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This is a presentation whose target audience is primarily math-
ematics teachers of grades 5–8. The main objectives are to:

1. Explain the inherent conceptual difficulties in the learning of
algebra.

2. Explain the artificial difficulties created by human errors.

3. Give two examples to illustrate what can be done to smooth
students’ entry into algebra.



1. Inherent conceptual difficulties

Arithmetic is about the computation of specific numbers. E.g.,

126× 3
8 = ?

Algebra is about what is true in general for all numbers, all whole
numbers, all integers, etc. E.g.,

a2 + 2ab + b2 = (a + b)2 for all numbers a and b

Going from the specific to the general is a giant conceptual leap.
It took mankind roughly 33 centuries to come to terms with it.



1a. Routine use of symbols

Algebra requires the use of symbols at every turn. For exam-
ple, we write a general quadratic equation without a moment of
thought:

Find a number x so that

ax2 + bx + c = 0

where a, b, c are fixed numbers.

However, the ability to do this was the result of the aforemen-
tioned 33 centuries of conceptual development, from the Baby-
lonians (17th century B.C.) to R. Descartes (1596-1640).



What happens when you don’t have symbolic notation?

From al-Khwarizmi (circa 780-850): What must be the
square which, when increased by 10 of its own roots, amounts
to thirty-nine? The solution is this: You halve the number of
roots, which in the present instance yields five. This you multiply
by itself: the product is twenty-five. Add this to thirty-nine; the
sum is sixty-four. Now take the root of this, which is eight, and
subtract from it half the number of the roots, which is five; the
remainder is three. This is the root of the square which you
sought for.



An annotation:

What must be the square [x2] which, when increased by 10 of its
own roots [+10x], amounts to thirty-nine [= 39]? The solution
is this: You halve the number of roots [102 ], which in the present
instance yields five. This you multiply by itself: the product is
twenty-five. Add this to thirty-nine; the sum is sixty-four. Now
take the (square) root of this, which is eight, and subtract from
it half the number of the roots, which is five; the remainder is
three. This is the root of the square which you sought for.

Solve x2 + 10x− 39 = 0:

−10 +
√

102 + 4× 39

2
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(10

2

)
+

√(10

2

)2
+ 39 = 3



Therefore, do not coddle your students in grades 3-8 by mini-
mizing the use of symbols. Celebrate the use of symbols instead.

Teachers of primary grades: please use an n or an x, at least from
time to time, whenever a appears in a problem promoting
“algebraic thinking”, e.g.,

5 + = 13

There is no “developmental appropriateness” issue here. (See
the Learning-Processes Task Group report of the National Math
Panel, or the many articles of Daniel Willingham in American
Educator.)



1b. Concept of generality

Generality and symbolic notation go hand-in-hand. How can we
do mathematics if we don’t have symbols to express, for example,
the following general fact about a positive integer n?

The difference of any two nth powers is equal to the
product of the difference of the two numbers and the
sum of products consisting of the (n− 1)th power of the
first number, then the product of the (n − 2)th power
of the first and the first power of the second, then the
product of the (n−3)th power of the first and the second
power of the second, and so on, until the (n−1)th power
of the second number.



In symbols, this is succinctly expressed as the identity:

an − bn = (a− b)(an−1 + an−2b + an−3b2 + · · ·+ abn−2 + bn−1)

for all numbers a and b

As an example of the power of generality, this identity implies
(i) 177 − 67 is not a prime number, nor is 81573 − 67473 , etc.,
and (ii) one can sum any geometric series, e.g., letting a = 1
and b = π,

1− πn = (1− π)(1 + π + π2 + π3 + · · ·+ πn)

implies

1 + π + π2 + π3 + · · ·+ πn =
πn − 1

π − 1



The need for generality manifests itself in another context. Es-
sentially all of higher mathematics and science and technology
depends on the ability to represent geometric data algebraically
or analytically (i.e., using tools from calculus). Thus something
as simple as the algebraic representation of a line requires the
language of generality. E.g.:

Consider all pairs of numbers (x, y) that satisfy ax+by =
c, where a and b are fixed numbers. Such a collection is
a line in the coordinate plane.



