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Abstract. For better school mathematics education, we need teachers

who know correct mathematics and can teach correct mathematics. In

year 2019, it is difficult to find such teachers not because of any fault of

theirs but because of our systemic negligence. We explain how this situa-

tion came about and make some recommendations on what kind of profes-

sional development may effect some changes for the better. However, the

2011 IES impact study on inservice mathematics professional development

seems to throw cold water on the very idea that inservice professional de-

velopment for teachers can result in improved student achievement. We

examine the design of the professional development in that impact study

and explain why its conclusions may be flawed.

Keywords. Common Core State Standards of Mathematics. Textbook

School Mathematics. Professional development. Reasoning. Definitions.
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1 Introduction

We all want to improve school mathematics education, but before making any rec-

ommendations on how to take it to the next level, we would do well to first find

out where we stand. The answer: not in a good place. For the past five decades or
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so, the mathematics we teach in school has been mostly flawed and unlearnable1.

For example, the fractions that students have to compute extensively with from

grade 5 to grade 12 are supposed to be thought of as pieces of pizza. The result-

ing fraction phobia has been something of a national pastime for decades (see, e.g.,

https://www.gocomics.com/peanuts/1966/04/21). Another example: we do not

make any effort to teach students proofs (reasoning) in the K-12 curriculum outside

the high school geometry course, and yet in that one geometry course alone, students

are suddenly called upon to prove everything—no matter how trivial or boring—on

the basis of a collection of new objects called "axioms". The situation would not be as

bleak if we had educated our mathematics teachers properly so that they could help

smooth students’ learning path along such a rugged obstacle course, but we haven’t.

Since teachers are only equipped with this body of flawed and unlearnable mathemat-

ical knowledge, they inevitably inflict the same flawed and unlearnable mathematical

knowledge on their students. So the vicious cycle continues to this day.

Obviously, two things must be in place before there can be any improvement

in school mathematics education: a correct and learnable version of mathematics is

made available in textbooks to students and a corps of teachers who are capable of

teaching the same. These are the tasks before us, and they have recently acquired in-

creased urgency because of the advent of the CCSSM (Common Core State Standards

for Mathematics, [CCSSM]). The mathematics advocated by the CCSSM represents

a first—but major—step towards meeting the goal of being correct and learnable,

so the need for better school textbooks and teachers who are mathematically more

knowledgeable can no longer be put off to the distant future.

To achieve the first goal of getting better school textbooks, some recent devel-
1We use "unlearnable" in this article to mean "unlearnable by a majority of students". We note

that, in this case, learning mathematics includes learning how to reason; see Section 3 below for the
fundamental principles of mathematics.
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opments have given us hope, but in any case, there is now a detailed mathematical

guide on what constitutes correct and learnable school mathematics. To achieve the

second goal about a corps of mathematically competent teachers, we need a serious

commitment to content-based PD (professional development) to meet this problem

head-on. However, two large-scale impact studies of PD for teachers carried out

in the past decade by IES (the Institute of Education Sciences) have raised serious

doubts about the ability of content-intensive PD for inservice mathematics teachers

to improve student learning (see Garet et al., 2011 and Garet et al., 2016). We are

therefore forced to take a close look at this claim by the two IES studies. In our view,

the claim is not supported by the available evidence, and we will make some effort

to explain why not. Along the way, our explanation will also suggest the kind of PD

that may be more likely to produce mathematically knowledgeable teachers who can

improve student learning.

This article will expand on the preceding rather cryptic statements. A brief out-

line follows. Section 2 gives a description of the flawed and unlearnable body of

knowledge—what we call TSM (Textbook School Mathematics)—that has dominated

school mathematics education for the past half century. Section 3 introduces the

Fundamental Principles of Mathematics, which are the sine qua non of mathematics.

School mathematics that respects these fundamental principles will be called PBM

(principle-based mathematics, see Poon, 2014), and we will explain why PBM, be-

cause of its transparency, is learnable. In Section 4, we briefly discuss the situation

regarding school textbooks that respect PBM. In Section 5, we give a fairly detailed

discussion of the kind of PD needed to produce inservice teachers who can teach

PBM and of the obstacles that stand in the way of implementing such PD. Section

6 presents an in-depth analysis of the aforementioned 2011 IES impact study and

explains why its PD could not have produced teachers capable of teaching PBM: the

PD did not help them overcome the handicap of knowing only TSM but not correct
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mathematics. The last section offers a variety of comments, including the need for

"mathematics teachers" in elementary school and what may be preventing effective

preservice PD from becoming a reality on university campuses.

2 Mathematical engineering and TSM

To understand the kind of "mathematics" that has dominated school mathematics

education for the past fifty years or so after the demise of the New Math around 1970,

we need to step back to get some perspective on the nature of school mathematics

and the overall state of school math education.

School mathematics is not part of mathematics proper—the mathematics we teach

in universities and use in science and mathematics research—but is, rather, a par-

ticular version of mathematics that has been customized for consumption by K–12

students (see Wu, 2006). This is analogous to the case of electrical engineering, which

is not part of physics but is a customized version of it for the purpose of creating elec-

trical and electronic products to meet humans’ everyday needs. It is in this sense

that school mathematics is a product of mathematical engineering, and a good part

of school mathematics education is just mathematical engineering (Wu, loc. cit.). Of

the need to customize university mathematics for consumption in K–12, there can be

no doubt. After all, we do not introduce fractions to elementary students as the posi-

tive elements in the quotient field of the ring of integers. Rather, we directly develop

fractions from whole numbers using the number line (Jensen, 2003, Wu, 1998, 1999a,

and 2011a); this will be discussed in Subsection 3.2. Similarly, in K–12. a line in the

plane is not a linear map from R to R2 but the unique curve joining any two of its

points as specified by Euclid’s first postulate.2 And so on.

This engineering takes many forms. Sometimes it recasts the whole concept in
2Nevertheless, some recent publications have done just that: defining a line in the plane as the

graph of an equation 𝑦 = 𝑚𝑥+ 𝑏. See, e.g., page 711 of Billstein-Liebeskind-Lott, 2007.
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a different but equivalent setting, as in the case of fractions and rational numbers.

Sometimes it makes use of advanced theorems without any proof (so long as there

is no circular reasoning), such as the fundamental theorem of algebra, the Jordan

curve theorem for polygons, or the existence of the exponential function 𝑒𝑥. At other

times it simply leaves out topics that are too conceptually sophisticated, such as the

structure of the real numbers3 or the concept of continuity. But regardless of the

engineering decisions, there will always be good and bad engineering. In the same

way that bad engineering in electrical engineering produces electronic gadgets that

are hazardous to users, bad mathematical engineering produces a body of mathemat-

ical knowledge for K-12 that is unlearnable, basically because it is often wrong as

mathematics. The mathematical knowledge that has dominated school mathematics

education for the past five decades is unfortunately one example of what bad math-

ematical engineering has wrought. We call it TSM, Textbook School Mathematics,

because its most complete realization resides in all the standard school mathematics

textbooks and almost all the textbooks for mathematics teachers’ professional devel-

opment (see Askey, 2018, Baldridge, 2013, Douglas, 2015, Cuoco-McCallum, 2018,

Wu, 2011c and 2018).

Although TSM looks superficially like mathematics, it differs from mathematics

in important ways, especially in its lack of precise definitions and reasoning. TSM

is not concerned with students understanding concepts or developing a capacity for

reasoning, but instead focuses on getting right answers to problems that TSM sees fit

to pose. To this end, TSM offers students a set of procedures, which, when followed

conscientiously, lead to the right answers to these problems. To make the procedures

more attractive to students, TSM uses only intuitive language to describe the concepts
3This particular engineering decision makes a tremendous impact on the school curriculum be-

cause, as a result, the principal number system in K–12 is actually the rational numbers Q and not
the real numbers R. This is the reason why fractions are so important in K–12.
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to make students believe that they "get it". The absence of precise definitions—and

the attendant absence of reasoning—in TSM is therefore part of the design.

We must confront TSM directly because of its tenacious and pervasive hold on

school mathematics education. It is the mathematics used by teachers and education

researchers in their work, and its omnipresence can be easily explained. Teachers and

educators4 learned TSM in their K-12 years, and when they were students in institu-

tions of higher learning, they learned mainly about the pedagogical issues of the K–12

curriculum. On the rare occasion that they got to take a course on school math-

ematics, almost all the textbooks for such courses—as mentioned above—consisted

of little more than polished presentations of TSM. Once teachers and educators be-

gin their professional lives, the mathematics they deal with is once again TSM. This

is especially true for teachers because textbooks are "the authority on knowledge

and the guide to learning . . .many teachers see their job as just ‘covering the text’ "

(Romberg and Carpenter, 1985). We therefore have a vicious cycle that reinforces

the dominance of TSM in American school mathematics education, including educa-

tion research. Thanks to this well-established recycling program, it would be fair to

say that TSM is now part and parcel of the mathematics education literature. The

article of Armstrong and Bezuk, 1995, illustrates this point very well. These authors

discuss the difficulty teachers have trying to teach the multiplication and division of

fractions in middle school. They observe that teachers teach these concepts procedu-

rally (without reasoning) not because they intentionally want to "withhold conceptual

understanding from their students", but because

It is quite possible that the teachers do not know that a conceptual base

for multiplication and division of fractions even exists. Nothing in their

mathematics learning experiences would have provided a hint of that ex-
4We use the term "educators" to refer to university faculty in schools of education.
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istence. (loc. cit., page 91)

From our perspective, what this says is that most teachers have been denied the

opportunity to learn a correct approach to the multiplication and division of fractions

simply because all they have access to is TSM.

2.1 Some examples of TSM

Some examples will clarify why we object to TSM.

Example 1. TSM explains equivalent fractions by using what is often called the

Giant One. For example, to show 3
2
= 12

8
, TSM reasons as follows:

3

2
=

3

2
×1 =

3

2
× 4

4
=

3× 4

2× 4
=

12

8
(1)

This "reasoning" is probably too well-known to require any comments. Formally, the

starting point of this "reasoning" is that 3
2

and 12
8

are fractions, and the conclusion

is that the two fractions are equal.

From the outset, this "reasoning" faces two insurmountable obstacles: TSM has

no precise definition of a fraction and, therefore, it is unclear what it means for

two fractions to be equal. So TSM begins with a vague hypothesis and arrives at a

conclusion that is equally vague. Hardly an ideal setting for doing mathematics. Yet,

the greater obstacle is the use of fraction multiplication in this attempted "proof".

Since the concept of equivalent fractions appears almost as soon as fractions are

introduced, before students get to know how to add or multiply them, fractions are

not ready to be multiplied in this argument. In this light, the transgression implicit

in the first step, 3
2
= 3

2
× 1, seems relatively harmless because "1 times anything is

the thing itself". The key step in equation (1) that

3

2
× 4

4
=

3× 4

2× 4
,
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is, however, totally out of place because the validity of the product formula that says
𝑎
𝑏
× 𝑐

𝑑
= 𝑎𝑐

𝑏𝑑
(for any positive integers 𝑎, 𝑏, 𝑐, and 𝑑) itself depends on the use of

equivalent fractions (see pp. 62-63 of Wu, 2016a). Therefore, this "proof" in TSM is

guilty of circular reasoning at the very least.

TSM’s inability to define what it means for two fractions to be equal also plays a

role in the next example.

Example 2. The article of Otten et al., 2010, tries to give a demonstration

of the cross-multiplication algorithm (CMA): If two fractions 𝑎
𝑏

and 𝑐
𝑑

are equal,

then 𝑎𝑑 = 𝑏𝑐. Because the authors were working within TSM, they had no precise

definition of a fraction at their disposal, so they made up an ad hoc definition of

equality for fractions by saying that 𝑎
𝑏
= 𝑐

𝑑
means that there is a nonzero whole

number 𝑘 so that 𝑐 = 𝑘𝑎 and 𝑑 = 𝑘𝑏 . Then they used this definition of "equal

fractions" to prove the theorem. The fact that this definition of equality is incorrect

(e.g., 6
9
= 14

21
, but there is no whole number 𝑘 so that 14 = 𝑘× 6 and 21 = 𝑘× 9) and

that such a hypothesis trivializes the theorem is almost beside the point here. What

is striking is that we get to witness the struggle the authors were going through in

trying to break free from TSM, and how TSM ultimately defeated them.

Incidentally, CMA should be taught in grade 5, not long after the theorem on

equivalent fractions has been proved, and it (together with its various extensions)

belongs in the survival kit of every student and every teacher in K–12.

Example 3. What does it mean to add two fractions such as 3
8
+ 5

6
, and what is

the sum? TSM provides no answer to the first question; for the second, it prescribes

the following procedure: Get the least common denominator (LCD) 24 of 8 and 6

and observe that 24 = 3× 8, 24 = 4× 6. Then add as follows:

3

8
+

5

6
=

3× 3

3× 8
+

4× 5

4× 6
=

9 + 20

24

In terms of students’ mathematics learning, one has to take note of the fact that when
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elementary students encounter the addition of fractions for the first time, they expect

that it will be more or less the same as the addition of whole numbers, i.e., addition

is "putting things together". However, not only is there no indication in TSM that

adding fractions has anything to do with "putting things together", but there is also

nothing in the preceding procedure—LCD and all—to suggest any connection with

"putting things together". TSM makes learning how to add any two fractions more

complicated and difficult than it needs to be.

Example 4. What does it mean to multiply two fractions such as 2
3
× 5

8
and

what is the product? Again TSM has nothing to say about the first question, and it

answers the second by declaring that fractions are multiplied by the following rule:
𝑎
𝑏
× 𝑐

𝑑
= 𝑎𝑐

𝑏𝑑
for any whole numbers 𝑎, 𝑏, 𝑐, and 𝑑 (with the understanding that 𝑏𝑑 ̸= 0).

