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The curriculum of the middle grades revolves principally around the the following

three topics: rational numbers, beginning algebra, and basic geometry. I will attempt

to outline, with some details, what we want students to knows in each of these topics.

At the end, I will make a few comments on how far we have to go before we can hope

to implement these ideas.

Rational numbers The importance of rational numbers in the middle grades stems

from the fact that what students learn here about this topic would have to serve them

until at least the first two years of college. For the majority, much more is true because

what they learn in grades 5-7 would be all they ever know about rational numbers for

the rest of their lives. From this perspective, one can see all too clearly the difficulty

with the teaching of rational numbers in the middle grades, and it is this. At this

stage, students are not yet ready for the kind of mathematical sophistication that is

needed for the complete understanding of the rational numbers,1 and yet they must

learn enough about this topic in order to function in the upper grades or in society. The

tension between what is achievable with students at this level and what is mathematically

correct underlies the notoriety of rational numbers in middle school mathematics. This

∗Text of a presentation at the 2005 NCTM Annual Meeting in Anaheim, in April of 2005.
1In the sense that rational numbers form the quotient field of the integers, and are constructed by

taking equivalence classes of ordered pairs of integers.
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tension may be the reason why basic questions such as what is a fraction, or why does

negative times negative equal positive, are often left unanswered. I hasten to add that

all such questions can be answered satisfactorily in a way that is grade-appropriate.

The subject of fractions (which is the term I will use for nonegative rational numbers)

is known to be a main source of mathphobia. If this is not reason enough for us to teach

fractions better, let me cite another one: understanding fractions is the most critical step

in the understanding of rational numbers because fractions are students’ first serious

excursion into abstraction. Whereas their intuition of whole numbers can be grounded

on the counting of fingers, learning fractions requires first of all a mental substitute for

their fingers. They need to be clearly told what a fraction is. A fraction has to be a

number, and so the definition of a fraction as “parts-of-a-whole” simply doesn’t cut it.

Students have to be shown that fractions are the natural extension of whole numbers

so that the arithmetic operations +, −, ×, and ÷ on whole numbers can smoothly

transition to those on fractions. The fact that there is such a smooth transition is

certainly not common knowledge among teachers and students as of year 2005. See the

discussion of the longitudinal coherence of the curriculum in Wu [2002]. Right now, most

of our students are not even told what it means to multiply two fractions. The mournful

refrain of the British educator Kathleen Hart says it all: “How can you multiply two

pieces of pizza?” (Hart [2000]). Defining a fraction (or in fact any rational number) as

a point on the number line obtained by a partitioning process would serve admirably to

effect this transition. In case you are aghast at this suggestion, let me point out that

mathematics education is in a state of flux and you are encouraged to come up with a

better definition. But any (correct) definition is better than no definition at all, because

mathematics cannot proceed without precise definitions.

Students must also know how to fluently execute the four arithmetic operations on

fractions and, more importantly, know how to apply these operations to solve problems.

Allowing for the use of a four-function calculator, a student with a minimal degree of

computational fluency should see no difference, for example, between 2
3
+ 4

5
and 357

68
+ 17

29
.

She should also be able to compute the division

23
15
28
49

with no effort.

At the moment, the teaching of negative numbers is long on gimmickry and short

on substance. For example, students should be shown that the validity of “negative

× negative = positive” depends not on any cute looking patterns or seductive pseudo-
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reasoning. Rather, it rests squarely on the fact that we want the distributive law to be

true for rational numbers.

Algebra Students need to see introductory algebra as a natural extension of all

they have learned about rational numbers (Wu [2001]; Section 1 of Wu [2005a]). In

other words, introductory algebra is generalized arithmetic. This is one reason why we

must teach rational numbers better. Students should be gradually but systematically

acclimated to the use of symbols and to the concept of generality over a long period

of time; symbols and generality go together. Like cramming for an exam, the current

practice of stinting on the use of symbols before algebra and then suddenly throwing

lots of symbols at students when they begin the study of algebra is just bad educational

strategy. There are in fact plenty of opportunities for students to learn to use symbols

in the process of learning fractions (cf. the thesis of Darley [2005]). Needless to say,

such opportunity exists even before that. All you have to do is look at the Russian

texts of grades 2 and 3 (Askey, Milgram, and Wu [2005]). Currently, there is an effort

to put “algebraic thinking” into all the grades. If I understand this term correctly,

it means looking for patterns and working with manipulatives and technology. The

intention is laudable, but this kind of algebraic thinking is not enough to promote the

learning of algebra from a mathematical perspective; it must go further in the direction

of making use of symbols and computing with them whenever it is natural to do so. I

suggest, for example, that the next time you teach the primary grades, instead of writing

15 + = 22, try instead, “find a number x so that 15 + x = 22”. When teaching

the addition of fractions, tell students that the formula a
b

+ c
d

= ad+bc
bd

is valid for all

fractions a
b

and c
d
, and point out that this is an identity in whole numbers a, b, c, and

d (bd 6= 0). This is the kind of algebraic thinking students need.