1c. Abstract nature of algebra

The main object of study of arithmetic is numbers: whole num-
bers, fractions, and negative numbers.

Numbers are tangible objects when compared with the main ob-
jects of study of algebra:

equations, identities, functions and their graphs, formal
polynomial expressions (polynomial forms), and rational

exponents of numbers (e.g., 2.4−6.95).



Among these, the concept of a function may be the most fun-
damental. Functions are to algebra what numbers are to arith-
metic. For example, consider the function

f(x) = ex (3x4 − 7x + 11)

One cannot picture this function as a finite collection of numbers,
say

e5 (3 · 54 − 7 · 5 + 11), and

e21 (3 · 214 − 7 · 21 + 11),

but must take into account all the numbers {f(x)} all at once.
This is a difficult step to make for all beginning students, and no
one approach can eliminate this difficulty. Graphing f provides
partial help to visualizing all the f(x)’s, but the concept of a
graph is itself an abstraction.



1d. Precision

It is in the nature of an abstract concept that, because it is
inaccessible to everyday experience, our only hope of getting to
know it is by getting a precise description of what it is. This
is why the more advanced the mathematics, the more abstract
it becomes, and the more we are dependent on precision for its
mastery.

While all of mathematics demands precision, the need for preci-
sion is far greater in algebra than in arithmetic.



Here is an example of the kind of precision necessary in algebra.
We are told that to solve a system of equations,

2x + 3y = 6

3x− 4y = −2

we just graph the two lines 2x+3y = 6 and 3x−4y = −2 to get
the point of intersection (a, b), and (a, b) is the solution of the
system.
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3x− 4y = −22x + 3y = 6
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But why is (a, b) the solution?

Because, by definition, the graph of 2x + 3y = 6 consists of all
the points (x, y) so that 2x + 3y = 6. Since (a, b) is on the
intersection of the graphs, in particular (a, b) lies on the graph
of 2x + 3y = 6 and therefore 2a + 3b = 6.

For the same reason, we also have 3a− 4b = −2.

So (a, b) is a solution of the system

2x + 3y = 6

3x− 4y = −2



Now suppose the system has another solution (A, B). Thus 2A+
3B = 6 and 3A − 4B = −2, by definition of a solution. Since
the graph of 2x + 3y = 6 consists of all the points (x, y) so that
2x+3y = 6, the fact that 2A+3B = 6 means the point (A, B) is
on the graph of 2x+3y = 6. Similarly, the point (A, B) is on the
graph of 3x − 4y = −2. Therefore (A, B) is on the intersection
of the two graphs (which are lines).

Since two non-parallel lines meet at exactly one point, we must
have (A, B) = (a, b). So (a, b) is the (only) solution of the
system.

If we do not emphasize from the beginning the precise definition
of the graph of an equation, we cannot explain this fact.



Consider another example of the need for precision in algebra:
the laws of exponents. These are:

For all positive numbers x, y, and for all rational num-

bers r and s,

xrxs = xr+s

(xr)s = xrs

(xy)r = xryr

For example,

2.4−3/5 2.42/7 = 2.4−3/5+2/7

These laws are difficult to prove.



On the other hand, the starting point of these laws is the set of
“primitive” laws of exponents which state:

For all positive numbers x, y, and for all positive integers

m and n,

xmxn = xm+n

(xm)n = xmn

(xy)m = xmym

These are trivial to prove: just count the number of x’s and y’s
on both sides, e.g., x8 x5 = x8+5, or

xy · xy · xy · xy = x4 y4



The two sets of laws look entirely similar, but the substantial
difference between the two comes from the different quantifica-
tions of the symbols s, t, and m, n. The former are rational
numbers and the latter are positive integers.

In algebra, it is therefore not sufficient to look at formulas for-
mally. We must also pay attention to exactly what each symbol
represents (i.e., its quantification). This is precision.

We will have more to say about the laws of exponents later.



The preceding difficulties in students’ learning of algebra are real.
They cannot be eliminated, any more than teenagers’ growing
pains can be eliminated. However, they can be minimized pro-
vided we have

a good curriculum,
good textbooks, and
good support from the educational literature.

Unfortunately, all three have let the students down.

My next goal is to describe some examples of this letdown, and
also discuss possible remedies.



