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The teaching of fractions has been in crisis for over fifty years.

Many theories have been advanced, and many improvements

have been proposed.

Until recently, nobody seemed to notice that fractions have been

taught as poetry rather than as mathematics. This is almost a

contradiction in terms.

Mathematics from around grade 5 onward has to be precise

and literal for the purpose of error-free communication, but the

power of poetry is derived from ambiguity and evocativeness.



The need for precision in the mathematics of grade 5 onward

is generally not appreciated.

Students in grades 5–7 must learn fractions, and the concept of

a fraction is abstract compared with that of a whole number.

We must give students precise guidance for them to navigate

the abstractions.

Moreover, Grades 5–7 is roughly where the climb to algebra

begins. Students must begin to learn to rein in the relatively

informal mathematics education of the primary grades and learn

to express themselves with precision. For example, they must

learn to solve a quadratic equation exactly.

Let us see how the poetic approach to fractions affects student

learning from grade 5 onward.



Consider Hamlet’s comment on Denmark after his father’s death:

’Tis an unweeded garden

That grows to seed; things rank and gross in nature

Possess it merely.

Compare it with the definition of
3
4:

Take a pizza (or a fraction bar) and divide it into 4 equal

parts. Take 3 parts.



Now Hamlet did not mean that Denmark was a garden, only that

it was like a garden.

Likewise, 3
4 is not meant to be exactly “3 parts when a pizza is

divided into 4 equal parts,” only that it is like “3 parts when a

pizza is divided into 4 equal parts.”

Shakespeare could get away with the metaphor because patrons

of the theater do not as a rule ask, if they were to fertilize

Denmark, where to begin?

Unfortunately, we do ask how to divide 3/4 of a pizza by 7/5 of

a pizza, exactly. Very awkward. In other words, we want the

exact answer to 3
4 ÷ 7

5.



Mathematics cannot be done by using analogies and metaphors.

It requires knowing what every concept is exactly, not about

what it is like. We don’t ask: what is 3
4 ÷ 7

5 more or less like?

In addition, if analogy is used, who decides which analogy is

appropriate? Why are some reasonable analogies consider not

good enough?

For example, why not teach the addition of fractions by analogy

with the addition of whole numbers as “combining things”?

That is a very good analogy, and yet it is not used.



The use of metaphors in poetry is essential because poetry ex-

ploits the reader’s ability to make free associations, and each

reader presumably has a wealth of past experiences to draw from.

Ambiguity works to the poet’s advantage.

But when we introduce children to fractions, we cannot appeal

to their “wealth of experience in mathematics” because they

barely know whole numbers. We must be as precise as we can

to provide the guidance they need. All the more so because

we do not follow a vague definition with vague questions, but

instead demand precise answers from precise computations!

The VAGUE information we provide students does not sup-

port the PRECISE information we demand of them.



A friend of mine related to me her personal encounter with the

teaching of fractions:

You’re so right about the pizza model of fractions! Teresa has

now learned about decimals (she had no idea they were fractions)

so I asked her what was one tenth of her classroom pupils (they’re

20, so no danger it would not be a whole number). She was

totally surprised by my question and protested: “What a silly

question, how am I suppose to cut my classmates in slices!”

Teresa is an articulate nine-year-old girl who could put her finger

right on the button. However, millions of other children have

probably rebelled against this kind of teaching without being

able to vent their frustrations.



Another example that poetry does not need precision:

Shakespeare:

Shall I compare thee to a summer’s day?

Thou art more lovely and more temperate.

If this were mathematics, you’d say this doesn’t make any sense.

Indeed, what kind of summer’s day? Remember what Mark

Twain once said: “The coldest winter I ever saw was the summer

I spent in San Francisco.”

However, anybody with any sense would know that Shakespeare

had in mind a hot summer’s day, and I am not going to tell you

whether “hot” means 90◦ F or 100◦ F.



Now look at an analogous situation where a lack of precision

leads to nonlearning.

In one of the case books, there is the case of a fifth grade teacher

trying to teach the fractional relationship between the different

colored blocks in pattern blocks. Recall that the hexagon is

yellow, and that six green triangles make up a hexagon of the

same size:
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She wanted her students to write a fractional name for a green

triangle. Her instruction was that the yellow hexagon equals 1,

and that they should use the green triangles to make exactly the

same size and shape as the yellow hexagon.

Since six green triangles make a yellow, she told them that they

would use 6 as their denominator. She wrote “ 6 ”, and explained

that if they had just one green triangle, then 1 is the numerator.

She completed it to 1
6.

Then she held up 2 green triangles and said, “If yellow equals 1,

then how much is this?” The students first said, “Two.” Upon

being pushed, they said, “Two green triangles.” The result did

not vary with repetition. She was frustrated.