It then follows easily that the preceding product is equal to 10
24

. No explanation is

given for this rule, but there is usually some effort to make this rule seem reasonable

by discussing the special case where 𝑏 = 1 (i.e., a whole number multiplies a fraction)

and also the special case where 𝑑 = 1 and 𝑏 divides 𝑐 (i.e., a fraction multiplies a

whole number which is a multiple of the denominator of the fraction). How then do

we use multiplication in word problems? Again, do it by rote: when the word "of"

appears, it means "multiply" (see Moynahan, 1996).

Example 5. TSM introduces the concept of a mixed number right after the

definition of a fraction—but before the addition of fractions is discussed. Thus, 2 3
4

is, by definition, "2 and 3
4
". TSM also explains the conversion of mixed numbers to

improper fractions by rote, e.g.,

2
3

4
=

(2× 4) + 3

4
=

11

4

This procedure has to be done by rote because of TSM’s refusal to define a mixed

number as the sum of a positive integer and a proper fraction, and that, for example,

2 3
4

is the shorthand notation for 2 + 3
4
. Notice that the word "and" has been pur-
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posely used to hide the fact that the addition of fractions is involved, an inexcusably

bad piece of mathematical engineering. If mixed numbers were introduced after the

addition of fractions, they would be a perfectly simple topic to learn.

Example 6. TSM considers finite decimals to be a different kind of number from

fractions and it teaches finite decimals on a parallel track, independent of fractions.

For example, a finite decimal such as 2.307 is defined to be "2 and 3 tenths and 7

thousandths". Once again, the word "and" is purposely used to hide the fact that

the addition of fractions is involved, so that 2.307 is actually the following sum of

fractions,

2 +
3

10
+

0

100
+

7

1000

So TSM knows that a finite decimal is a fraction, but nonetheless tries to hide it. Bad

mathematical engineering again. Such an approach to the teaching of finite decimals

has produced misconceptions that are legendary (see, for example,

https://tinyurl.com/y6k59uqp).

These examples are cited for their relevance to our discussion, but we must em-

phasize that they do not come close to exhausting the sins of TSM. A few other

examples are the obsession in TSM with so-called order of operations, which elevates

a notational convention to a major topic in middle school mathematics, or the use of

FOIL in TSM to expand the product of two linear polynomials, or the convention in

TSM geometry that precludes a square from being a rectangle, an equilateral triangle

from being an isosceles triangle, a parallelogram from being a trapezoid, etc. There is

another glaring defect that should not be overlooked: the cavalier way TSM handles

real numbers. In middle school, irrational numbers begin to encroach on many math-

ematical discussions because numbers such as 𝜋 and square roots of whole numbers

can no longer be avoided. Real numbers are not the province of K–12 mathematics,

granted, but when students are asked to believe—without a word of explanation—that
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√
2 ·

√
3√

2
=

√
3 because of the "usual" cancellation law for fractions (whose numerators

and denominators are whole numbers), things clearly have gotten out of hand.

In summary, TSM represents a major transgression against what is acceptable in

mathematics.

2.2 The neglect of definitions in TSM

To get an idea of the scope of TSM’s devastation of school mathematics, it may be of

some interest to see at least a partial list of the fundamental mathematical concepts

in K-12 that are either not defined, or defined incorrectly in TSM:

∙ the remainder in the division-with-remainder of whole numbers;

∙ fraction; equality of fractions; one fraction being bigger or smaller than another;

addition of fractions; multiplication of fractions; division of fractions;

∙ finite decimal; equality of decimals; one decimal being bigger or smaller than

another; addition of decimals; multiplication of decimals; division of decimals;

∙ ratio; percent; rate; constant rate;

∙ expression, equation; graph of an equation; graph of an inequality; half-plane;

∙ slope of a line;

∙ the 0-th power of a number, negative power of a number;

∙ polygon, regular polygon, parabola;

∙ congruent figures; similar figures; scale-drawing;

∙ length of a curve; area of a plane region; volume of a solid.
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Because reasoning is impossible without definitions, TSM has to teach the skills

related to all the concepts on this list entirely by rote. For example, because there is

no definition for either the "graph of a linear inequality in two variables" or a "half-

plane", there is no explanation in TSM for the fact that the graph of a linear inequality

in two variables is a half-plane. The absence of precise definitions for fraction, decimal,

ratio, percent, and rate will be particularly pertinent to the discussion of the PD

program of the 2011 IES impact study (mentioned in the Introduction) in Section 6.2

below.

Beyond its failure to define key concepts, TSM also does great harm to mathemat-

ics learning by introducing spurious concepts, notably "variable" and "proportional

reasoning". It is not difficult to see that neither can be defined in a way that makes

any sense as mathematics, but if a fuller explanation is needed for why these are not

mathematical concepts, see Section 3.2 of Wu, 2018. (One can find a more detailed

discussion of "variable" in pp. 2-3, 28-29, 38-39 of Wu, 2016b, and of "proportional

reasoning" in Section 7.2 of Wu, 2016b.)

3 Fundamental principles of mathematics and PBM

Thus far, we have criticized TSM for its many mathematical flaws, and we have re-

ferred vaguely to the need for correct and learnable mathematics in the classroom.

Now it is time to explain in greater detail what "correct and learnable" school math-

ematics is.

3.1 Fundamental Principles of Mathematics

First, consider the following five Fundamental Principles of Mathematics:

(I) Every concept has a precise definition.

(II) Every statement is supported by reasoning.
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(III) Precision attends every statement.

(IV) The progression from topics to topics is coherent.

(V) The progression from topics to topics is purposeful.

It will be clear from the following discussion that all five overlap each other and that

the first three form a close-knit unit. The examples of the last section illustrate the

fact that TSM violates every one of these principles, but we will provide more of such

examples below.

These principles form a minimal set of characteristic properties of mathematics,

and any mathematical exposition of that violates any one of these principles is not

a faithful representation of mathematics. For our present purpose, we call school

mathematics that respects these five fundamental principles PBM (principle-based

mathematics; this term was coined by Poon, 2014). Thus PBM is a body of knowl-

edge that is consonant with both the progression of the K-12 school mathematics

curriculum and the fundamental principles of mathematics. Henceforth, we will use

PBM as a shorthand for correct and learnable mathematics.

We now explain the preceding fundamental principles from the specific vantage

point of learning school mathematics.

(I) The need for precise definitions stems from the fact that the learning of math-

ematics involves the learning of many new concepts. A precise definition of a concept

tells students what it is (a number? a pair of numbers? a function? an equality? a

geometric figure? etc.), and what properties it is assumed to possess. From a ped-

agogical perspective, the purpose of having precise definitions is to lighten students’

cognitive load by clearly setting forth—for the purpose of learning—everything they

need to know about the concept in question. A precise definition of a concept elimi-

nates second-guessing: it assures students that they are already in possession of all

they need to know for any reasoning involving this concept, no more and no less.
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This is how mathematics works. There is no need for students to wonder whether

the textbook and the teacher have something up their sleeve that is not being shared

with them.

To understand what this means, suppose a fraction is defined to be like a piece of

pizza. But every student knows that the metaphorical piece of pizza will inevitably

turn into something else at a moment’s notice. After all, if TSM asks them how long

it will take a faucet to fill a tub of 571
2

gallons given that the rate of the water flow

is a constant 142
3

gallons per minute, their common sense would tell them to forget

whatever has been taught about fractions-as-pizzas and, instead, concentrate on their

rote skills. This illustrates how students in TSM are put in a state of constant distrust.

How can real learning take place under the circumstances? Worse, if a concept such

as the division of fractions is taught without a definition, students are left to cope

with problems about fraction division without knowing what they are doing. This is

why we have "ours is not to reason why, just invert and multiply" and the attendant

fraction phobias.

Having a precise definition of a concept—and consistently basing any reasoning

involving this concept only on what is in the definition—is therefore a necessary first

step to build trust and make it possibly for students to learn about reasoning with the

concept. The precise definition eliminates any need for students to constantly look

over their shoulders and try to guess what additional information about the concept

may be coming their way.

Two further comments about definitions will round out the picture. The first is

that, insofar as a definition is supposed to inform students of everything they need to

know about a concept, the need for simplicity in a definition should be obvious. For

example, consider the following "definition" of a right triangle: it is a triangle so that

one of its angles is 90∘ and so that if 𝑎, 𝑏, and 𝑐 are the lengths of its sides and 𝑐 is

the largest, then 𝑐2 = 𝑎2 + 𝑏2. Such a "definition" is not wrong in a formal sense, but
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it clearly fails to be informative because students would wonder whether there are

any "right triangles" in this world that can meet both requirements. After all, what

is the equality 𝑐2 = 𝑎2 + 𝑏2 all about? If students’ first reaction to this definition is

one of disbelief, how to convince them to learn about right triangles? Therefore, we

have to pare such a definition down to "a right triangle is a triangle so that one of

its angles is 90∘" and then show how to use reasoning on the basis of this definition

to prove the equality 𝑐2 = 𝑎2 + 𝑏2.

A second general comment about definitions is that the connection between precise

definitions and reasoning—to the effect that any reasoning about a concept must be

based only on what is contained in the definition—seems to have stayed under the

radar in the mathematics education literature for the past few decades. This could

be because of the dominance of TSM, which considers "definitions" to be largely

superfluous and completely separate from the many rote-learning rules that make up

TSM.

(II) We have just seen that having precise definitions is not an end in itself but,

rather, the means to an end, the end being to make reasoning possible. Reasoning

is the lifeblood of mathematics; there is no difference between reasoning and what

is called problem solving in the education literature5 when the latter is correctly

interpreted. However, for the purpose of mathematics learning, reasoning plays the

pivotal role of serving as the glue that connects concepts and skills. It is well-known

that such connections make mathematics more learnable than a collection of concepts

and skills that are memorized by rote (see pp. 118-120 of National Research Council,

2001 for the large body of research evidence supporting this claim). Another way that

reasoning helps to make school mathematics learnable is that it empowers all students
5Problem solving is currently the main goal of school mathematics education in certain circles. It

is well to note that there is no way to get students ready for problem solving (i.e., reasoning, which
is the second fundamental principle of mathematics) without the help of the other four fundamental
principles.
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to decide for themselves whether what they are doing is correct or not without having

to submit themselves to the authority of their teacher or textbook. Learning how

to reason therefore enhances students’ self-confidence and their disposition6 toward

learning, which will in turn generate more learning.

(III) It is a truism that precision minimizes misunderstanding in teaching and

learning. In the case of mathematics, however, we can be more specific: without

precision, learning about reasoning becomes well-nigh impossible. For example, a

typical definition of the division of fractions in TSM is the following:7

Division and multiplication are inverse operations. Inverse operations

are operations that undo each other.

These sentences sound plausible, but ultimately make no sense because multiplication

sends two numbers, e.g., 2 and 3, to a third number (2×3 = 6 in this case). Similarly,

division sends two numbers, e.g., 6 and 3, to a third number (6÷ 3 = 2 in this case).

So start with 2 and 3 (let us say), multiplication sends them to 6. Now how to "undo"

6 to send it back to 2 and 3 by division? If the definition does not make sense, how

can we teach students to reason about fraction division using the definition?

A little bit more attention to precision would likely have averted this travesty by

rephrasing the preceding "definition" as follows: if a fraction 𝑎
𝑏

is fixed, then dividing

it by a nonzero 𝑐
𝑑

yields a fraction so that, when the latter is multiplied by 𝑐
𝑑
, we get

back 𝑎
𝑏
.

Perhaps a more telling example of the need for precision is the way CMA (cross-

multiplication algorithm) is used in TSM. Let 𝑥 be a number that satisfies a propor-

tion:
4.6

134
5

=
𝑥

81
2

(2)

6Compare the fifth strand of mathematical proficiency—productive disposition—in Chapter 4 of
National Research Council, 2001.

7This is taken directly from a textbooks.
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Then, a standard procedure to solve for 𝑥 is to use CMA to get 134
5
· 𝑥 = 4.6 · (81

2
),

thereby obtaining 𝑥 = 25
6
. This solution method has unquestioned authority until

we stop to ask: why is CMA applicable to equation (2)? Here, we need the fact

that 𝑎
𝑏
= 𝑐

𝑑
implies 𝑎𝑑 = 𝑏𝑐. In TSM, CMA is either not proved (see Example 2

in Sub-section 2.1), or proved only for fractions 𝑎
𝑏

and 𝑐
𝑑
, in which case, 𝑎, . . . , 𝑑

are whole numbers. The numerators and denominators in (2) are definitely not whole

numbers, and it is shocking to realize that TSM never proves the CMA when the

numbers involved are not whole numbers! How then can we inspire students to learn

how to reason when they consistently bear witness to the fact that TSM plays fast

and loose with results obtained by reasoning? What is the point of reasoning?

Such imprecision also has a pernicious side effect: it implicitly invites students

not to take what they read literally, because anything they read is likely to be correct

in a wider context. Consequently, students who are taught that

if 𝐴, 𝐵, and 𝐶 are nonzero fractions, then 𝐴 < 𝐵 implies 𝐶𝐴 < 𝐶𝐵,

have every right to believe that this must also be true when 𝐴, 𝐵, and 𝐶 are any

numbers. Reports that the author heard consistently from teachers in the field is that

many students are dismayed by the fact that

if 𝐴, 𝐵, and 𝐶 are rational numbers and 𝐶 < 0, then 𝐴 < 𝐵 implies

𝐶𝐴 > 𝐶𝐵.

Such imprecision puts students in a difficult position: how to decide when to believe—

or not to believe—what they are taught?

Moral: For mathematical learning to take place, precision must be the rule so that

students know at each step exactly what is true and what is false.

(IV) Roughly, the coherence of mathematics means that mathematics, far from

being a mere random collection of facts, is a tapestry in which all the concepts and
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skills are logically interwoven to form a single fabric. Mathematics unfolds logically,

from basic assumptions (axioms) and definitions to theorems, and from theorems and

other definitions to more theorems. Because of this logical progression, different parts

of mathematics, even when far apart, often echo each other or are interconnected. It

is this interconnectedness that comes from the unfailingly logical development of

mathematics that we call coherence.8

The impact of coherence on learning can be seen in the learning of the arithmetic

operations on whole numbers, fractions, rational numbers, and eventually real num-

bers. These operations are conceptually the same across the various number systems.