2. Difficulties due to human errors

2a. Variables

We all know that algebra is synonymous with “variables”. What
do we tell students a “variable” is? Here are two examples from
standard textbooks.

A variable is a quantity that changes or varies. You
record your data for the variables in a table. Another
way to display your data is in a coordinate graph. A co-

ordinate graph is a way to show the relationship between
two variables.



Another view:

Variable is a letter or other symbol that can be replaced
by any number (or other object) from some set. A sen-

tence in algebra is a grammatically correct set of num-
bers, variables, or operations that contains a verb. Any
sentence using the verb “=” (is equal to) is called an
equation.

A sentence with a variable is called an open sentence.
The sentence m = x

5 is an open sentence with two
variables.

An expression, such as 4 + 3x, that includes one or more
variables is called an algebraic expression. Expressions
are not sentences because they do not contain verbs,
such as equal or inequality signs.



In both cases, the author(s) seemed less interested in giving a
detailed explanation of what a “variable” is than in introducing
other concepts, e.g., “coordinate graph”, “sentence”, “equa-
tion”, “expression”, etc., to divert attention from “variable” it-
self, which is supposed to be central.

However there is no mistaking the message: a “variable” is some-
thing that varies, and that the minute you put down a symbol
on paper, it becomes a “variable”.

From your own teaching experience, can students make sense
of “something that varies”? And do they know what they are
doing when they put a symbol on paper?



2b. Expressions

The recent set of Common Core Standards (CCS), released
on September 17, 2009, has this to say about “expressions”:

Expressions are constructions built up from numbers, vari-
ables, and operations, which have a numerical value when
each variable is replaced with a number.

Expressions use numbers, variables and operations to de-
scribe computations.

The rules of arithmetic can be applied to transform an
expression without changing its value.



CCS has wisely chosen to bypass defining a “variable” and get
to “expression” directly. Since CCS has aspirations to be the
de facto national standards, its pronouncement on what an “ex-
pression” is must be taken seriously.

So what is an “expression” according to CCS? It is a construc-
tion. But what is a construction? Is it any assemblage of symbols
and numbers? And what are the rules of the “operations” for
the assemblage? WHY can the “rules of arithmetic be applied
to transform an expression without changing its value”?

Do YOU think this tells you what an “expression” is? More
importantly, can you use this to teach your eighth grader what
an expression is?



2c. Equations

CCS says:

An equation is a statement that two expressions are equal.

Without knowing what an “expression” is, we must now confront
an “equation”.

According to CCS,

xyzrstuvw = 2a + 3b + 4
cdefghijklmn

opq

is an equation. What does it mean? Is this what you want to
tell your students, and if so, do they know what you are talking
about?



Let us approach “variable”, “expression”, and “equation”

in a way that is consistent with how mathematics is done

in mainstream mathematics.

The fundamental issue in algebra and advanced mathematics is
the correct way to use symbols. Once we know that, then
basically everything in school algebra falls back on arithmetic.

There will be no guesswork, and no hot air.



The cardinal rule in the use of symbols is to

specify explicitly what each symbol stands for.

This is called the quantification of the symbols.

Make sure your students understand that.

There is a good reason for this: symbols are the pronouns of
mathematics. In the same way that we do not ask “Is he six feet
tall?” without saying who “he” is, we do not write down

xyzrstuvw = a + 2b + 3cdefghijklmn

without first specifying what a, b, . . . , z stand for either (this is
an equality between what? Two random collections of symbols??
What does it mean??).



Let x and y be two (real) numbers. Then the number obtained
from x and y and a fixed collection of numbers by the use of
the four operations +, −, ×, ÷, together with n

√ (for any
positive integer n) and the usual rules of arithmetic, is called an

expression in x and y. E.g.,
85xy2

√
7 + xy

− 3
√

x5 − πy.

An expression in other symbols a, b, . . . , z is defined similarly.

It is only when we make explicit the fact that, in school algebra
(with minor exceptions), each expression involves only num-

bers that we can finally make sense of CCS’s claim that “The
rules of arithmetic can be applied to transform an expression
without changing its value.”



Still with x and y as (real) numbers, we may wish to find out
all such x and y for which two given expressions in x and y are
equal. For example, are there x and y so that

x2 + y2 + 3 = 0 ?