So you see that, whereas adults can take the intentional vague-

ness of Shakespeare’s metaphor in stride, the children were un-

able to fill in the gap created by the teacher’s lack of precision.

She did not have a clear conception of a fraction as a number,

and therefore her students did not get it either. They failed to

get the point that they had to use a number to describe the area

of two green triangles in terms of the area of the hexagon (set

to be 1).

They thought it was a game of of counting the number of green

triangles. It did not help that she wrote down the denominator

6 ahead of time.



A poet can be effective in using familiar-sounding phrases with-

out assigning them a precise meaning. A famous example is the

following two lines of John Keats:

“Beauty is truth, truth beauty,” — that is all

Ye know on earth, and all ye need to know.

We all think we know what “truth” is and what “beauty” is, and

who wouldn’t want to have both? To have them mentioned in

the same breath simply stirs the soul. We are thus predisposed

to accept them without asking too many questions.

The fact is that for two hundred years, people have vigorously

debated what Keats had in mind.



Now let us look at what happens in the teaching of fractions

when we make students feel that they know something and yet

not let them know exactly what it means.

The concept of a mixed number is usually brought up right

after fractions are introduced.

Sometimes a mixed number such as 11
4 is mentioned in passing

as one and a quarter pizzas, or sometimes it is simply said that

it is a mix of a whole number and a fraction with no further

explanation.



“One and a quarter pizzas” makes 11
4 sound entirely reason-

able, so students are lulled into a sense of complacency with the

concept. But how are pizzas going to help with

5
2

7
+ 13

3

4
or 5

2

7
× 13

3

4
?

The confusion arises from the fact that a mixed number is a

shorthand for the addition of the whole number and the fraction.

The above is nothing but

(5 +
2

7
) + (13 +

3

4
) and (5 +

2

7
) × (13 +

3

4
)

Therefore mixed numbers should not be introduced until they

can be precisely defined, after the addition of fractions has been

introduced.



Here is another example of how the use of imprecise but familiar-

sounding phrases hampers mathematics instruction. Consider

the concept of “percent”. The most common definition of per-

cent is “out of 100”.

The familiarity of the phrase “out of 100” is soothing, but does

it suffice for instruction?

In another case book, there is a case of a sixth grade teacher

trying to teach percent for “conceptual understanding” by the

use of manipulatives and visual diagrams. He gave his class a

diagram in which 6 out of 40 identical squares are shaded. The

problem he gave them: What is the percent of the area that is

shaded?



The kind of solutions he was looking for are all roughly of the

level that
6

40
=

3

20
=

5 × 3

5 × 20
= 15%

However, even for solutions as simplistic as this, most of his

students didn’t get it. My guess is that, if they had been brought

up on visual diagrams “out of 100”, they might not have thought

of computations.

Moreover, I believe that if we go strictly by the concept of “out

of 100” and only work with manipulatives and visual diagrams,

we cannot achieve much conceptual understanding of “percent”.



Consider, for example, a similar problem: If 6 out of 41 identi-

cal squares are shaded, what is the percent of the area that is

shaded?

A little reflection would reveal that, to the extent that 41 is

relatively prime to 100, nothing as vague as “out of 100”, ma-

nipulatives, or visual diagrams would help.

We must come to grips with what “percent” really means, pre-

cisely. For that, we need a correct definition.



Assume that the concept of division of fractions has been intro-

duced. A division such as 2/5
9/7 is called a complex fraction. In

this case, we call 2
5 the numerator of the complex fraction and

9
7 its denominator.

Because a whole number is also a fraction,
221

2
100 is an example of

a complex fraction. The common name for this complex fraction

is 2212 percent, or 2212%, as is well known.

More generally, a percent is a complex fraction whose denomi-

nator is 100. A percent is a number.



We also assume that multiplication of fractions has been defined:
5
7 ×

3
4 is by definition the fraction which is the totality of 5 parts

when 3
4 is divided into 7 equal parts.

In ordinary language, 5
7 × 3

4 is 5
7 of 3

4.

We can prove that 5
7 × 3

4 = 5×3
7×4. We call this the product

formula. (More of this later.)

Everything on this page is also true for complex fractions, e.g.,

if A
B and C

D are complex fractions, then A
B × C

D = AC
BD.



Now, strictly according to the definition, what is 221
2% of 37?

It is the totality of 221
2 parts when 37 is divided into 100 equal

parts. This is exactly the usual meaning of “221
2% of 37”.

Moreover, according to the product formula, this percentage is:

22
1

2
% × 37 =

221
2 × 37

100
=

1665

200
= 8

13

40



We can now tackle the original problem: If 6 out of 41 identi-

cal squares are shaded, what is the percent of the area that is

shaded?