(This fact is a main emphasis in Wu, 2011a.) As a consequence of this coherence, if

these operations on whole numbers are taught correctly, then the learning of these

operations on fractions becomes streamlined and the popular perception in TSM that

"fractions are such different numbers from whole numbers"9 will be banished forever

from school mathematics education. (Again, see Wu, 2011a.)

The impact of coherence on learning can also be seen in a smaller scale in the

most mundane of all school mathematics topics: the standard algorithms for whole

numbers. When taught as rote skills, these algorithms are the embodiment of mindless

tedium. But they are in fact held together by a single leitmotif:

A knowledge of the addition, subtraction, multiplication, and division

of single-digit numbers empowers us to perform all arithmetic operations

with ease on any whole numbers, no matter how large. (See Chapter 3 of
8According to Cuoco-McCallum, 2018, what we have just defined is the coherence of content.

The Cuoco-McCallum article is, in their terminology, concerned with the curricular coherence of the
school mathematics curriculum.

9This is a direct quote of what one parent told the author. Such a popular perception is in fact
a reflection of not only what transpires in a TSM classroom (compare, e.g., Examples 3 and 4 in
Section 2.1 above), but also what is in the education literature. For example, "Such difficulty with
fractions is often attributed to the fundamental differences between whole numbers and fractions."
(Namkung and Fuchs, 2016). Or, "Children must adopt new rules for fractions that often conflict
with well-established ideas about whole numbers." (Bezuk and Kramer, 1989).
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Wu, 2011a.)

The phrase "with ease" refers to the fact that any one of these operations on large

numbers can be indescribably tedious (e.g., 2573 × 496 means adding 2573 copies

of 496), but when reduced to single-digit computations (which is what the standard

algorithms do) it becomes relatively simple. If this leitmotif is made known to ele-

mentary students—and of course if the algorithms are explained to them too—they

are more likely to learn the algorithms and especially the multiplication table with

greater enthusiasm and, more importantly, they will also learn a substantial amount of

valuable mathematics because these four algorithms bring to light a recurrent theme

in all of mathematics: reducing the complex to the simple.

Yet another example of how coherence can impact learning is in the teaching of

fractions. Here are the seven most basic topics in fractions:

division

fractions

comparing equivalent fraction−as−

fraction
addition

fraction
subtraction

fractions division

fraction
multiplication

fraction

It is difficult to make sense of them when they are presented starkly as seven rote

skills. But when reasoning is introduced into the discussion, a clear picture emerges:

the other six topics are now seen to follow from the one central fact on equivalent

fractions (see, e.g., Chapters 13-18 of Wu, 2011a). From this perspective, we can

make sense of all seven topics, and fractions begin to be learnable.
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divisionfractions

comparing equivalent fraction−as−

fraction fraction
subtractionaddition

fraction
multiplication

fraction
division

fractions

Incidentally, this is analogous to the phenomenon that while it is impossible to

commit to memory the contents of even one page from a telephone book,10 a thousand-

page book like Don Quixote is quite memorable.

(V) Purposefulness refers to the fact that everything in mathematics is done with

a purpose; this fact is of vital importance for the purpose of doing and learning

mathematics but is unfortunately not something that is brought out in most books

in mathematics education, least of all in TSM.

It is easy to explain the important role of purposefulness in school mathematics.

Many skills and concepts have competed to stay in the (more or less) universally

accepted school curriculum for more than a century, if not longer, and those that

have survived to stay in the present day curriculum are the winners of many rounds

of elimination. The reason these skills and concepts are still here could only be

because they serve a vital purpose. If we can bring out this purpose to make students

see why these skills and concepts are worth learning, students will be more motivated

to learn them and student achievement will improve as a result. For example, we

have already alluded to the likelihood that emphasizing the purpose (the leitmotif)

of teaching the standard algorithms will increase student learning.

There is probably no better illustration of how purposefulness can impact student
10If a reader doesn’t know what a "telephone book" is, please ask anyone over 60 or email the

author!
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learning than the topic of rounding whole numbers. During my many years of doing

inservice PD, I was once asked by a teacher why we bother to teach rounding, a

skill that she considered to be meaningless. She said her students had no idea why

they should learn it. Subsequently, other teachers concurred. Their complaint was

entirely justified because TSM never explains that, quite often, one wants to round

off a number because precision is not wanted or is simply unattainable, or both.

For example, the Census Bureau’s estimated population of Houston was 2,303,482

in 2016. If a visitor from afar asks you how many people live in Houston, are you

going to say "2,303,482"? You had better not, because you would sound ridiculous.

Such precision is not the intent of the question. Your visitor probably only wants to

know, roughly, how Houston compares with New York (population approx. 8,540,000)

or San Francisco (population approx. 870,000). In other words, you are probably only

expected to say whether the Houston population is closer to 9 million or 9 hundred

thousand. With this in mind, you would likely round 2, 303, 482 to the nearest million

to get 2 million. Then you look at your visitor in the eye and say with great confidence,

"about 2 million".

One can also point to another kind of purpose for rounding: when precision is not

attainable. Consider the 2016 estimate of Houston’s population again. The Census

Bureau probably had to release the figure of 2,303,482 for bureaucratic reasons, but

such precision clearly makes no sense given the instability of a major city’s popula-

tion due to the unending cycle of births and deaths, the presence of a large transient

population, and its ever-changing homeless population. Therefore, the most conser-

vative estimate of Houston’s population in 2016 is that the last three digits, 482,

are completely meaningless. We can de-emphasize them by rounding to the nearest

thousand and list 2,303,000 as Houston’s population in 2016. But if you round it to

the nearest hundred-thousand and list Houston’s population as 2.3 million, I doubt

that eyebrows would be raised.
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If TSM would take the trouble to explain the purpose of rounding, many of our

teachers probably would cease being exasperated by having to teach it. Students too

would likely approach the learning of this skill with greater enthusiasm.

Of course, there is no end of examples to illustrate how the teaching of a concept

or skill would be enhanced by bringing out the purpose of introducing said concept

or skill. In addition to the four standard algorithms, think of place value (no, it is

not due to a decree from on high that the 3 in 35 must be 30; see Chapter 1 of Wu,

2011a), the introduction of negative numbers (see, for example, Chapter 26 of Wu,

2011a), the introduction of absolute value (see Section 31.3 in Wu, 2011a), etc.

3.2 PBM vs. TSM

Thus far, we have discussed in general terms some special features of TSM and PBM.

Because the overriding theme of this article is to help teachers get rid of their knowl-

edge of TSM and replace it with PBM, we will now revisit the six examples in Subsec-

tion 2.1 from the perspective of PBM. Because all these examples are about fractions,

we will begin with a brief presentation of the definition of a fraction using the number

line (see Chapter 1 in Wu, 2016a). We will try to be brief, except that the discus-

sions of Example 3 (adding fractions) and Example 4 (multiplying fractions) will be

intentionally detailed because we want to illustrate explicitly how to use definitions in

reasoning (see the discussion on learning about definitions in Subsection 5.1 below).

We begin with a (horizontal) number line on which a sequence of equidistant

points marching to the right are labeled by the whole numbers. Now proceed as

follows to get the fractions with denominator 3 (and by extension any and all of

the other fractions). Partition the unit segment [0,1] into three equal parts (=

three segments of equal length). The part adjoining 0 is a third. Denote its right

endpoint by 1
3
.
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0 1 2 3 4

1
3

Fix the distance between 0 and 1
3
. Marking off equidistant points to the right of 1

3
as

we have done with whole numbers, we obtain a sequence of points, denoted by 2
3
, 3

3
,

4
3
, etc.

0 1 2 3 4

1
3

2
3

3
3

4
3

5
3

etc.

The segment [0, 1
3
], by convention, is identified with its right endpoint, 1

3
. Similarly,

the segment [0, 2
3
] is identified with its right endpoint 2

3
, the segment [0, 5

3
] with its

right endpoint 5
3
, etc. Call these the sequence of thirds. Also call 𝑛

3
the length

of the segment [0, 𝑛
3
] for any nonzero whole number 𝑛.11

Similarly, the nonzero fractions with denominator 5 are the sequence of fifths,

determined by the partition of [0, 1] into 5 equal parts and by repeating the construc-

tion as in the sequence of thirds. For example, 8
5

is the last point on the right:

0 1

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

Then we call 8
5

the length of the segment [0, 8
5
], etc. (See Wu, 1998; Chapter 12 of

Wu, 2011a has more details.)

If 𝑛 is any nonzero whole number, then we obtain the sequence of 𝑛ths by

partitioning the unit segment [0, 1] into 𝑛 equal parts, denoting the right endpoint of

the part adjoining 0 by 1
𝑛
, and marking off equidistant points to the right of 1

𝑛
. The

union of 0 and the collection of all the sequences of 𝑛ths for 𝑛 = 1, 2, 3, . . . is what

we call the fractions.
11By convention, we also define 0

𝑛 to be 0 for every nonzero 𝑛.
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Now that we know what a fraction is, we may ask if this definition amounts to

anything. First of all, a fraction is an abstract concept and there is no point in hiding

this fact12 because introducing students gradually to abstractions is an integral part

of school mathematics education. Defining a fraction as a certain point on the number

is therefore nothing more than an honest acknowledgement of the abstract nature of

the fraction concept. A teacher can mention to elementary students the fact that

"2
3
" is an abstraction the same way "5" is an abstraction.13 But if fractions are just

abstractions, i.e., points on the number line, how do they get involved in describing

so many things that seem to have nothing to do with the number line? Furthermore,

does the definition shed light on the addition and multiplication of fractions?

Let us answer the first question first. The key is the meaning we assign to the

unit 1: it is the meaning of the unit that connects the number line to every possible

real-world situation involving fractions. Consider, for example, the following problem:

if 1
4

of a bucket of water is added to a 2
3

of a bucket of water, how much water is

now in the bucket? To do this problem, we let the unit 1 on the number line be the

volume of this bucket of water. The length of the unit segment [0, 1] now has to be

interpreted as the volume of one bucket of water. So 1
4

of a bucket of water—which

is one part when the bucket of water is divided into 4 equal parts by volume—will

be represented on the number line by one segment when the length of unit segment

(= the volume of one bucket of water) is divided into 4 equal parts (= 4 segments

of equal length). Therefore 1
4

of a bucket of water is represented on this particular

number line by the point 1
4

(= the first point to the right of 0 in the sequence of

fourths). In a similar way, 2
3

of a bucket of water is represented by the fraction 2
3

on this number line (= the second point to the right of 0 in the sequence of thirds).

The total volume of water obtained by adding 1
4

buckets of water to 2
3

buckets of

12But there is also no need to emphasize it in elementary school either.
13It is all too easy to forget that the symbol "5" is emphatically an abstraction.
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water is therefore what we normally call "(1
4
+ 2

3
) buckets of water". We will explain

this sum in the discussion of Example 3.

Notice that the unit segment [0, 1] is what TSM calls "the whole", and that is

a blatant error. The unit 1 has to be the volume of one bucket of water, but not

"one bucket of water". The latter would leave open the question of whether we are

dividing the bucket of water into "equal parts" by height, weight, or volume, or in

fact, by another kind of measurement. Mathematics has no room for such ambiguity.

It is sobering to realize that, in TSM, even the meaning of "the whole" is not correct.

There is another way the number line makes contact with other real world situa-

tions, and we should touch on this briefly. Consider the following problem: if Helena

walks 31
2

miles in 1 hour and 20 minutes, what is her average speed in this walk? Here

we have to deal with two number lines: one whose unit is 1 mile, and another whose

unit is 1 hour. Since 1 hour and 20 minutes is 11
3

hours, we have the following two

number lines:

0 1
(= 1 mi)

2 3 4

1
2

31
2

mi

0 1
(= 1 hr)

2 3 4

11
3

hr

Now the average speed of Helena’s walk is, by definition, the division

average speed of walk =

(︂
distance traveled

time duration

)︂
=

31
2

11
3

(3)

Since division takes place only between two numbers on the same number line (see

Wu 2011a, Chapter 18), equation (3) does not make sense as it stands. We rectify
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the situation by identifying the two number lines,14 i.e., by identifying the two units,

and obtain this picture:

11
3

hr

0 1
(= 1 mi = 1 hr)

2 3 4

31
2

mi1
2

1
3

The division in equation (3) can now take place.

It is time to return to the six examples in Subsection 2.1.

Example 1 revisited. We can show 3
2
= 12

8
as follows. 3

2
is the third point (to

the right of 0) in the sequence of halves.

0

1
2

2
2

3
2

1

Now divide each of the segments [0, 1
2
], [1

2
, 1], [1, 3

2
], etc., into 4 equal parts. Then

together with the sequence of halves, these new division points become the sequence

of eighths. The point 3
2

now becomes the 12th point in the sequence of eighths, and

it follows from the definition of fractions that 3
2
= 12

8
.

The reasoning for showing equivalent fractions in general, 𝑐𝑎
𝑐𝑏

= 𝑎
𝑏

for all fractions
𝑎
𝑏

and nonzero whole numbers 𝑐, is entirely similar (see page 29 of Wu, 2016a).

Example 2 revisited. We will prove CMA, i.e.,

𝑎

𝑏
=

𝑐

𝑑
implies 𝑎𝑑 = 𝑏𝑐 (4)

by making use of equivalent fractions (see Example 1), but without making use of

the multiplication of fractions. We have 𝑎
𝑏
= 𝑎𝑑

𝑏𝑑
and 𝑐

𝑑
= 𝑏𝑐

𝑏𝑑
by equivalent fractions.