(No.) Note that 0 is the following expression in x and y: 0 +
0 · x + 0 · y. Another example: Are there x and y so that

3x− 7y = 4 ?

(Yes, infinitely many.)

In each case, the equality of the given expressions in x, y is called
an equation in x and y. To determine all the x and y that make
the expressions equal is called solving the equation.



There are some subtle aspects to the quantification of symbols.
For example, the meaning of a “quadratic equation ax2+bx+c =
0”, when completely spelled out, is this:

Let a, b, c be fixed numbers. What numbers x satisfy
ax2 + bx + c = 0 ?

Here a, b, c and x are all symbols, yet they play different roles.
Because each of a, b, c stands for a fixed number in this equation,
it is called a constant. A priori, there can be an infinite number
of x, yet to be determined, that satisfy this equality. For this
reason, this x is traditionally called a variable, or an unknown.



It is important to realize that the precise quantification of x in
the meaning of a quadratic equation (or any equation) renders
the terminology of a “variable” superfluous. There is no need
for the term “variable”.

Out of respect for tradition, the word “variable” is used in higher
mathematics and in the sciences, not as a well-defined mathe-
matical concept, but as an informal and convenient shorthand.
For example, “a function of three variables f(x, y, z)” expresses
the fact that the domain of definition of f is some region in
3-space. However, there is no need to teach an informal piece
of terminology as a fundamental concept in school algebra.



2d. Solving equations

Textbooks tell you how to “solve” x2− x− 1 = 0 by completing
the square:

x2 − x = 1

(x2 − x +
1

4
) = 1 +

1

4

(x−
1

2
)2 =

5

4

x−
1

2
= ±

1

2

√
5

x =
1

2
(1±

√
5)

The whole process is highly unsavory: It is a case of wanton
manipulations of symbols with no reasoning whatsoever.



First, x is just a symbol, but the equality x2 − x = 1 means
the two symbols x2 and −x combined is equal to the number 1.
How can a number be equal to a bunch of symbols?

The passage from x2− x = 1 to (x2− x + 1
4) = 1 + 1

4 is usually
justified by “equals added to equals are equal”, which is in turn
justified by some metaphors such as adding 1

4 to two sides of a
balance, with x2 − x on one side and 1 on the other.

Finally, even ignoring all the questionable steps, how do we know
1
2(1±

√
5) are solutions of x2−x−1? In other words, have we

proved that the following is true?

(
1

2
(1±

√
5))2 −

1

2
(1±

√
5)− 1 = 0



Let us now solve the equation correctly. Assume for the
moment that there is a number x so that x2− x− 1 = 0. Then
both sides of the equal sign are numbers and we are free to
compute with numbers to obtain:

x2 − x = 1

(x2 − x +
1

4
) = 1 +

1

4

(x−
1

2
)2 =

5

4

x−
1

2
= ±

1

2

√
5

x =
1

2
(1±

√
5)

Notice that the whole process looks the same as before, but it
now makes perfect sense as a computation in numbers.



We have now proved that if x is a number so that x2−x−1 = 0,
then necessarily x = 1

2(1±
√

5). But with this as a hint, we can

now directly check that 1
2(1±

√
5) are solutions of x2−x−1 = 0,

as follows. Let x = 1
2(1±

√
5). Then

x2 − x− 1 = x (x− 1)− 1

= (
1

2
(1±

√
5)) (

1

2
(1±

√
5)− 1)− 1

= (
1

2
(1±

√
5)) (

1

2
(−1±

√
5)) − 1

=
1

4
(−12 + (

√
5)2) − 1 = 0

Conclusion: the two numbers 1
2(1±

√
5) are solutions of

x2 − x− 1 = 0, and they are the only solutions.



Why should students learn how to solve equations cor-

rectly?

(i) They come to the full realization that achieving algebra de-
pends on a robust knowledge of (rational) numbers, and not on
the unknowable concept of a “variable”. Basically, everything

in school algebra falls back on arithmetic.

(ii) They realize that solving equations is not a sequence of
mindless manipulations of symbols but a progression of well-
understood procedures with numbers, based on reasoning. Math-
ematics becomes knowable.