Students’ discomfort with the use symbols contributes to their inability to solve word

problems. The critical process of transcribing verbal information into the symbolic one

becomes an insurmountable hurdle. Only extensive practice with the use of symbols can

cure this problem, and there is no better way for this practice to take root than to spread

it through all the grades. There should also be a concerted effort at the beginning of

algebra to give students plenty of practice to perfect this skill of transcription (cf. Section

2 in Wu [2005a]).

Students need to be totally at ease in moving between the geometric data of a straight

line and the algebraic data of a linear equation. This cannot happen if they are never

taught similar triangles before embarking on the study of linear equations and their
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graphs, and have never been exposed to the explanation of why the equation of a line

is linear and why the graph of a linear equation is a line. Currently, our curriculum,

be it reform or traditional or anything in between, does not allow students to learn

about similar triangles before taking algebra or during algebra. A high school teacher

once objected to a question proposed for a High School Exit Exam which asked for

the equation of the line passing through two given points. She said it it would be too

hard for her students, and a second teacher concurred. When asked what would make

it easier, they said “give nine or ten points instead”, because then students could do

guess-and-check better. So long as we continue to keep the interplay between the algebra

and geometry of a straight line a mystery, such anecdotes will continue to ring down the

ages. Compare the discussion in Wu [2005b].

The high point in the study of quadratic equations of one variable is the quadratic

formula, but what makes the formula possible is the technique of completing the square.

This is a basic technique in mathematics, and students need to be fluent with it. They

should also be shown its literal pictorial meaning (thanks to the Babylonian of thirty-

eight centuries ago) as completing a square-with-a-corner-missing to the whole square.

Like the multiplication table, the quadratic formula should be committed to memory.

It is not sufficiently emphasized that the quadratic formula makes all the exercises

in factoring trinomials trivial. While there are good mathematical reasons why fac-

toring trinomials with integer coefficients by mental math is a useful skill to have, it is

nonetheless true that the present orgy on factoring trinomials in many classrooms should

be toned down.

Geometry Geometry in K-12 mathematics is the quantitative study of the space

around us. Geometry in the middle grades is mainly concerned with two main topics:

mensuration formulas for length, area, and volume, and exploration of the concepts

of congruence and similarity. The concept of congruence underlies the mensuration

formulas, but unhappily, this fact has been kept from middle school students for far too

long.

There are two major problems concerning the teaching of the well-known mensuration

formulas, e.g., areas of triangles and circles and volumes of rectangular prisms. First,

there is insufficient attention given to a definition of length, area, or volume, and to

the similarity between these definitions. Second, not enough emphasis is given to the

reasoning that leads to these mensuration formulas. Note that because we are here

talking about the middle grades, a completely correct definition of length, etc., is not at
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issue here. Nevertheless, students need definitions that are essentially correct. To find

ways to put forward essentially correct definitions that are usable for school mathematics

ought to be the basic obligation of mathematics education, but I am rather under the

impression that this basic obligation is not being met very well. In fact, the overall

absence of definitions in school mathematics is a scandal, and there is no time to waste

in putting this scandal behind us.

This may be the place for me to reiterate the importance of definitions in mathemat-

ics. Unless I am completely off base, and I am not, this importance is news to most of

our teachers. I already touched on the need of a precise definition for fractions earlier.

But in geometry, definitions are especially critical because at least the formal reasoning

(in contrast with intuitive arguments) about a geometric configuration has to be con-

ducted entirely on the basis of these definitions. Any lack of precision in the definitions

would therefore result in the loss of information about the original configuration. In the

case of formulas about length, area, and volume, for example, it is not possible to prove

these formulas without precise definitions of length, area and volume. One can hardly

over-emphasize this message.

Right now, many of our teachers have never been shown why definitions are im-

portant, because our pre-service professional development is in general that defective.

School textbooks pay lip service to the need of definitions by attempting to give some.

Unfortunately, these so-called definitions are usually not correct and, even when they

are correct, they are not put to use so that they may as well not have been given.

For example, it is routinely asserted that the solution of a pair of simultaneous linear

equations in two variables is the point of intersection of the graphs of the equations in

question. This is actually a theorem, but since the graph of an equation and the solution

of an equation are concepts used informally all the way through, this theorem has no

hope of ever being proved. In any case, this proof is not to be found in most of these

texts.