Therefore the hypothesis means 𝑎𝑑
𝑏𝑑

= 𝑏𝑐
𝑏𝑑

. Thus in the sequence of 𝑏𝑑-ths, the 𝑎𝑑-th

point coincides with the 𝑏𝑐-th point. This can happen only if 𝑎𝑑 = 𝑏𝑐.
14By combining the two number lines into one, if one prefers to think of it this way.
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It may be mentioned that in the mathematics education literature, CMA is re-

garded as an algorithm that is "rote and without meaning" (see page 348 of Billstein-

Liebeskind-Lott, 2007, for example). This is a piece of misinformation that begs to

be corrected. As we already remarked at the end of Example 2 in Subsection 2.1,

CMA is a basic skill in K–12 that should be in the repertoire of every student and

every teacher. In addition, the fact that CMA in the form of (4) continues to hold

for rational numbers 𝑎, 𝑏, 𝑐, and 𝑑 is given on page 180 of Wu, 2016a. The extension

to real numbers 𝑎, 𝑏, 𝑐, and 𝑑 is guaranteed by what is called FASM (Fundamental

Assumption of School Mathematics); see Wu, 2016a, Section 2.7 (the proof of FASM

is given in Section 2.1 of the third volume of Wu, 2020).

Example 3 revisited. To compute 3
8
+ 5

6
, we begin by defining the addition

of fractions. To this end, we look to whole numbers for guidance because, as points

on the number line, whole numbers and fractions are on an equal footing. For whole

numbers, addition holds no mystery: 4 + 3, for example, is the total length obtained

by combining segments of lengths 4 and 3, respectively. Precisely, consider the con-

catenation of the two segments of lengths 4 and 3, which is the segment obtained

by placing these segments end-to-end on the number line:

t⏟  ⏞  
4

⏟  ⏞  
3

Now suppose we are given two fractions 4
7

and 1
5

(for example). By definition (Wu,

1998; also Section 14.1 of Wu, 2011a), the fraction addition 4
7
+ 1

5
is the length of

the concatenation of the two segments of lengths 4
7

and 1
5
:

t⏟  ⏞  
4
7

⏟  ⏞  
1
5

0 1

This definition of fraction-addition immediately shows that addition—even for
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fractions—is still just putting things together. (See the discussion of the coherence of

mathematics in (IV) of Subsection 3.1.)

Now that we know what we are asked to do regarding 3
8
+ 5

6
, we can try to compute

it, i.e., obtain a formula for 3
8
+ 5

6
. First, observe that the addition of fractions with

the same denominator becomes very simple. For example,

4

7
+

6

7
=

4 + 6

7
(5)

because 4
7

is the total length of 4 segments of length 1
7

and 6
7

is the total length of

6 segments of length 1
7
, so that by the definition of fraction addition, the left side of

equation (5) is the total length of (4+6) segments of length 1
7

and is therefore equal

to the right side of (5). Observe that, conceptually, there is no difference between
4
7
+ 6

7
and 4+6. In general, 𝑎

𝑏
+ 𝑐

𝑏
= 𝑎+𝑐

𝑏
for all fractions 𝑎

𝑏
and 𝑐

𝑏
, for the same reason.

Although 3
8

and 5
6

do not have the same denominator, we can "make them

have the same denominator" by appealing to equivalent fractions (see Example 1

revisited above). Thus, both fractions 3
8

and 5
6

belong to the sequence of 48-ths

(48 = 6× 8) because
3

8
=

18

48
and

5

6
=

40

48
(6)

Therefore
3

8
+

5

6
=

18

48
+

40

48
(7)

By the preceding observation (see (5)), we have

18

48
+

40

48
=

18 + 40

48
(8)

Putting equations (7) and (8) together, we obtain

3

8
+

5

6
=

58

48
(9)
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More generally, if we retrace our steps and do not multiply out everything, then what

this computation shows is actually that

3

8
+

5

6
=

(3× 6) + (5× 8)

6× 8

Now if we introduce symbolic notation, the same reasoning shows in general that for

all fractions 𝑎
𝑏

and 𝑐
𝑑
,

𝑎

𝑏
+

𝑐

𝑑
=

𝑎𝑑+ 𝑏𝑐

𝑏𝑑

(Whether or not this symbolic formula should be proved in a 5-th grade classroom

will depend on the teacher’s judgment of the quality of the students. In general, a

symbolic proof may be too much of a good thing for the average fifth grader.)

Critical observations: The computation in equation (9) is the culmination of steps

(6)–(8), and each of which is based strictly on the definition of what a fraction is, the

definition of what fraction addition means, the prior established facts on equivalent

fractions and (5), and standard logical deduction. There is nothing about some

abstruse higher-order "conceptual understanding" that students are supposed to "get"

but often don’t, and nothing that students have never seen before. So it is learnable.

Furthermore, this reasoning only requires that the two fractions 𝑎
𝑏

and 𝑐
𝑑

be changed

to two fractions with the same denominator (as in (6)), and it doesn’t matter what

that denominator is. Therefore, any thoughts about the least common denominator

would be extraneous to this reasoning. Apparently, this approach to the addition of

fractions (Wu, 1999a) has been implemented in school classrooms with some success

(Bingea, undated).

Example 4 revisited. To compute 2
3
× 5

8
, once again, we have to first find out

what these symbols mean. So we need a definition of the multiplication of fractions:
2
3
× 5

8
means the total length of 2 of the parts if we partition the length of the segment

[0, 5
8
] between 0 and 5

8
into 3 parts of equal length.
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Now, how to partition the segment [0, 5
8
] into 3 parts of equal length? For this

purpose, we call on equivalent fractions to rewrite 5
8

as

5

8
=

3× 5

3× 8
(10)

The motivation for doing this is that the numerator of the right side, 3 × 5 now

exhibits an obvious partition into 3 equal parts, namely, 3 × 5 = 5 + 5 + 5. This

then leads to the following simple fact (since we are doing fraction multiplication, of

course the addition of fractions is already an established skill ):

5

8
=

5 + 5 + 5

3× 8
=

5

24
+

5

24
+

5

24
(11)

According to the definition of fraction addition (see the preceding Example 3 re-

visited ), the right side of (11)—being a concatenation of 3 segments each of length
5
25

—exhibits a partition of [0, 5
8
] into three parts of equal length, with each part hav-

ing length 5
24

. Therefore, using "part" as an abbreviation for "one of the parts when

[0, 5
8
] is partitioned into 3 parts of equal length", we obtain

total length of 2 parts =
5

24
+

5

24
=

10

24
(12)

In view of the definition of 2
3
× 5

8
, (12) implies that

2

3
× 5

8
=

10

24
(13)

Once again, if we retrace our steps and do not multiply out everything, what this

reasoning demonstrates is the fact that

2

3
× 5

8
=

2× 5

3× 8

Critical observations: As in the case of adding fractions, the conclusion in equa-

tion (13) is reached via steps (10)–(12), and each of the latter is based on either a

definition (e.g., fraction addition, fraction multiplication) or an established fact (e.g.,
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equivalent fractions, how to add fractions), or both, and the use of logic. This kind of

reasoning, i.e., the ability to envision a rough sketch of the intermediate steps (10)–

(12) together with the argument supporting each step, does not come easily to most

people, especially beginners. It takes plenty of exposure and practice to learn it, and

we have to convince students that it is worth learning because this process of reasoning

is the basic methodology of mathematics.15 Of course, beginners learn by imitation

(as do we all, including professional mathematicians) during their halting first steps

towards proficiency, so a classroom teacher can ask students, right after showing this

piece of reasoning, to go to the board to explain something like 2
3
× 11

7
= 22

21
or

4
5
× 5

8
= 20

40
. Then, perhaps, also 5

8
× 2

3
= 10

24
. In due course, the teacher can point out

the obvious, namely, the fact that if the preceding reasoning is written out in greater

detail, then it actually proves that 2
3
× 5

8
= 2×5

3×8
, that 2

3
× 11

7
= 2×11

3×7
, etc., so that in

general,
𝑎

𝑏
× 𝑐

𝑑
=

𝑎× 𝑐

𝑏× 𝑑
,

for all fractions 𝑎
𝑏

and 𝑐
𝑑
. (The symbolic statement likely will not be appropriate for

all classrooms.) There is no end of variations on this pedagogical theme, and each

teacher will find his or her own preferred method of delivery.

In the two preceding examples, the method of logical inference used is standard

and therefore available to all, and the established facts (such as equivalent fractions)

are also available to all. If precise definitions are also routinely given in textbooks,

then the whole process of reasoning will become an open book that is available to all.

This is the necessary first step that will make mathematics learnable to one and all.

Therefore having precise definitions for all concepts is a critical ingredient in making

reasoning—and hence mathematics itself—learnable.

At this point, it should be clear that we insist on having precise definitions and
15To a large extent, this is the basic methodology of science as well.
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reasoning in school mathematics education, not because they are mathematicians’

professional fixations, but because, as we said earlier, school mathematics is not learn-

able without them. Concepts and skills not connected by reasoning become isolated

factoids that can only be learned by brute force memorization. Therefore one may

speculate that, as students go up through the grades, such concepts and skills pile up

in TSM and, at some point, they overwhelm students’ memory banks16 by sheer vol-

ume and TSM ceases to be learnable even by memorization. This speculation about

the effects of TSM on student learning is consistent with the performance of U.S.

students on TIMSS in 1995 (TIMSS 1995 Results, 1995). However, when reasoning

is there to connect the concepts and skills, it includes them in a story line that makes

sense of them; it renders them learnable (also see pp. 118-120 of National Research

Council, 2001).

Example 5 revisited. As noted in Subsection 2.1, if mixed numbers are intro-

duced after the addition of fractions, then the mixed number 72
3

would be defined as

the abbreviation for 7 + 2
3
, so that

7
2

3
= 7 +

2

3
=

7× 3

3
+

2

3
=

23

3

and no memorization would be necessary.

Example 6 revisited. The correct definition of a finite decimal is that it is a

fraction whose denominator is 10𝑛 for some whole number 𝑛. For example, 2.307 is

the fraction
2307

1000

Once we know how to add fractions, then the expanded form of 2307 being 2307 =

2000 + 300 + 7, we get

2307

1000
=

2000 + 300 + 7

1000
=

2000

1000
+

300

1000
+

7

1000
= 2 + 0.3 + 0.007

16In the terminology of computers, not enough RAM.
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Hence, the fact that 2.307 is "2 and 3 tenths and 7 thousandths" becomes a provable

theorem if students are taught about finite decimals after fractions.

4 Textbooks

We can now return to the first of our two main concerns: how to give students access

to PBM rather than TSM.

A main thrust of this article is about how to repair the damage inflicted on teachers

and students by TSM, Textbook School Mathematics. An obvious question is why we

are wasting our time here talking about damage control instead of directly going

to the source and writing better school mathematics textbooks. The simple answer

is that most of the school textbooks come from major publishers, and there are no

ready-made tools to combat the bottom-line mentality of big business (in this regard,

the article Keeghan, 2012 is very informative). For this reason, most of the nation’s

schools are still dependent on TSM textbooks from the major publishers. It is also the

case that the publishing industry is not under any kind of federal or state control and is

free to produce any textbooks it can afford to put out. From a publisher’s standpoint,

so long as its products are welcomed by enough teachers, there is little incentive to

change anything, TSM and all. Since there are many teachers out there who were

brought up by TSM and are therefore comfortable teaching TSM as of 2019, there is

still a ready-made market for the publishing industry to exploit. It therefore seems

likely that, until the majority of teachers reject TSM-infested textbooks, TSM will

live on in school classrooms. This then adds urgency to our second topic of concern:

how to produce inservice teachers who are capable of teaching PBM. Getting better-

informed teachers who reject TSM out of hand would seem to be the best hope of

breaking the vicious cycle of TSM.

Since the release of CCSSM in 2010, there have been several attempts to write
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curricula according to the CCSSM by exploiting the internet using online publishing.

A few show promise, according to some reports. However, since so few in the world

of education seem to be at all concerned with mathematical content or aware of

the continued menace of TSM, many of the textbook evaluation agencies should be

approached with a great deal of caution. Overall, much remains to be done in the

arena of curricular evaluation.

Common Core was quite aware of the inadequacy of existing textbooks for the

implementation of CCSSM. It has published two documents for the benefit of pub-

lishers: a 24-page document (Common Core, 2012) on the K–8 curriculum and a

20-page document (Common Core, 2013) on the high school curriculum. They ex-

hort publishers to meet the goals of focus, coherence, and rigor in their textbooks.

Neither document mentions the phenomenon of TSM, however.

A more ambitious undertaking is a six-volume, 2500-page project from this author

that gives a complete exposition17 of the K-12 mathematics curriculum according

to PBM (Wu, 2011a, 2016a, 2016b, and 2020). There are presumably many ways

to present the school mathematics curriculum in accordance with the fundamental

principles of mathematics, but for now we can make use of what we have got. These

six volumes are not student textbooks; they are textbooks for teachers’ PD. Given the

level of detail in these 2500 pages, however, it should not be difficult to create student

texts out of them with the help of some standard pedagogical embellishments. In any

case, an eighth-grade student textbook based on these volumes will be offered online

(https://math.berkeley.edu/~wu/) in the near future. One thing in favor of these

six volumes is that, since their drafts served as blueprints for a good many standards

in CCSSM, there is no fear that any curricular materials based on these volumes will
17Strictly speaking, these six volumes do not cover geometry in grades K-5 because the file on this

topic promised in Wu, 2011a, has not yet been made available. However, Chapters 4 and 5 in Wu,
2016a, serve to fill this gap to a large extent.
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be out-of-date anytime soon.

5 Professional development

Everything we have said so far points to the urgency of replacing our teachers’ knowl-

edge of TSM by PBM. This will certainly tax our ability to do effective PD. Let us

be clear about what we expect the PD to accomplish. It will not be about tweaking

teachers’ content knowledge here and there but, rather, about a revamping of their

knowledge of mathematics from the ground up. Because of our systemic negligence,

teachers have never been exposed to anything resembling PBM (see, e.g., Wu, 2011b),

yet we want them to master PBM in short order and turn around to teach it to their

students. This is not going to be easy.