(iii) For the case of quadratic equations, they learn the how and
the why of the quadratic formula and gain the confidence that
they can derive it at will. This knowledge diminishes the need
for memorization.



2e. Precision

Of the endless examples of how school textbooks ignore preci-
sion, we will discuss two. The first is about the definition of
rational exponents of a (positive) number. The starting point is
always the following laws of exponents for positive integers:

For all numbers x, y, and for all positive integers m and n,

xmxn = xm+n

(xm)n = xmn

(xy)m = xmym



Most textbooks now present the “proof” that, e.g., 50 = 1:

Because xmxn = xm+n, 52 · 50 = 52+0 = 52. Dividing
both sides by 52, we get 50 = 1.

Comments This is not a proof, because the formula used to
justify 52 · 50 = 52+0 is xmxn = xm+n, which is only valid
for m > 0 and n > 0. We must use each fact precisely without
unwarranted extrapolation.

In addition, because we are still trying to find out what 50 means,
we cannot use it in an equation in order to compute its value.
This is called circular reasoning.



Another “proof” that 50 = 1 is to appeal to patterns:

· · ·53 = 125, 52 = 25, 51 = 5, 50 = ?

As we go to the right, each number is obtained from the
preceding one by dividing by 5. Thus going from 51 = 5
to 50, we must divide 5 by 5, yielding 50 = 1.

Comments How do we know that the pattern would persist all
the way down to 50?

These are not proofs. The fact that 50 = 1 is a matter
of definition.



We now explain why we make the following definitions: for any
x > 0, any positive integer m, n,

x0 = 1, xm/n = ( n√x)m, x−m/n =
1

xm/n

Again the starting point is the law of exponents for all positive

integers m and n, and for any x > 0,

xmxn = xm+n

(xm)n = xmn

(xy)m = xmym

These laws are so “nice” that people decide that they should
remain true even when m and n are rational numbers. The
definitions of x0, x−n, etc., are made with this goal in mind.



If xrxs = xr+s is to be true for all rational numbers r and s,
then for any positive integer n, we must have

xnx0 = xn+0 = xn

so that, dividing both sides by xn, we obtain x0 = 1.

Thus, if xrxs = xr+s has any hope of being true for all rational
numbers r and s, we must have x0 = 1. This is why we adopt
it as the definition.



Similarly, if (xr)s = xrs is to be true for all rational numbers r

and s, then for any positive integer n, we must have

(x1/n)n = x(1/n)n = x1 = x

This means x1/n is a number whose nth power is x itself. You
recognize this number x1/n to be the positive nth root n√x

of x.

Again, if (xr)s = xrs is to be true for all rational numbers r and

s, we must have xm/n = (x1/n)m = ( n√x)m. This is why we
adopt the definition: for all positive integers m and n,

xm/n = ( n√x)m



The same reasoning yields the “correct” definition that

x−m/n =
1

xm/n

With these definitions in place, we are now at least in a position
to ask whether the following is true:

For all positive numbers x, y, and for all rational num-

bers r and s,

xrxs = xr+s

(xr)s = xrs

(xy)r = xryr



The proof that these laws of exponents for rational numbers r

and s are true is tedious and boring, and is not our concern here.
We are interested, rather, in students’ ability to think clearly:
whether they know the distinction between a valid proof and a
seductive but incorrect argument, and whether they know the
distinction between a definition and a theorem.

It takes precise reasoning to draw such distinctions.

Such precise reasoning is what it takes to learn advanced math-
ematics and science.



As a second example of the need for precision, consider the
definition of the slope of a line L. Let P = (p1, p2) and Q =
(q1, q2) be distinct points on L. Then the usual definition is:
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Slope of L is
p2 − q2
p1 − q1

. But if

A = (a1, a2) and B = (b1, b2) on L,

we must prove:

p2 − q2
p1 − q1

=
a2 − b2
a1 − b1

This proof requires the concept of similar triangles:
$ABC ∼ $PQR.



What is alarming is the fact that textbooks want students to
conflate the slope of a line L with the slope of two chosen

points P and Q on L.

If students get comfortable with blurring the distinction between
two concepts as different as these, they may never be able to
learn any mathematics of value again. Without precision, there
is no mathematics.