The fraction of the area that is shaded is of course 6
41. The

problem asks that this fraction be expressed as number in the

form of N% for some fraction N . Thus we simply write down:

6

41
=

N

100
,

so that 41N = 600, and N = 1426
41.

This is NOT a rote skill. Without the concept of a complex

fraction, percent could not be realized as a number and the

equation 6
41 = N

100 would not even make sense.



The following problem shows the advantage of having a precise

definition of percent: 17 is what percent of 36?

Let N be the fraction so that 17 is N% of 36. By the defini-

tion of percent, we can directly translate the given data into

symbolic language:

17 =
N

100
× 36 ,

so that 36N = 1700. Thus N = 472
9.

Notice that the solution is entirely straightforward.



Observe that understanding “percent” rests on a complete un-

derstanding of the multiplication of fractions. We want to revisit

this concept.

Of the four arithmetic operations on fractions (+, −, ×, ÷),

multiplication is the most subtle, and is the cause of most mis-

conceptions, mainly because the product formula m
n × k

` = mk
n`

gives the misleading impression that multiplication is easy.

Education researchers on fractions are aware of the subtlety.

They probably gave up on treating fraction multiplication as

mathematics and decided to treat it poetically, in the sense of

resorting to the use of allusive language.



Here is one approach to the multiplication of fractions:

We know that teachers and most other adults in our country have

a limited understanding of the meaning of multiplication and di-

vision of fractions. . . . Teachers who are interested in chang-

ing this situation must first approach these topics themselves in

ways that are very different from all their previous experiences

with mathematics learning. They must completely reformulate

their ideas about teaching the topics. . . .

The medium for this rethinking is language. How can we think

about something for which we have no words? . . .



Now comes the mathematical discussion:

Multiplication of fractions is about finding multiplicative relation-

ships between multiplicative structures. When students partition

a continuous whole such as a circle, they actually find part of

parts in the process. In order to create fourths, for example, a

student first creates halves. The student then cuts the halves

in half to create fourths. In so doing the student can verbalize

that one-half of one-half is one-fourth.

This almost writes itself as free verse.



The ineffable meaning of

Multiplication of fractions,

Lies in multiplicative relationships

Between multiplicative structures.

Partition a continuous whole, a circle,

And thou shalt find part of parts.

To create fourths,

First create halves.

Then cut the halves in half,

To create fourths.

It thus comes to pass,

One-half of one-half is one-fourth.



To do mathematics, however, we need something more down-

to-earth.

As before, we define 5
7 × 3

4 to be the fraction which is the

totality of 5 parts when 3
4 is divided into 7 equal parts. We

usually express this as “5
7 × 3

4 is 5
7 of 3

4.”

We want to prove the product formula:

5

7
×

3

4
=

5 × 3

7 × 4



How to divide 3
4 into 7 equal parts?

Let us first tackle an easier problem: How to divide 7
4 into 7

equal parts? Answer: 1
4.

Similarly, if we want to divide 35
4 into 7 equal parts, one part

would be 5
4 because 35 = 7 × 5.

So if the numerator of 3
4 were a multiple of 7 (but 3 isn’t), one

could easily divide 3
4 into 7 equal parts.



However, even if 3
4 doesn’t have a numerator that is a multiple

of 7, we can force it to have this property because the theorem

on equivalent fractions allows us to change the fraction symbol

to 7×3
7×4.

Thus dividing 3
4 into 7 equal parts is the same as dividing 7×3

7×4

into 7 equal parts, and one part is therefore 3
7×4.

If we take 5 such parts, we get:

3

7 × 4
+

3

7 × 4
+

3

7 × 4
+

3

7 × 4
+

3

7 × 4
=

5 × 3

7 × 4

Thus we have proved 5
7 × 3

4 = 5×3
7×4.



The more prosaic approach to multiplication of fractions is suf-

ficient for the purpose of teaching fractions.

Analogies and metaphors have a place in mathematics. They

can be very helpful in the understanding of precise concepts and

reasoning. However, it is a mistake to allow them to replace

precise concepts and reasoning.

Let us hope that fractions will be taught with less poetry, but

with more emphasis on

precise definitions, and

precise reasoning.



Epilogue A treatment of fractions that conforms to the basic

requirements of mathematics and is usable in elementary schools

will be given in:

H. Wu, Understanding Numbers in Elementary Schol Mathemat-

ics, Amer. Math. Society, to appear in May, 2011.

In the meantime, a version that has been used for the professional

development of middle school teachers can be found at:

http://math.berkeley.edu/˜wu/Pre-Algebra.pdf

/~wu/Pre-Algebra.pdf