In the first subsection, we will go into some detail to explain the kind of hard work

that is involved. We will focus on PD for inservice teachers18 because the current

implementation of CCSSM (Common Core, 2010) requires teachers who can teach

PBM. For example, CCSSM asks teachers to teach mathematics in a way that is "co-

herent", "stresses conceptual understanding of key ideas", helps students to "reason

abstractly and quantitatively", encourages students to "construct viable arguments

and critique the reasoning of others" and "attend to precision", etc. (pp. 3-7 in Com-

mon Core, 2010). The long-term neglect of the mathematical education of teachers

leads us to believe that most teachers may not be able to rise to this lofty challenge

and that their need for content-based inservice PD will be considerable. Although

there is apparently no hard data as yet to substantiate this belief, the available anec-

dotal evidence (cf. Education Week, 2014, Loewus, 2016, 2017, and Sawchuk, 2016)

does point in this direction. In addition, what the author has personally learned from

teachers and math coaches in several states—including California—is also consistent
18We will also make some comments about PD for preservice teachers in the last section of this

article (Section 7).
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with this belief. Our proposed PD therefore cannot be the routine variety and its

parameters must be carefully prescribed. This is what we will try to do in the second

subsection. In the third subsection, we will describe—for the sake of providing a

point of reference—one PD program that has been tried with some success to teach

teachers PBM.

There is a jarring note hidden behind this optimistic discussion of PD, however.

In the last decade, two studies by IES on the impact of content-based PD on student

learning have appeared, Garet, 2011 and Garet, 2016. They seem to shut the door on

any hope that PD can help teachers raise student achievement. If there is any validity

to the IES studies, the present article on what "good" PD is and how to implement

it would simply be a waste of everybody’s time. For this reason, we must make an

effort to examine these studies critically. This will be carried out in the next section.

5.1 The hard work of learning PBM

For inservice mathematics teachers trying to learn PBM, a useful analogy may be

learning a second language.19 The immense difference between PBM and TSM dwarfs

what little they happen to have in common: the topics and the skills, for instance.

Since PBM asks teachers to repackage these topics and sometimes even to teach them

in a different order (e.g., define mixed numbers only after fraction addition has been

discussed; see Example 5 revisited in Subsection 3.2), the prospect of learning

PBM will be daunting to most. There is also a paradoxical aspect to the attempt by

inservice teachers to learn PBM, and it is the fact that while we find fault with TSM

for oversimplifying school mathematics to a few sound bites, it is actually easier to just

"teach" sound bites! Some teachers who have gotten used to "teaching" the sound

bites of TSM may find teaching PBM with its many attendant cognitive complexities
19One should not push this analogy too far, however. No language has anything like the logical

coherence of mathematics.
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to be a very big stretch. What is good for the learners may not always be easy for

the teachers! Let this be a warning. What follows is a more detailed explanation of

the hard work involved in learning PBM.

Learning about reasoning

Learning how to reason is painstaking work under the best of circumstances.20

Except for the most rudimentary, one-step variety that we inherit from our ances-

tors on the African savanna tens of thousands years ago, such as "fright→ flight",

reasoning is not an inborn skill like speech or running. For most teachers who have

been immersed in TSM all their lives, learning how to reason about basic tasks that

they used to teach by rote with ease is difficult enough. Having to also learn how

to explain the reasoning process to students makes it doubly difficult, and trying to

empower students with the fundamentals reasoning skills is trebly difficult.

Take the case of adding fractions (see Example 3 in Subsection 2.1). We can

complain all we want about the use of LCD and the absence of any explanation of

what "addition" means in TSM, but to most inservice teachers, this rote skill has

probably become second nature. This LCD skill is simple to teach by rote! The

procedure is short, and all a teacher has to do is give students lots of drills. Now

PBM changes all that: a teacher has to explain what it means to add two fractions,

use equivalent fractions to put the two given fractions into the same sequence of

𝑛ths for some 𝑛, and remind students of the meaning of adding whole numbers (see

Example 3 revisited in Subsection 3.2). We know how some students hate to be

reminded of anything other than what is right in front of them! It is definitely a lot
20It has been suggested that there is an apparent contradiction between this statement and the

earlier one made in Example 4 revisited, to the effect that PBM will make reasoning learnable to
one and all. But there isn’t. Such a misunderstanding would arise only if one erroneously equates
"learning" with "learning without effort". Learning anything worthwhile in life requires effort, e.g.,
learning how to read require the strenuous effort of memorizing the alphabet and a continuous influx
of new vocabulary. What is at issue is whether unnecessary roadblocks are thrown in the learner’s
path. TSM throws such roadblocks—too many to count—but PBM doesn’t.
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more work than teaching the rote skill using LCD.

The case of multiplying fractions (see Example 4 in Subsection 2.1) is somewhat

similar. Even some mathematicians mistakenly consider fraction multiplication to be

a pleasure to teach because it is procedurally so simple (see, e.g., Aharoni, 2015): just

multiply across the top and the bottom. By contrast, look at Example 4 revisited

in Subsection 3.2: the definition of fraction multiplication is among the longest and

most complex in elementary mathematics, and the reasoning in the teaching of this

so-called "simple" skill becomes quite delicate according to PBM (see equations (10)–

(12) therein). Real effort is now required for its mastery.

We should mention another telling example about reasoning: the teaching of speed

problems and the related so-called rate problems. Consider the following:

Luis usually walks the 1.5 miles to his school in 25 minutes. However, due

to road repair, he has to take a 1.7-mile route today. If he walks at his

usual speed, how much time will it take him to get to his school? (Siegler

et al., 2010, page 38.)

In TSM, the phrase "at his usual speed" (or "at this speed") is code for setting up

a proportion. In other words, given that Luis walks 1.5 miles in 25 minutes, if Luis

walks 1.7 miles in 𝑥 minutes "at his usual speed", TSM instructs us to invoke what

is known as proportional reasoning to set up a proportion:

1.5

25
=

1.7

𝑥
(14)

Now use CMA21 to get 1.5𝑥 = 25× 1.7. So 𝑥 = 281
3

minutes.

In the present context of getting teachers to learn about reasoning, something

almost leaps off the page: the simple solution involves a rote skill but no reasoning!
21As noted at the end of Example 2 revisited in Subsection 3.2, what is being used here is

actually not CMA but the extension of CMA to rational numbers.
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But how can one arrive at (14) by the use of reasoning?

The fact is that, as is, the problem cannot be solved because since we have no idea

how Luis normally walks to school22, we know nothing about how he walks "at his

usual speed". Consequently, we have no information about how he walks to school

during the road repair either. We have not been given sufficient information to know

how to proceed.

If we want to base mathematics on reasoning, then we will have to add some precise

assumptions about the way he walks. Here is a standard one: let Luis walk a total

distance of 𝑓(𝑡) miles after 𝑡 minutes, then we assume that 𝑓(𝑡) is a linear function of

𝑡 without constant term, i.e., 𝑓(𝑡) = 𝑣𝑡 for a fixed constant 𝑣. This assumption would

justify equation (14) because all it says is that

𝑓(25)

25
=

𝑓(𝑥)

𝑥

Indeed, both are equal to 𝑣 in this case.

Now, because such problems are usually introduced into the curriculum before

students learn about linear functions, we will describe another way—suitable for use

in the 6th or 7th grade—to deal with equation (14). For an object in motion, we

introduce the concept of its average speed over the time interval from 𝑡1 to 𝑡2,

(𝑡1 < 𝑡2), as
total distance traveled from time 𝑡1 to 𝑡2

𝑡2 − 𝑡1
(15)

In terms of average speed, the Luis problem can be properly reformulated as follows:

Luis usually walks the 1.5 miles to his school in 25 minutes. However,

due to road repair, he has to take a 1.7-mile route today. If his two trips

have the same average speed, how much time will it take him to get to his

school?
22Does he run the first mile in 10 minutes and slowly stroll to school in the remaining 15 minutes?
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Now equation (14) is correct because it is based on the assumption that the two

average speeds are the same. We are using the definition of "average speed"!

The more common way—and a more nuanced way—of handling the Luis problem

is to formulate it in terms of constant speed. By definition, a motion has constant

speed 𝑣 if its average speed over any time interval is always equal to 𝑣. Then a correct

formulation of the preceding problem in terms of constant speed is the following:23

Luis usually walks the 1.5 miles to his school in 25 minutes. However, due

to road repair, he has to take a 1.7-mile route today. If he always walks

at the same constant speed, how much time will it take him to get to his

school?

Equation (14) is now justified by recognizing the fact that its left side is Luis’ average

speed over the time interval it takes him to walk the normal 1.5 miles, and the right

side is the average speed over the time interval it takes him to walk the 1.7 miles.

The assumption that he walks at the same constant speed then implies that these

two average speeds are equal, which is equation (14).

In all three cases, we get to witness one of the basic characteristics of reasoning:

make explicit use of precise definitions to draw conclusions. The goal of PBM is to

get students used to the habit of analyzing each problem on its own merits by the

use of explicit assumptions, explicit definitions, and reasoning.

One may object that the amount of reasoning used to solve the preceding problem

formulated in terms of constant speed is too little to be cause for celebration. Granted,

but look at the alternative of appealing to "proportional reasoning": the latter is rote

learning, plain and simple.

Let us not forget that our teachers were brought up in TSM and are used to setting
23It can be shown that the assumption of constant speed is equivalent to the earlier assumption

that the distance function describing Luis’ distance from his starting point is a linear function
without constant term. See Theorem 7.1 on page 138 of Wu, 2016b.
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up proportions. If they want to teach PBM, then they must know this background

information about speed problems to be able to answer students’ questions, e.g., "why

don’t we just set up a proportion?" Above all else, teachers who want to promote

PBM have to know why "proportional reasoning" is not reasoning at all. For example,

let us do the following problem by proportional reasoning:

A free-falling stone is dropped from 600 ft. It drops 64 ft in 2 seconds.

How far does it drop in 3 seconds?

Obviously, proportional reasoning yields an answer of 96 ft, whereas physics gives

the correct answer of 144 ft. The reason is that the falling stone does not move

at constant speed. So unless teachers insist on having precise definitions for all the

relevant concepts—so that constant speed gets defined—and unless teachers insist on

solving problems by reasoning, they cannot even explain to students why the free-

falling stone problem cannot be done by setting up a proportion.

Altogether, we see that we are imposing a heavy cognitive load on teachers in try-

ing to get them to embrace PBM. Nevertheless, we must do all we can to help teachers

acquire the reasoning skill because we have no choice. Students must learn to reason

for their survival in year 2019, and if teachers cannot learn to reason mathematically,

how can we hope that their students will? So we must try harder.

It remains to make some general remarks on the need for flexibility in teaching

reasoning in the school classroom. When we say reasoning should attend every state-

ment in mathematics, we actually mean grade-appropriate reasoning. For example, in

Example 3 revisited of Subsection 3.2, we mentioned that although the reasoning

suffices to prove the general formula for addition,

𝑎

𝑏
+

𝑐

𝑑
=

𝑎𝑑+ 𝑏𝑐

𝑏𝑑

it may not be appropriate to give this general reasoning in a typical fifth grade

classroom. A more reasonable alternative is to prove the formula only for many
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specific values of 𝑎, 𝑏, 𝑐, and 𝑑. We also made a similar remark about the product

formula for arbitrary fractions in Example 4 revisited of the same subsection:

𝑎

𝑏
× 𝑐

𝑑
=

𝑎× 𝑐

𝑏× 𝑑

To firm up this message, we will use an example from middle and high school

geometry: the teaching of the theorem that the angle sum of a triangle is 180∘. There

is the standard, intuitive proof obtained by drawing a line parallel to side 𝐴𝐵 and

passing through the vertex 𝐶 of the following triangle:

A

EB
C

D

Then there is a correct proof that fills in all the nonintuitive gaps of this standard

intuitive proof. The latter is unfortunately very subtle as well as very boring. For

middle school students, the correct proof is not worth the investment of time and

effort. Thus, on page 316 of Wu, 2016a (which was written for mathematics educators

and middle school teachers), the standard, intuitive proof is given, followed by the

remark on page 317, (loc. cit.) to the effect that the steps in the given proof are

essentially correct. Nevertheless, from a strictly mathematical standpoint,

one can find fault with them for certain omissions in the details.

Then it goes on to say that insofar as

our main purpose here is to acquire geometric intuition and make a first

step towards the mastery of geometric proofs,

the intuitive proof will serve. Needless to say, a correct proof should be given when

the occasion calls for it in the high school course on geometry (see Section 6.5 of the

second volume, Algebra and Geometry, of Wu, 2020).
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Teaching is, among many things, the result of negotiations between what is correct

and what is possible in the face of the reality in a classroom The purpose of our effort

to get teachers ready to teach PBM is to provide them with the needed mathematical

information so that they have the freedom to decide what is possible in a given

classroom.

Learning about definitions

It should be clear from the discussion up to this point that definitions and rea-

soning are essentially intertwined, but there are a few things about definitions that

deserve to be discussed separately.

For teachers brought up in TSM, perhaps the most difficult thing to accept about

PBM is that the definition of a concept ceases being something to be memorized for

standardized tests and then cast aside, but is now the foundation for any reasoning

about the concept. TSM has no reasoning to speak of, so definitions play no role in

its version of "mathematics learning". Teachers with a TSM background therefore

have difficulty getting used to the fact that PBM puts every definition to use for the

purpose of reasoning. We have seen how the definition of a fraction and the definition

of the addition of fractions are used, literally, to derive the formula for the addition of

fractions (see Example 3 revisited in Subsection 3.2), how the analogous derivation

happens with fraction multiplication (see Example 4 revisited in Subsection 3.2),

and how Luis’ walking problem in the early part of this subsection can be solved

simply by the use of reasoning once a precise definition of constant speed is given.

This point is stressed throughout all six volumes of Wu, 2011a, 2016a, 2016b, and

2020, but if personal experience is any guide, it still does not come easily to teachers.