In the short term, students will not understand why the graph of
ax+by = c is a line, and consequently will have trouble struggling
to memorize the four forms of the equation of a line.



2f. Hidden agenda

Too often we teach students mathematics that suppresses a
needed assumption.

For example, textbooks and standardized tests promote pattern
problems to get students into “algebraic thinking”. Here is a
typical test item:

What is the next number in the sequence 2, 3, 5, 9,
17 where each number is obtained from the preceding
number by the same fixed rule?



2,3,5,9,17

If your answer is 33, you will make many people very happy be-
cause you believe exactly what they want you to believe, namely,
that the rule is: “If the number is k, the next number is 2k−1”.

What if I tell you the rule is actually
(2k − 1) + (k − 2)(k − 3)(k − 5)(k − 9)

Make sure that this also works.

Then the next number would not be 33, but
33 + 15 · 14 · 12 · 8 = 20193.

The hidden assumption of this pattern problem is that
the rule should be a linear function of k.



Here is another example of a hidden agenda. Consider the fol-
lowing standard problem:

Janice walked 3.6 miles. It took her 35 minutes to walk
2.1 miles. How long did it take her to walk the whole 3.6
miles?

The usual way to do it this to set up a proportion: if it took her
x minutes to walk 3.6 miles, then

2.1

35
=

3.6

x

Cross-multiply, and we get the answer: x = 60 minutes.

How to explain “setting up a proportion”?



Janice’s walking routine was actually the following:

Walk briskly for 2.1 miles in 35 minutes, rest 40 minutes,
and walk another 1.5 miles in 45 minutes.

In this case, it actually took her 35+40+45 = 120 minutes to
walk the 3.6 miles, so that this, and not 60 minutes, should be
the correct answer to the problem.

Maybe “setting up a proportion” is not such a good idea after all.

If we insist on “setting up a proportion”, then we must (i) revise
the problem by making explicit the hidden assumption(s), and
(ii) explain why it is valid to “set up a proportion”.



Revised problem:

Janice walked 3.6 miles at a constant speed. It took her
35 minutes to walk 2.1 miles. How long did it take her
to walk the whole 3.6 miles?

The hidden assumption is that she walked at a constant speed.

Now we explain constant speed, which is usually suppressed in
textbooks. First, assume that in a fixed time interval from time
s to time t (in minutes), she walks d miles. Then we say that

her average speed in the time interval [s, t] is d
t−s mi/min.



Suppose Janice walked as described:

Walk briskly for 2.1 miles in 35 minutes, rest 40 minutes,
and walk another 1.5 miles in 45 minutes.

Then her average speed in the time interval [0,35] is 2.1
35 = 0.06

mi/min. Her average speed in the time interval [0,40] is 2.1
40 =

0.0525 mi/min. Her average speed in the time interval [0,75] is
2.1
75 = 0.028 mi/min. Her average speed varies with the choice

of the time interval.

We say she walks at a constant speed if her average speed in
any time interval is equal to a fixed constant v (mi/min). We
then call v her speed.



We go back to our problem:

Janice walked 3.6 miles at a constant speed. It took her
35 minutes to walk 2.1 miles. How long did it take her
to walk the whole 3.6 miles?

As before, let x be the number of minutes it took her to walk
3.6 miles. Her average speed in the time interval [0,35] is 2.1

35

mi/min. Also, her average speed in the time interval [0, x] is 3.6
x

mi/min. Since her speed is constant,

2.1

35
=

3.6

x

This was the “proportion” we set up by rote last time. Now
cross-multiply, and we get the same answer: x = 60 minutes.



If we use algebra, the explanation becomes more transparent.

Let f(t) be the number of miles Janice walked from 0 minute to t

minutes. Since she walked at a constant speed (say v mi/min),
her average speed in the time interval [0, t] for any t is

f(t)

t− 0
= v, which means f(t) = vt

The function f(t) is a linear function without constant term.

Given f(35) = 2.1. We want the time t0 so that f(t0) = 3.6.

