is true. For example, we

know
14
15
7
3

=
2

5

must be true because we can easily check that the corresponding multiplicative statement

14

15
=

2

5
× 7

3

is true.

More generally, if a, b, c, d are whole numbers and b, c, d are all nonzero, then by

definition, we get
a
b
c
d

=
a

b
× d

c
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because the corresponding multiplicative statement

a

b
=

(
a

b
× d

c

)
× c

d

is trivially true. Notice that we have just explained the invert and multiply rule.

This is all there is to the meaning of invert and multiply. With reference to item (a)

above, this explanation has nothing to do with sophisticated arguments about algebraic

rational expressions. In particular — and this is a point worthy of emphasis — it is not

beyond middle school students, at least not those who will take algebra in grade 8.

One reason we want to achieve a clear understanding of concepts (in contrast to

ambiguous verbal explanations) is that it always lead to greater power in problem solving.

Armed with this new understanding of what invert and multiply is about, let us begin

by redoing the preceding problem concerning ribbon and bows. If we can make N bows

of 3
4

of a yard from a 5 yard ribbon, then N of 3
4
’s is equal to 5. By our definition of

fraction multiplication in the last section, this is expressed as

5 = N × 3

4

By the definition of division, this is the same as

N =
5
3
4

and the invert-and-multiply rule gives immediately

N =
20

3
= 6

2

3
.

How to interpret this number 62
3
? The quoted passage implicitly floats the idea that the

use of invert and multiply is too mysterious for students to gain any “understanding”

of the number 62
3

whereas the method of repeated subtraction helps them to do that.

I am going to show you that the quoted passage is wrong on both counts, i.e., invert

and multiply gives the correct interpretation of the answer without any extracurricular

interventions, whereas the method of repeated subtraction would fail in general to yield

the correct answer to such problems. We start with 62
3
. Putting the original equation

5 = N × 3
4

and the answer N = 62
3

together, we get

5 = 6
2

3
× 3

4
=
(
6 +

2

3

)
× 3

4
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By the distributive law, this leads to

5 =
(
6× 3

4

)
+
(

2

3
× 3

4

)
This is then the explicit statement that 5 yards of ribbon is equal to 6 of the bows of 3

4

yard and an extra 2
3

of a bow of 3
4

yard combined. (Once more, we see the importance

of knowing multipliction before approaching division, as we have used the meaning of

fraction multiplication yet again to interpret 2
3
× 3

4
.)

Moral: the correct interpretation of the answer obtained by invert and multiply is

imbedded in the mathematics itself. All we have to do is to look inside the mathematics

for an understanding of the calculation.

So why is the interpretation of division as repeated subtraction not good enough?

Because in item (c) above, the fact that 1/2 yard of ribbon is 2/3 of a bow of length

3/4 of a yard was really the result of guesswork; no explanation was given and repeated

subtraction had no say in the matter. In mathematics, guesswork is simply not good

enough. To bring home this point, suppose we ask

how many bows of length 37
64

of a yard are there in a ribbon of length 5
18

yard?

Then there is no repeated subtraction to perform. But if we use invert and multiply,

then it is easy: If there are N bows of length 37
64

of a yard in 5
18

yard, then

5

18
= N × 37

64

so that (invert and multiply!)

N =
5
18
37
64

=
320

666
=

160

333
.

The reasoning that we just went through (which we now skip) says explicitly that there

are 160
333

of a bow of length 37
64

yard in a ribbon of 5
18

yard.

The limitation of viewing division as repeated subtraction is shown up in a different

problem:

How many 8
13

’s are there in 432
7
?

No one would dream of doing this problem by the tedious method of repeated subtrac-

tion, I believe. Using invert and multiply, this is easy (I will suppress the by-now familiar

details): from
432

7
8
13

= 70
19

56
,
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we conclude that there are 70 and 19
56

of 8
13

’s in 432
7
.

Invert and multiply furnishes a classic example of the confrontation between content

and pedagogy. Because division is, by comparison with the other arithmetic operations,

a subtle concept, the difficulty of teaching invert and multiply has led many to stop

looking into the mathematics and look for pedagogical solutions outside of mathemat-

ics instead. The quoted passage from [PSSM] is but one example of how the purely

pedagogical approach to invert and multiply can go awry. By taking the mathematics

seriously, we arrive at a different proposal for teaching invert and multiply. This al-

ternate proposal, one that is based solidly on an understanding of the content, is not

a quick fix because it requires a mathematically sound preparation for students in the

early grades on the division of whole numbers, and of course an equally sound teaching

of the concept of division in middle school. Rarely does a quick fix exist for any sub-

stantive issue in mathematics education. Nothing is easy, but it is better to meet the

difficulty head on than teach incorrect mathematics.

6 Epilogue

For ease of discussion, I have intentionally oversimplified the issue of teaching by sepa-

rating it into the pedagogical and content components. In reality, such a pure separation

does not exist. What is true is that there is usually an emphasis on one or the other.

If my talk is at all successful, then you will agree that the present preoccupation with

pedagogical techniques independent of content cannot go far. The central issue of math-

ematics education, at least in grades 5–12, is still mathematics. I hope I have given you

some illustrations of this point of view by showing how a deeper understanding of the

content can fundamentally alter a well-intentioned pedagogical approach to a topic. It

is my considered opinion that sound pedagogy can only be launched from the platform

of mathematical competence. Viable pedagogical options are only visible through the

lens of true mathematical understanding.

Let me conclude with the general observation that when mathematical difficulties

are not removed from lessons, discussions of pedagogical improvements are meaningless.

Great pedagogy lavished on incorrect mathematics makes bad education. Students do

not learn mathematics when they are taught incorrect mathematics.

Content dictates pedagogy in mathematics education.
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