One may speculate that things would go more smoothly in the ongoing effort

to convince teachers about the importance of precise definitions if the education

literature would also make such an advocacy. This is not happening, however, because
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TSM has held sway over many educators as well.24 Consequently, some educators

downplay the importance of precise definitions. In discussing ratio and rate, for

example, Susan Lamon makes the following statement:

Even if we could precisely define ratios and rates and the difference be-

tween them, definitions do not discharge the full meaning of the idea being

defined. The nature and meaning of rates and ratios come from problem

situations. (Lamon, 1999, page 165.)

There is an obvious misunderstanding here about the role of definitions in mathemat-

ics: the mathematical definition of a concept is not required to "discharge the full

meaning" of the concept so defined. All that it is obligated to do is furnish all the

information that is needed for any reasoning regarding that concept, no more and no

less. In this connection, what Polya has to say is very much to the point: "The math-

ematician is not concerned with the current meaning of his technical term.. . . The

mathematical definition creates the mathematical meaning" (Polya, 1957, page 86).

As we mentioned in Subsection 3.1, the main virtue of presenting a precise definition

of a concept is to tell the whole mathematical truth from the beginning to facilitate

mathematics learning.25 This no-hidden-agenda feature of mathematics is essential

to making mathematics learnable because, above all else, it establishes a sense of

trust between the learner and the mathematics. It tells the learner that all the cards

are now on the table, so just look closely at what you have got! The failure of

TSM to develop mathematics according to precise definitions has so far resulted in

gnawing suspicions and distrust from learners at the outset. This is no way to make
24When all is said and done, mathematicians have to be held mainly accountable for the deterio-

ration of the content component in mathematics education (see Wu, 2011b).
25This view of the role of definitions in mathematics in general is a product of the twentieth

century, as a result of many trials and errors to make mathematics more transparent and less prone
to obscurantism. The attitude towards definitions of the mathematicians in centuries past was
actually remarkably close to that of Lamon’s (cf. e.g., Quinn, 2012).
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mathematics learnable.

Having argued for the need to make teachers see the importance of precise defini-

tions in PBM, we also want to supplement the argument with the remark that by no

means are we advocating for the unmotivated (highhanded) presentation of definitions

that we sometimes see in advanced mathematics. Any PD must also pay attention to

the art of persuasion in giving definitions. This is why the definition of a fraction in

terms of the number line in Wu, 2016a, is preceded by eight pages explaining why a

precise definition of a fraction is necessary (pp. 3-10, loc. cit.). Likewise, the definition

of slope on page 66 of Wu, 2016b is preceded by almost five pages of discussion about

the intuitive meaning of the concept of slope and how this intuition may be captured

in a precise definition. There are many other such suggestions about how to present

a precise definition in those two volumes as well as in Wu, 2011a. Teachers should be

aware of the many pedagogical flexibilities in making precise definitions an integral

part of their teaching.

Finally, let us consider one more objection to the recommendation that there be

precise definitions for every concept in school mathematics, to the effect that stu-

dents should not be told the definition of a concept because a definition is something

that one formulates at the end of an exploration. So the theory is that we should

let students explore a new concept until they themselves come up with something

resembling a correct definition. This viewpoint about how to teach mathematics in

general, and teach definitions in particular, is part of an old pedagogical debate about

the Moore Method vs. direct instruction. It will not be productive to wade into this

debate here except to point out that, however the exploration approach is done, it

is very time-consuming and one must take the availability of instructional time into

account (see Section 3 of Wu, 1999c). Moreover, after a precise definition has been

formulated at the end of the exploration, one must bring mathematical closure by

retracing the steps of the exploration to let students see how the relevant mathematics
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can be developed on the basis of the precise definition. This will further decrease the

available instructional time. Thus far, discussions in the education literature seem

to be oblivious to the need for retracing the steps to show students how mathemat-

ics is developed using definitions and the need for additional instructional time to

make room for the retracing. This is but one manifestation of the tendency in the

education literature to make an advocacy without also meticulously enumerating the

possible detrimental side effects (see Section 4 of Wu, 1999c for a fairly comprehensive

discussion).

Other issues

For teachers transitioning from TSM to PBM, a minor—though a significant—

issue to be confronted is that they will have to learn how to teach certain topics in a

different logical order. We have already remarked in Subsection 3.2 that the concept

of mixed numbers can no longer be taught right after fractions are introduced (as in

TSM) but must wait until after the discussion of the addition of fractions (Example

5 revisited ). In the same subsection, we also remarked that finite decimals can no

longer be taught in a separate track independent of fractions but must be taught

as a special kind of fractions (Example 6 revisited ); this profoundly changes the

teaching of finite decimals because we can now explain the algorithms for decimal

addition, subtraction, and multiplication (for division, see pp. 81-86 in Wu, 2016a).

Perhaps the most prominent change of this kind is the teaching of the slope of a line

in middle school. In PBM, the definition of the slope depends on having available

the angle-angle criterion for similar triangles so that slope has to be taken up after a

serious discussion of the concept of similar triangles (Wu, 2016b, Section 4.3). Now,

although similar figures in TSM are those "with the same shape but not necessarily

the same size", PBM will insist on a precise definition of similarity. This, in turns,

requires that the school curriculum pave the way for such a precise definition. Teachers

must therefore be prepared for these massive changes in their internal conception of
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school mathematics. Since such a change in the teaching of slope is also part of

CCSSM, I received an email from an indignant teacher in the state of Washington

right after the release of CCSSM in June of 2010. He wrote:

After 13 years of teaching high school algebra, I wonder why you see

similarity as critically important to Algebra I mastery—that certainly

never occurred to me as a teacher of algebra. . . .What makes you say

that a student needs to understand similar triangles in order to write the

equation of a straight line between two points?

Clearly, teachers have to be willing to keep an open mind to learn PBM.

Among the fundamental principles of mathematics, the longitudinal coherence of

school mathematics may be one of the hardest thing for teachers to appreciate. The

only way they can learn it is to be exposed to several grades’ worth of PBM over a

long stretch of time. For elementary school mathematics, we can be more specific.

Take, for instance, the coherence of the four standard algorithms for whole numbers.

We already pointed out that all four revolve around a single idea: if we can compute

with single-digit numbers, then we can compute with any numbers no matter how

large (see Subsection 3.1). It would be impossible to see such coherence unless one

knows how to prove this fact for each of +, −, ×, and ÷, and this may not be so easy

especially for the long division algorithm. (Is that algorithm even a theorem? And

if it is, what does it say in the first place? see Sections 7.3–7.5 of Wu, 2011a.) Thus

a PD session devoted to making elementary teachers see such coherence has to first

give the detailed proofs of four separate theorems, and then has to give them time

to digest them so that they can step back and take note of the similarity in these

proofs. It should take no less than three full days. Teaching elementary teachers

about fractions in a way that enables them to see the coherence between the four

arithmetic operations on whole numbers and fractions should take at least another
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five full days. And so on.

It takes time to learn PBM.

5.2 The inservice PD we need

Our tentative conclusion is that, for real improvement in school mathematics educa-

tion to materialize, we will need a massive investment in long-term, content-based,

inservice PD to get our teachers ready to teach PBM. But can we put our trust in

PD to get this done? The answer is unfortunately not straightforward.

First of all, we have to provide more details about this proposed long-term,

content-based, inservice PD. By long-term, we have in mind a long stretch of time

of one week to three weeks during the summer. One may believe that, for example,

instead of one week in the summer, we can parcel out the 40 hours of PD into 20 two-

hour sessions during the school year, with one session per week. The problem with

breaking up one week in the summer into 20 sessions in the school year is that teachers

have too many obligations during the school year to remember what they learn from

week to week. If we have any design on impressing the coherence of PBM on teach-

ers, these two-hour sessions will not be the answer. Moreover, learning mathematics

requires serious mental concentration. Given how teachers already have to multi-task

all through the school year, summer may be the only time they can summon this

kind of concentration necessary for learning. Creating a learning environment for

teachers by holding the PD in consecutive days in the summer is thus the only viable

option. Holding the PD in consecutive days also tends to yield the pleasant dividend

of promoting collaboration among teachers. Beyond the summer session, we should

also help them retain—or remind them to apply—the new knowledge in the following

school year. To this end, some Saturday review sessions throughout the school year

would also be advisable.

About the content of the content-based PD, we hope no argument is necessary at
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this point that this content refers to the content of PBM and not TSM. We note in

passing that, because most professional developers were brought up in TSM, getting

and vetting competent providers for the needed PD will be a nontrivial problem.

"Long-term" and "content-based" are certainly not qualities one normally at-

tributes to most of the PD currently provided by school districts. Thirty years ago,

Judith Warren Little wrote about the PD system in California and showed that, in-

stead of providing learning opportunities for teachers, PD had too often devolved into

a series of uncoordinated rituals (Little, 1989). To those working in the trenches with

a firsthand knowledge of mathematics PD in the past decades, not much has changed

since the appearance of Little’s article (see, e.g., Wu, 1999b and U. S. Department of

Education, 2009, p. 95). This is by way of saying that if we are committed to using

PD to help teachers learn PBM, we must be ready to fight for long-term and content-

based as nonnegotiable requirements. By a happy coincidence, the 2017 publication

of Effective Professional Development (Darling-Hammond et al., 2017) also comes to

a similar conclusion. The work of Darling-Hammond et al. set out to discover the

common features of effective PD in all fields and is not exclusively about mathemat-

ics, so it has little overlap with the present article. Nevertheless, it too concludes that

effective PD must be "content focused" and "of sustained duration".26

In addition to these intellectual concerns, there is also a practical matter that

is no less important. Learning mathematics is almost never a fun activity in the

everyday sense of "fun"; it is hard work, and the PD cannot succeed without teachers’

willingness to work hard. The only way to ensure that the teachers will put in the

hard work is to pay them generously for their daily attendance. This therefore means

that the desired PD will not only be of sustained duration and PBM-based, but also
26We also agree with Darling-Hammond et al. on the need to "support collaboration", as we shall

see in the next subsection.
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expensive.27

We should also address the role of pedagogy in PD. Let it be noted that our

concept of "content" already takes pedagogy into account because PBM addresses

not mathematics but school mathematics, i.e., how mathematics should be taught in

schools. In addition, while specific pedagogical issues will inevitably arise in any PD,

we must be careful to keep the amount of purely pedagogical discussions in the PD

in check. I took note of this fact for the first time when I had the opportunity to

observe other people’s PD in California back in the late 1990’s (Wu, 1999b). What

I found was that when content knowledge was only one of many topics of concern in

PD, it would not get the attention it deserved, nor would it inspire the needed effort

on the part of teachers to make foundational changes in their content knowledge.

It remains to point out that while we have been talking about PBM as if it is

a common entity that is easily accessible, but the fact is that it is not. The PD

providers for the PD under discussion will have to create their own materials because

the PD literature is almost completely immersed in TSM. If people want to take a

look at PBM, however, they can always look up the six volumes of Wu, 2011a, 2016a,

2016b, and 2020.

Having pinned down the general parameters of the PD we need, we are now

ready to go to work—except that, as we mentioned at the beginning of Section 5,

there is one more hurdle to overcome: recent research by the Institute of Education

Sciences (IES) asserts that even "teachers who received the best of the best PD" are

unlikely to "see large, lasting improvements in their practice, knowledge, or student

learning" (Hasiotis, 2015). More precisely, the two studies by Garet et al., one in 2011

(conducted over a two-year period in 2007–2009) and another in 2016 (conducted

in 2013–2014), raised serious doubts about the ability of content-intensive PD for

inservice mathematics teachers to raise student achievement. Fortunately, a closer
27Though a generous stipend by itself will not guarantee hard work or success.
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examination of these two studies—which will be given in the next section, Section

6—reveals serious flaws in the design of their PD that might have led them astray.

Thus the jury on the alleged ineffectiveness of PD is still out, and we all have every

reason to proceed with the PD that has just been carefully outlined above. The next

subsection gives a slight nudge in this direction.

5.3 An inservice PD program

The kind of PD proposed in the preceding subsection did not come out of the blue. It

is based on the author’s personal experience and it serves the modest goal of providing

one data point that attests to the possible validity of such an approach to PD.

Each summer, from 2000 to 2013, I gave three-week PD institutes for mathematics

teachers of K–8, mostly in Berkeley, CA, and sometimes more than once a year. The

goal of these institutes was for inservice teachers not only to learn PBM, but to also

achieve long-term retention of the new knowledge. The institutes met five days a

week (M–F), about eight hours a day (including lunch), with homework assignments

every day. I would lecture to the whole group for 4 to 5 hours each day, and the day

would always end in small group meetings lasting 60 to 90 minutes, led by my three

assistants. Each PD institute was followed by five Saturday follow-up sessions (one

every two months) in the following school year to review the new content knowledge

and to discuss the progress teachers were making putting it into practice in their

classrooms..

Each year we put the word out about these institutes and asked teachers to ap-

ply to participate. Every participating teacher who attended all three weeks of the

institute received a stipend of $1500, i.e., $100 a day.28 For every follow-up Saturday

session, each participant received a stipend of $100. We actively encouraged group
28In the last six or so institutes, I tried to raised the daily stipend to $125, but there was insufficient

funding to do it.
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applications by teachers from schools in the same district because we believed that

being able to consult with colleagues about mathematics would ensure better learning

as well as better retention of PBM. It is gratifying to report that we did witness many

cases of collaboration during and after the summer institutes that have continued to

this day.

There were three kinds of institutes:

(1) Elementary Institute: whole numbers (4 days), elementary number

theory (2 days), fractions—including decimals—and their arithmetic (6

days), percent, ratio, and rate (3 days). (Reference: Wu, 2011a.)

(2) Pre-Algebra Institute: Review of fractions, percent, ratio, and

rate (4 days), rational numbers (3 days), experimental geometry (3 days),

geometric vocabulary, congruence, and similarity (4 days), length and area

(1 day). (Reference: Wu, 2016a.)

(3) Algebra Institute: use of symbols (2 days), linear equations in one

and two variables, including a correct definition of the slope of a line (3

days), simultaneous linear equations (1 day), laws of exponents, expo-

nential functions and their graphs (4 days), quadratic functions and their

graphs (3 days). (Reference: Wu, 2016b.)