Now f(35) = v(35), so v = 2.1
35 mi/min. Since f(t0) = vt0 =

2.1
35 t0, we have

2.1

35
t0 = 3.6, and t0 = 60 min



Moral: Mathematics is WYSIWYG. Every assumption needed
for the solution of a problem must be on the table. This openness
makes mathematics learnable, and the same openness gives every
student an equal opportunity to learn.

The teaching of mathematics must respect this
WYSIWYG characteristic.



2g. Coherence

Mathematics is more learnable if there is continuity from topic
to topic, and from grade to grade.

Consider the addition of rational expressions, e.g.,

x

x + 1
+

1

x− 1
=

x(x− 1) + (x + 1)

(x + 1)(x− 1)
=

x2 + 1

x2 − 1

If x is a “variable”, this addition would be coming out of nowhere
and would make sense only if we arbitrarily decree, as CCS does,
that variables obey the usual rules of arithmetic. An arbitrary
decree is not the kind of continuity we seek.



On the other hand, if we regard all expressions in a number x as

numbers, then letting A, B, C, D be the numbers

A = x, B = x + 1, C = 1, D = x− 1,

we see that

x

x + 1
+

1

x− 1
=

x(x− 1) + (x + 1)

(x + 1)(x− 1)
=

x2 + 1

x2 − 1

is just

A

B
+

C

D
=

AD + BC

BD

On the most basic level then, we make the connection that the
addition of rational expressions is just the ordinary addition of
fractions provided the latter is taught correctly without reference
to Least Common Denominator.



Let us look more closely at

x

x + 1
+

1

x− 1
=

x(x− 1) + (x + 1)

(x + 1)(x− 1)
=

x2 + 1

x2 − 1

If this is supposed to be true for all numbers, then it is true for
(say) x = 4

3. What we have is therefore the following addition:

4
3
7
3

+
1
1
3

=
4
3 ·

1
3 + 7

3
7
3 ·

1
3

Now we realize we are not just adding fractions, but are adding
complex fractions, which are division of fractions by fractions.
Have you seen textbooks discussing the addition of complex frac-
tions? If not, how to transition from fractions to algebra?



There is more. Suppose we let x = π, then

x

x + 1
+

1

x− 1
=

x(x− 1) + (x + 1)

(x + 1)(x− 1)
=

x2 + 1

x2 − 1

implies

π

π + 1
+

1

π − 1
=

π(π − 1) + (π + 1)

(π + 1)(π − 1)
=

π2 + 1

x2 − 1

Now we are talking about the addition of “fractions” whose nu-
merators and denominators are irrational numbers. Have you
seen textbooks discussing the addition of such “fractions”? Again,
how to transition from fractions to algebra?



We have just touched the tip of the iceberg of the phenomenon
of our incoherent curriculum. It is time we leave behind the
discussion of the difficulties of learning algebra caused by human
errors and take a closer look at curriculum.

We will give a brief discussion of our K-8 curriculum and then
use it as a springboard to launch two illustrative examples of how
things can be done better in the pre-algebra curriculum.



Allowing for some minor variations, the essence of the K-8 cur-
riculum can be laid bare in the schematic diagram:

Whole numbers −→ Fractions −→ Rational numbers −→ Algebra

Notice the increase in abstraction as we go from left to right.
Fractions and negative numbers (taught mainly in grades 5–7)
are inherently abstract concepts, so that building on the abstrac-
tion of fractions and negative numbers would be an ideal way to
acclimatize students to the abstraction of algebra.

However, the curriculum we have as of 2009 seems intent on
bypassing the abstract nature of fractions and negative num-
bers. Instead it relies almost exclusively on the use of hands-on
activities, analogies, and metaphors to teach these topics.



Graphically, we can present the situation this way:

" " " " " " " " "
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$#

#$$$$$$
$$$$$$
$$$$$$
Algebra

K-5

K 1 2 3 4 5 6 7 8

Grades



To go from grade 5 to grade 8, one might gradually increase
the use of symbols and elevate the level of abstraction to give
students a smooth transition:

" " " " " " " " "

#

#

$$$$$$
$$$$$$
$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Algebra

K-5

K 1 2 3 4 5 6 7 8



The reality is different.