In the summers of 2003-04, I happened to have taught teachers in both California

and Australia, and it occurred to me to ask them if they knew the difference between a

definition and a theorem. The answer was 100% negative in both cases. What have we

done to our teachers?

There is no better illustration of the need of definitions than the case of “congruence”

and “similarlity”. The usual definition of congruence is same size and same shape, and

that of similarity is same shape but not necessarily the same size. These sound very

attractive until we try to use them explain in what way a photograph of a person is
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similar to the same photograph shrunk to half its size. Of course it is impossible.

In the middle grades, it is eminently possible to teach congruence and similarity in

the plane correctly and effectively. We begin with the concepts of rotation, translation,

and reflection. These used to be difficult concepts to teach, but with the availability

of transparencies and overhead projectors, students can get to know them via hands-on

activities. A congruence is then defined to be a composition of rotations, translations

and reflections. Such a definition is correct, and grade-level appropriate.

Next, dilation. For simplicity, we define it using coordinates (but this is not neces-

sary). A dilation with center at the origin O and scale factor r (r 6= 0) is a transformation

of the plane that sends a point (a, b) to the point (ra, rb). So for instance, (0, 1) goes to

(0, r), i.e., it changes the distance of every point from O by a factor of r. This concept

is a Godsend in the teaching of mathematics because I do not believe there is another

opportunity quite like this for the teacher to both astound the students and teach sub-

stantive mathematics at the same time. For example, ask students how to shrink a

wiggly curve to half the size, and most of them wouldn’t know where to begin. Now

you just pick a random point and use that as your center O, and start shrinking a few

well-chosen points on the curve to half the distance (relative to O) to get the rough

contour of a new curve. By increasing the number of points, students gets to see the

emergence of the shrunken curve. They usually find this demonstration truly impressive.

Once they buy into this concept of dilation, they are ready for the definition two figures

to be similar if one figure is congruent to a dilated version of the other. Incidentally, this

definition of similarity puts in evidence the dependence of the concept of similarity on

the concept of congruence. One should not, therefore, try to introduce similariy ahead

of congruence, as it is sometimes done.2

Certainly, this definition of similarity has much greater impact, and infinitely more

mathematical substance than “same shape but not necessarily the same size”.

There are at least three reasons why the teaching of geometry in the middle grades

must improve. The first has already been mentioned in the discussion of algebra: without

a thorough grounding in similar triangles, the teaching of the graphs of linear equations

can only proceed by rote. A second one is that we cannot explain to students the mean-

ing of length, area, etc., if we do not have a mathematical definition of congruence in

the first place. Indeed, the measurements of length, area, etc., must satisfy the basic

requirement that congruent sets have equal measurements (of length, area, or volume,

2The reason this is done is based on the best of intentions: similarity is more common in real world
situations than congruence, so why not teach similarity first? But as we have so often observed, good
intention is not enough in mathematics education.
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whichever is applicable). Finally, without a precise definition of similarity, your favorite

test question of what happens to the area of a polygon when each side is expanded

by a factor of 3
2

does not even make sense. Unhappily, for a very long time now, our

students have been forced to answer questions about things that do not make sense to

them because these things have never been properly explained to them. It is sobering to

realize that mathematics education has sunk this low.

Let us bring closure to this discussion of what students in the middle grades ought

to know by putting it in the context of the available textbooks. Are there any textbooks

that come close to helping us realize the preceding vision? To my knowledge, the answer

is sadly an emphastic No. Out there there are textbooks of all sizes and styles: tradi-

tional, reform, New Math, New New Math, etc. None measures up, and upon closer

examination, they fail in different ways. Here failure refers not to defective pedagogical

conceptions but to defective presentations of the substance of mathematics. One can get

an idea of this failure from the ample references to some of these mathematical defects

in the preceding discussion. As we know, the Math War was precipitated by fights in

school districts over textbook adoptions, and each side of this war wanted to claim that

nothing but the textbooks it favored would do. While each side had some cause, ulti-

mately, one must say that such fierce loyalty to any of these flawed materials is uncalled

for in the face of their mathematical flaws.

I believe it is time for us all to step back and take stock of the cold reality: for decades,

we have failed collectively to produce a reasonable textbook series for our children,3 and

it is time for us to atone for our sin. Fighting is not the correct method of atonement.

What is needed is a joint effort, by both the mathematics and education communities, to

create some usable textbooks. Neither side can do it alone. At the moment, the need of

this constructive effort is unfortunately drowned out by shrill rhetoric from both sides.

Let us do better in the future.
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