Although these institutes were unapologetically devoted to the dissemination of

PBM, pedagogy also played a role. In the first few years, I arranged for a short

session of about an hour on pedagogical discussions at the end of each day, but it

turned out that almost all the teachers were so absorbed in learning the mathematics

that essentially nobody wanted to broach the subject of pedagogy. So I stopped making

time for the discussion of pedagogy in the institutes thereafter. Instead, I made

sure that pedagogy and content were given equal emphasis in the Saturday follow-up

sessions. Teachers were asked to share personal stories about their own attempts to
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integrate the newly acquired knowledge into their classrooms, and their pedagogical

strategies were then openly discussed and critiqued. It seemed quite clear that the

teachers began to understand the mathematics on a deeper level when they tried to

build their pedagogy on a foundation of correct school mathematics. Year after year,

teachers would tell me that it was usually not until the fifth (and last) Saturday

follow-up session, nine months after their first exposure to the new content, that they

began to feel that they owned the material. Apparently, it took the combination

of the intensive three-week immersion in content (120 hours) and the leisurely nine

months of gestation and fledgling attempts at classroom applications for them to

begin making foundational changes in their content knowledge.

Naturally, I was interested in whether these institutes had any effect on the par-

ticipating teachers’ performance. Together with a school district’s Director of In-

struction, we applied twice to federal agencies, in 2012 and 2013, for a grant to teach

fractions to elementary teachers and then (1) videotape the PD sessions and make

them available online, and (2) follow each participating teacher’s student scores for

three years to examine their value-added measurements. However, our applications

were rejected. This explains why I have no hard data to report. Nevertheless, a few

individual teachers have privately contacted me to share their personal successes, and

these are recorded in Section 2.4 of Wu, 2018. The anonymous evaluations by the

teachers of the PD institutes from 2009 to 2013 are also available on request: please

write wu@berkeley.edu.

6 The IES Impact Studies

In this section, we will closely examine the study by Garet et al., 2011 on the impact

of content-intensive PD on inservice mathematics teachers’ ability to raise student

achievement. Some attention will also be given to the impact study of Garet et al.,

55



2016.

First of all, these two studies differ from earlier ones in their built-in methodolog-

ical credibility: they used a rigorous experimental design and, in addition, had large

meaningful sample sizes: the 2011 study involved some 150 teachers and the 2016

study 221 teachers. The bleak conclusion of the 2011 study was that

after two years of implementation, the PD program did not have

a statistically significant impact on teacher knowledge or on stu-

dent achievement in rational numbers (page 53 of Garet et al., 2011).

The outcome of the 2016 study was that "the PD did not have a positive impact

on student achievement" but "the PD had a positive impact on teacher knowledge"

(page 40 and page 35, respectively, of Garet et al., 2016).

Together with an earlier impact study on early reading instruction (Garet et al.,

2008), the 2011 impact study of Garet et al. led to the 68-page report published by

TNTP, The Mirage (TNTP, 2015), on the ineffectiveness of inservice PD in general,

not just in mathematics or reading. The main conclusion of The Mirage was:

In short, we bombard teachers with help, but most of it is not helpful—to

teachers as professionals or to schools seeking better instruction. We are

not the first to say this: In the last decade, two federally funded exper-

imental studies of sustained, content-focused and job-embedded profes-

sional development have found that these interventions did not result in

long-lasting, significant changes in teacher practice or student outcomes.

(TNTP, 2015, page 2)

The two "federally funded experimental studies" referred to above are the 2008 and

2011 studies of Garet et al. These studies, together with The Mirage and the 2016

impact study of Garet et al., were written up in the popular press (Layton, 2015,
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and Loewus, 2016), and the perception began to take hold that inservice PD as a

means of achieving education improvement is a blind alley (see, e.g., Dynarski, 2018).

Were the conclusions of these impact studies valid, we would be wasting our time

here talking about the use of PD to help teachers learn PBM.

For all these reasons, a critical examination of (at least) the 2011 impact studies

on mathematics is overdue. Although the 2016 study is about fourth grade teachers

(rather than seventh grade teachers as in the 2011 study), the flaws of the two studies

are essentially the same from a broader perspective—both ignore the crippling effect

of TSM on school mathematics in their PD design. For our purpose here, we will

simply concentrate on the 2011 study.

6.1 The PD program of the 2011 impact study

To better understand the PD program of Garet et al., 2011, we begin with a brief de-

scription of its design. It was a two-year program for 7th grade mathematics teachers

on the following topics: "fractions, decimals, percent, ratio, rate, and proportion".

In the first year, teachers were given:

a 3-day summer institute on content instruction (18 hours)

5 one-day follow-up seminars during the school year (30 hours)

10 days of coaching (20 hours)

Of the 8 days of content instruction and seminars, 4 were devoted to fractions and

decimals and the other 4 to ratio, rate, proportion, and percent. In the second year,

teachers were given:

a 2-day summer institute on content instruction (12 hours)

3 one-day follow-up seminars during the school year (18 hours)

8 days of coaching (16 hours)
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Of the 5 days of content instruction and seminars, 4 were devoted to ratio, rate,

proportion, and percent, and 1 day to fractions and decimals. (By the second year,

the PD organizers realized that teachers were having real trouble with ratio, rate,

proportion, and percent, and they adjusted accordingly.)

The report states that the PD provided by the impact study made use of the

number line for the discussion of fractions and emphasized precise definitions, but

the report also states that it was not designed to improve teachers’ content knowledge

(page 21 of Garet et al., 2011). Rather, the focus of the PD was on pedagogical

enhancements such as developing their ability to

identify and address persistent student misconceptions. . . The pedagogical

techniques that received the most attention were eliciting and responding

to student thinking, using charts to keep track of particular student mis-

conceptions. . . (page 21 of Garet et al., 2011)

Since students’ most serious misconceptions regarding ratio, rate, proportion, and

percent stem from TSM itself—which we will demonstrate in the next subsection—it

is not clear how this PD could "address" these misconceptions without identifying

and uprooting TSM and replacing it with PBM. We are not aware of any pedagogical

strategy that can transform TSM into PBM.

In greater detail, this impact study refers to "the knowledge of topics in rational

numbers that students should ideally have after completing the seventh grade" as

CK (common knowledge), and to "the additional knowledge of rational numbers that

may be useful for teaching rational number topics" as SK (specialized knowledge for

teaching). Keep in mind that the "CK" as stated consists of nothing but TSM. Of

the total number of 13 (= 8+5) days devoted to content instruction and seminar in

the PD program,

the focus of the presentation in both years was on SK, and instruction

58



in common knowledge of mathematics content CK was mainly implicit.

. . . the PD was not presented to teachers as an opportunity to improve

their understanding of rational number content. (p. 21 of Garet et al.,

2011)

Overall, we may summarize the PD program of the impact study as maintaining

teachers’ knowledge of TSM at the level of students’ grade 7 textbooks and empow-

ering them with better pedagogical techniques.

We note that such a PD program, favoring SK over CK, is not compatible with a

recommendations from the National Mathematics Advisory Panel, to the effect that

"teachers be given ample opportunities to learn mathematics for teaching. That is,

teachers must know in detail and from a more advanced perspective the mathematical

content they are responsible for teaching and the connections of that content to other

important mathematics, both prior to and beyond the level they are assigned to

teach" (Recommendation 19 on page xxi of National Mathematics Advisory Panel,

2008). In the next subsection, Subsection 6.2, we will explain why without a far

better content knowledge than the grade-level TSM they possess at present, teachers

cannot hope to become more effective in teaching ratio, rate, proportion, and percent.

Granting this, the conclusion of the impact study would have been more accurately

described as follows:

The study results are consistent with the expectation, as of 2019,

that a mathematics PD program that does not replace teachers’

content knowledge of TSM with PBM will not be likely to have

a statistically significant impact on student achievement.
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6.2 Ratio, percent, and rate in TSM

Recall that the stated goal of the PD in the impact study was to raise teachers’

content knowledge to the level of what "students should ideally have after completing

the seventh grade", and its main focus was on improving the teaching of ratio, percent,

rate, and proportion. Simply put, what the IES impact study aspired to do was equip

teachers with the best knowledge base that TSM had to offer students in the 7th grade

curriculum, with the hope that these teachers would then be able to boost student

achievement by better pedagogy alone.

This strategy was bound to fail because percent, ratio, and rate are among the

most feared topics by middle school teachers and students. Why fear? Because:

(1) Understanding ratio, percent, and rate requires a fluent knowledge

of fractions in the first place. Since the knowledge of fractions for most

students is precarious, they are handicapped before they begin.

(2) These three topics come after the division of fractions, and we have to

remember: "ours is not to reason why, just invert and multiply".

(3) The presentations of percent, ratio, and rate in TSM are seriously

flawed.

Let us elaborate on (3).

Ratio and percent

We first consider ratio and percent. How are they defined for students in TSM?

Percent and ratio are words in our daily conversation, and we all have a vague idea

what "the ratio of Democrats to Republicans in this gathering is about 2 to 3" means:

if there are about 200 Democrats in the gathering, there will be about 300 Republicans

there. But what if there are about 2365 Republicans, can students still figure out

roughly how many Democrats there are? Mathematics is a discipline of precision, so

60



students need a precise meaning of "ratio". In TSM, ratio is "defined" in a variety of

ways, but the following are typical:29

∙ A ratio is a comparison of two numbers, 𝑎 and 𝑏, written as a fraction 𝑎
𝑏
. You

can write a ratio in three ways.

1 to 45 or 1 : 45 or
1

45
.

You can write a ratio to compare two amounts—a part to a part, a part to the

whole, or the whole to a part.

∙ A ratio is a comparison of two numbers. It may be written in three different

ways. The ratio of the number of people who picked "hazardous waste mate-

rial" (18) to the number of people who picked "greenhouse effect" (9) [in the

preceding survey] can be written as:

18 to 9, 18 : 9,
18

9
.

. . . If you think of a ratio as a fraction, then 18
9
= 2

1
. They are equal ratios.

∙ Ratios are encountered in everyday life. For example, there may be a 2-to-3

ratio of Democrats to Republicans on a certain legislative committee, a friend

may be given a speeding ticket for driving 69 miles per hour, or eggs may cost

98 cents a dozen. Each of these illustrates a ratio. Ratios are written 𝑎
𝑏

or

𝑎 : 𝑏 and are usually used to compare quantities.

A ratio of 1 : 3 for boys to girls in a class means that the number of boys is
1
3

that of girls, that is, there is one boy for every three girls. Notice we could

also say that the ratio of girls to boys is 3 : 1, or that there are three times as

many girls as boys. The ratio of 1 : 3 for boys to girls in a class does not tell us
29These bulleted statements are taken directly from textbooks.
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how many boys and how many girls there are in the class. It only tells us the

relative size of the groups.

Does any one of these abstruse "definitions" tell students clearly what a ratio is?

In the first bullet, for instance, it suggests that a ratio is a comparison of two numbers

that is written as a fraction. Since a fraction is a number, is ratio therefore also a

number? If so, why say it is a "comparison", which suggests that it is some kind of

an "action"? But wait: a fraction 𝑎
𝑏

implies that, by definition, 𝑎 and 𝑏 are both

whole numbers. Does this mean we can only "compare" two whole numbers? Since

people also use "ratio" to compare fractions—the ratio of flour to sugar in a recipe

is 13
4

cups to 2
3

cups—shouldn’t the definition have been replaced by something like

the following?

A ratio is a comparison of two fractions, 𝑎 and 𝑏, obtained by dividing the

fractions: 𝑎
𝑏
.

In addition, the last sentence of the first bullet talks about comparing "two amounts"

instead of two numbers. What is an "amount", and what is "a part to a part, a part

to the whole, or the whole to a part" all about?

We can go further. For example, the statement that "the ratio of Democrats to

Republicans in this gathering is about 2 to 3" has a well-known interpretation of "to

every 2 Democrats there are 3 Republicans". Every student needs to know (1) what it

means to say "to every 2 Democrats there are 3 Republicans" and, more to the point,

(2) how does the definition of ratio lead to this interpretation? TSM does not even

pretend to address these questions. (see Chapter 22 of Wu, 2011a for some answers

to the preceding questions.)

A mathematical definition must at least address these basic, mundane issues, but

the first bullet does not. It is therefore easy to see why, given such a variety of
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"definitions" of a ratio, it is very difficult for learning to take place. This is why

students fear ratios.

Without a definition of ratio that makes sense, there can be no reasoning to

speak of (see the discussion of learning about definitions in Subsection 5.1). Similar

comments can easily be made about the other two bullets.

We have thus seen that ratio is a confused concept both within TSM and in daily

life. To introduce school students to ratio, we must find a definition that provides an

entry point into such a vague concept that is correct, simple, and therefore learnable.

If we introduce the concept of a complex fraction as the division of two fractions (see

Chapter 19 of Wu, 2011a), then a ratio of two fractions 𝐴 and 𝐵 can be simply defined

to be the complex fraction 𝐴
𝐵

. All the standard ratio problems can then be easily

solved by the use of reasoning (see Chapter 22 of Wu, 2011a).

The sins of TSM on the subject of ratio run deeper. Implicit in the preceding

"definitions" is the belief that ratio is an ineffable concept, so that even a verbose

description will not "discharge its full meaning" (Lamon, 1999, page 165). Yet, later in

the school curriculum, TSM has no hesitation in defining a ratio simply as a division.

For example, the ratio of the circumference to the diameter of a circle is the number

𝜋, the ratio of "rise over run" of a straight line in the coordinate plane is one number,

the slope, and the ratio of the opposite side of an acute angle of 𝑡 radians in a right

triangle to the hypotenuse of the right triangle is also one number, sin 𝑡. But TSM

never addresses the disconnect between this and its earlier, inscrutable "definition"

of a ratio,30 and every middle school teacher is aware of that. This is why teachers,

too, fear ratios.

Next, percent. Here are some typical TSM "definitions".31

∙ Percent is a special kind of ratio in which the second quantity is always 100.
30A blatant example of incoherence (see the fundamental principles of mathematics in Section 3.1.
31These bulleted statements are taken directly from textbooks.
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∙ Remember that percent means "out of 100". You find a percent by first dividing

to find a decimal.

∙ Percent: part of 100, or per hundred.

Do these "definitions" tell us what "percent" means? If students already have trouble

understanding what a "ratio" is, how is the first bullet going to help them understand

"percent"? Is "out of a hundred" or "of each hundred" a number, and if so, what

number is it?

TSM is apparently indifferent to these concerns, but it will tell you how to solve

"percent" problems by laying down some "rules". For example, the second bullet

already has a built-in rule: divide to find a decimal. What is the reasoning that leads

from "out of 100" to "divide to find a decimal"? None that we can see. It is an

arbitrary rule dictated by TSM.

On the basis of the second bullet, the suggested way to solve "what percent of 80 is

45? " is this: 45÷80 = 0.5625, "which when rounded to the nearest 100th" is 0.56. So

the answer is: about 56%. Notice that we are using the fact that one can obtain the

decimal representation of a fraction by long division to get the answer to this simple

question. This fact about "dividing numerator by denominator to get a decimal" is

in fact very difficult to prove at the level of school mathematics (for a preliminary

explanation, see pp. 81-86 of Wu, 2016a, and for the full proof, see Section 3.4 in the

third volume of Wu, 2020), and is in any case only taught by rote in TSM. Thus, to

find an approximate answer to "what percent of 80 is 45?", students have to follow

an arbitrary rule, and also use a difficult fact they could only memorize by rote. No

reasoning in any case. What are we teaching and learning here except how to follow

rules?

For another example, starting with the third bullet ("Percent: part of 100"), the

answer to what is 45% of 80? can be found by one of two "rules", according to
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TSM. First rule: set up a proportion: 45
100 = 𝑛

80 . By the CMA (cross-multiplication

algorithm), 45× 80 = 100𝑛 and therefore 𝑛 = 36. Second rule: multiply the number

by the percent: 45%× 80 = 36. TSM is silent about how to start with "part of 100"

and arrive at either of these solution methods by the use of reasoning.32 TSM is also

silent on whether there is any connection between the two methods. As far as TSM is

concerned, it is enough that both methods seem intuitively related to "part of 100",

and that both methods yield the correct answer. This is why, in TSM, percent is not

learnable as mathematics, and this is why teachers and students both fear it.

One can consult Chapter 20 of Wu, 2011a for a simple definition of percent and

see how—on the basis of this definition—reasoning leads to straightforward solutions

of all such standard problems.

Rate

A great deal can be said about how the concept of rate is abused in TSM (see

Section 7.2 of Wu, 2016b), but we will limit ourselves here to discussing only con-

tinuous rates33(those related to, e.g., motion, water flow, lawn-mowing). We already

touched on the most troubling aspect of TSM’s treatment of rate problems when

we discussed Luis’ walking problem in Subsection 5.1: its reliance on the fictitious

concept of proportional reasoning to solve problems. But there are other issues.

TSM should make clear at the outset that rate, as it is understood intuitively,

cannot be taught as mathematics in K–12 (it requires the use of the derivative and

is therefore a calculus concept). But this message has never gotten out. As we noted

in Subsection 5.1, what can be taught in K–12 are the concepts of average rate (over

a fixed time interval) and constant rate, but TSM shows little or no inclination to

define either precisely or teach either seriously. Instead, TSM serves up the following
32See Nike’s trademarked slogan: "Just do it".
33The concepts of what is "continuous" and what is "discrete" are well understood in mathematics,

but for the case at hand, the ad hoc explanation of "continuous" given in the parentheses is sufficient.
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brew of "definitions" for rate:34

∙ A rate is a ratio that involves two different units. A rate is usually given as a

quantity per unit such as miles per hour.

∙ A rate is a ratio that compares two quantities having different units of measure.

∙ A rate is the quotient of two quantities with different units. A quantity whose

unit contains the word "per" or "for each" or some synonym.

Again, these "definitions" are not informative because, this time around, none of

them even makes any pretense at trying to give students any usable mathematical

information. In two out of three cases, these definitions are built on the concept of

ratio. Since TSM never explains clearly what ratio is, how can students use what

little they know about ratio to find out what "rate" is?

In summary

The many mathematical flaws in the way percent, ratio and rate are taught in

TSM make these topics unlearnable, and that is why they are feared by one and all.

When the 2011 IES impact study considered teachers’ content knowledge to be

adequate for teaching ratio, percent, rate, and proportion if it was equal to "the

knowledge of topics in rational numbers that students should ideally have after com-

pleting the seventh grade" (page 21 of Garet et al., 2011), it failed to recognize the

damage TSM had done to teachers and to school mathematics education as a whole.

This is tantamount to saying that TSM is good enough. If the foregoing analysis in

this subsection means anything at all, it is that TSM is not good enough.35 By not

providing teachers with an improved content knowledge base, the IES impact study
34These bulleted statements are taken directly from textbooks.
35This conclusion is also consistent with the fact that, by the second year of the impact study, it

became apparent to the researchers that the teachers were having trouble with the 7th-grade topics
of ratio, percent, and rate.
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in effect forced them to present the standard unlearnable TSM to their students.

Was it the teachers’ fault that they turned out to be ineffective in raising student

achievement?

In this light, the IES impact study—while its good intentions are undeniable—

cannot serve as a reliable gauge of whether PD can improve teachers’ effectiveness or

student achievement. It would make sense to do a similar study with a PD program

that teaches PBM to teachers in the first place.

6.3 Final thoughts

We want to come to a real appreciation for why the 2011 IES impact study failed to

raise student achievement.

Our first thought is that grade 7 is probably not the best grade to choose for

the purpose of an impact study, for the following reason. We saw in the preceding

subsection, Subsection 6.2, that ratio, rate, and percent are concepts that have been

made more difficult by TSM than they actually are. Any attempt to improve teachers’

mastery of these concepts must begin by providing teachers with precise definitions

for these concepts and showing teachers—on the basis of these definitions—how to

use reasoning to solve all the standard problems with ease. In other words, the

PD must help teachers relearn these topics from the standpoint of PBM. There is

a catch, however. Teachers cannot learn the new content knowledge about ratio,

rate, and percent without first acquiring a new foundation for fractions such as that

presented in Subsection 3.2. To help teachers of 7th grade to better teach ratio, rate,

and percent, it is necessary to first revamp their knowledge of fractions. We are thus

suggesting that the PD program of the 2011 impact study should have been more

comprehensive in terms of content, and it should also be held over a longer time

duration. A future impact study may try to avoid grade 7 and work with teachers in
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an earlier grade.36

If we accept the foregoing explanation that teachers’ faulty knowledge of fractions

and ratio, percent, and rate, based on TSM, cannot be used in a school classroom,

then it immediately raises the question of whether the impact study’s emphasis on SK

(specialized knowledge for teaching) at the expense of CK (common knowledge) was

a good decision (see Section 6.1). The impact study made the decision to essentially

leave teachers’ knowledge of TSM for 7th grade intact and empower them with some

new pedagogical techniques, hoping that the same teachers would nevertheless raise

student achievement. Having the benefit of hindsight, we would put the emphasis of

the PD program on CK to help teachers eradicate their knowledge of TSM and replace

it with PBM. Mindful of teachers’ need for intensive content immersion, we would also

increase the number of summer institute days37 from 3 to 8, expand the length of the

day from 6 to 8 hours (including lunch), and give out daily homework assignments.

(There is nothing like doing exercises to improve one’s understanding of mathematics.)

Of the eight summer institute days, a tentative suggestion would be to spend five

days on the definition of fractions, the comparison of fractions and the arithmetic

operations on fractions. Middle school teachers really need a firm foundation on

fractions because almost everything they teach rests on this foundational knowledge.

The remaining three days could then be devoted to a thorough discussion of complex

fractions (see Chapter 19 of Wu, 2011a), ratio, percent, and rate. We should add

that complex fractions are absolutely essential for any discussion of ratio, percent,

and rate. One of the reasons that TSM cannot make sense of these three concepts is

precisely its neglect of the concept of complex fractions (see Wu, 2016a, Section 1.7).
36We may note that the 2016 impact study of Garet et al., 2016 did avoid this pitfall and chose to

work with 4th grade teachers. However, the content component of the 2016 study has some issues
of its own, including a lack of awareness of the damage TSM has done to teachers.

37If my own experience in PD is any guide, eight days of content instruction do not really count
as "intensive immersion". But we do have to compromise with reality.
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It goes without saying that the content of the eight summer institute days would

be PBM rather than TSM (Section 3). Given the present lack of usable PBM mate-

rials (cf. the discussion in Section 4), allow me to suggest Chapter 1 of Wu, 2016a,

without the long Section 1.10 on probability, as a reference. (Wu, 2016a was actually

written explicitly for this kind of PD for middle school teachers.) A slightly different

suggestion would be Part 2 of Wu, 2011a, without Chapters 23 and 24.

The 10 days of coaching in the original PD design of the impact study is an

excellent idea, but having to send so many coaches to different school districts poses

a problem of getting qualified coaches. This also brings up a similar issue of how to get

enough PD facilitators for the summer institutes to be given in the participating school

districts. As we have indicated all along, most PD providers are themselves products

of TSM. For them to be effective in helping teachers learn PBM, they themselves

will have to undergo training to learn PBM first. Therefore, before teaching teachers,

we will have to teach coaches and PD facilitators. There is no getting around this

difficulty, the fact that the preparation for such an impact study—in addition to the

usual logistical issues—would have to take place months before the study itself for the

purpose of creating a corps of qualified coaches and facilitators. The content-intensive

training for this purpose is similar to the content-intensive PD for the teachers, except

that there will be less room for failure because the coaches and facilitators will be

responsible for the PD after all. We will not go into the details of this training because

much of it will take us far away from our main concern with PD for teachers.

In summary, this discussion may give a better idea of why one should not jump to

conclusions about the non-effectiveness of inservice PD for improving school mathe-

matics education on the basis of one or two impact studies. We hope there will soon

be a follow-up impact study with a better design.
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7 Miscellaneous remarks

(1) As of 2019, elementary teachers are generalists, and it is impractical to ask all

generalists to teach PBM. The reality is that learning and teaching PBM will

take more dedication and time than a typical generalist can afford. Any real

improvement in elementary mathematics education will inevitably require the

creation of mathematics teachers—often called math specialists—to teach the

mathematics of elementary school (see Wu, 2009). These math specialists will

certainly need the content-intensive training in PBM mentioned above.

(2) If we want more effective teachers, we cannot talk only about inservice PD be-

cause we must teach PBM to all pre-service teachers so that the new teachers

coming out of the pipeline will help solve the TSM-infestation problem rather

than adding to it. Now preservice PD is understandably a different beast from

inservice PD, and we will only lightly touch on a few of the major issues that

complicate the preservice picture.

First of all, few colleges are willing to offer a mathematics course for teachers

because teaching such a course on PBM will likely require extensive cooperation

between the school of education and the department of mathematics. Given the

often frosty relationship between these two units on many campuses, this obsta-

cle can be overcome only by a leadership with intellectual vision and dedication

to social justice. On top of that, there is the obvious problem with textbooks

because an overwhelming majority of the available preservice PD textbooks are

mired in TSM. The presence of these books is part of the reason that TSM

is continually recycled in the world of education. There is also a less obvious

personnel problem, as we now explain.

In year 2019, those with the requisite mathematical knowledge to teach PBM—

70



regardless of grade level—are overwhelmingly found in mathematics depart-

ments. A typical mathematician is, however, ill-equipped to teach a course on

correct school mathematics, for several reasons. Such a course is "elementary"

in the sense of the usual mathematical hierarchy and will therefore be treated

like calculus, and it is sad but true that calculus is usually taught as TSM.

Moreover, teaching a course on PBM requires mathematical sophistication on a

level with teaching an upper division course like introductory analysis (𝜖’s and

𝛿’s) or abstract algebra (groups, rings, and fields). But teaching the former like

an upper division course for math majors would be unfair to future teachers and

ill-equip those teachers to teach their future students. Very often, the proofs

(explanations) in a course for teachers—if done correctly—would be the most

intuitive, not the shortest possible. Short proofs tend to be mathematically

sophisticated and, therefore, generally not appropriate for school students. We

would prefer that preservice teachers learn something close to what they will

have to teach. For example, the explanation that (−𝑎)(−𝑏) = 𝑎𝑏 for rational

number 𝑎 and 𝑏 is something that bedevils most middle school students along

with many of their teachers. In Wu, 2016a, the explanation of this fact takes

a full five pages (middle of page 166 to the middle of page 171). The usual

three-line mathematical proof, expanded to half a page, is finally given in the

lower half of the last page, page 171. A typical mathematician, approaching

such a course for teachers as one in pure mathematics, would surely scoff at

such verbosity as a waste of time. There are many such mathematical issues

that can potentially reduce the relevance of such a course on PBM to future

teachers. Ideally, one can smooth over such bumps on the road if there is a good

working relationship between the School of Education and the Department of

Mathematics, but such a spirit of cooperation is currently in short supply. Get-

ting the right people to teach such a course will probably be a thorny issue for
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a long time to come.

(3) Finally, we have advocated for sustained PD to teach teachers correct school

mathematics. While this seems not to be happening yet, several education cen-

ters around the country have been offering PD for mathematics teachers that

focusses on solving hard problems or doing mathematical research. Any effort

at raising the content knowledge of mathematics teachers is welcome, so there is

no doubt that these centers are doing something right for a certain population

in school mathematics education. Nevertheless, we must not lose sight of the

fact that we have to raise the general level of content knowledge of the average

teacher if better school mathematics education is our goal. If those centers that

teach problem solving or helping teachers do research could convey the mes-

sage that the problem solving and the mathematical research are means to an

end, the end being the replacement of TSM by PBM, they would be making

a major contribution to the cause of better school mathematics education for all.
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