Instead of teaching students that a fraction is a number, we teach
fraction exclusively as a piece of pizza or part of the unit square.
Instead of teaching why negative × negative = positive by a
careful application of the distributive law, we invent convoluted
stories about how to make money by not paying a debt and then
rely exclusively on those stories to teach this basic fact.

Instead of gradually increasing the use of symbols to state and
explain basic facts about the four operations on fractions, we
reduce most explanations only to those amenable to picture-
drawings or hands-on activities. Thus only single-digit numbers
are used most of the time for numerators and denominators.



The end result is a curriculum that flattens out in the critical
grades of 5–7 and leaves students to negotiate the steep climb
to algebra on their own:

" " " " " " " " "
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%
%
%
%
%
%
%
%
%%
$$$$$$
$$$$$$
$$$$$$
Algebra

K-5

K 1 2 3 4 5 6 7 8



3. Two examples of what can be done

3a. Addition of fractions

This topic is a bit more profound than is usually realized. We
start from the beginning by giving a definition of a fraction. Let
us first define all fractions with denominator equal to 3.

But why do we need a definition of fractions?
(i) If students have to add, subtract, multiply, and divide frac-
tions, then they have to know what a fraction is. One cannot
work with something when one doesn’t even know what it is.
(ii) Reasoning in algebra and higher mathematics depends on
precise definitions. Learning how to work with a precise defini-
tion of a fraction is an excellent introduction to algebra.



On a horizontal line, let two points be singled out. Identify the
point to the left with 0 and the one to the right with 1. This
segment, denoted by [0, 1], is called the unit segment.

0 1

Now mark off equidistant points to the right of 1 as in a ruler,
as shown, and identify the successive points with 2, 3, 4, . . . .

0 1 2 3 4 5

The line, with a sequence of equidistant points on the right
identified with the whole numbers, is called the number line.



The unit segment [0,1] is taken to be the whole. Naturally, all
other segments [1,2] (the segment between 1 and 2), [2,3], etc.,
can also be taken to be the whole. Divide each such segment
into thirds (three segments of equal length); then we can count
the number of thirds (the “parts”) by going from left to right
starting from 0. Thus, the red segment comprises two thirds:

0 1 2 3 4 5

The following green segment comprises seven thirds:

0 1 2 3 4 5



Clearly, the red segment can be replaced by its right endpoint,
which we naturally denote by 2

3:

0 1 2 3 4 5

2
3

Likewise, the green segment will be replaced by its right end-
point, which is denoted by 7

3:

0 1 2 3 4 5

7
3

Thus each “parts of a whole” (in the present context of thirds)
is now replaced by a point on the number line. The point that is
the 7th point to the right of 0 is denoted by 7

3. The point that

is the nth point to the right of 0 is denoted by n
3.



The fractions with denominator equal to 5 are similarly placed
on the number line: 8

5 is the 8th point to the right of 0 in the
sequence of fifths. And so on.

In general, if n is a positive integer, the fraction 3
n is the third

point to the right of 0 among the nths on the number line, and
if m is a whole number, then the fraction m

n is the mth point to
the right of 0 among the nths on the number line.

We also agree to identify 0
n with 0 for any positive integer n. In

this way, all fractions are unambiguously placed on the number
line.



Two things are noteworthy:

(i) The fractions with denominator 3 are qualitatively no different
from the whole numbers: both are a sequence of equidistant
points on the number line, and if we replace 1

3 by 1, then the
former sequence becomes the whole numbers.

(ii) The number line is to fractions what one’s fingers are to

whole numbers: It anchors students’ intuition about fractions.

For the sake of conceptual clarity as well as ease of mathematical
reasoning, we will henceforth define a fraction to be a point on
the number line as described above.

You will see, presently, why this definition of a fraction is an
advantage.



We now approach the fundamental fact about fractions.

Theorem on equivalent fractions Given any two fractions m
n

and k
" . If there is a positive integer c so that

m = c k, and n = c "

then the fractions are equal, i.e., m
n = k

" .

In your classroom, you wouldn’t teach like this. You’d begin by
saying, 3

6 and 1
2 are equal because

3 = 3× 1 and 6 = 3× 2
10
12 and 5

6 are equal because

10 = 2× 5 and 12 = 2× 6
14
6 and 7

3 are equal because

14 = 2× 7 and 6 = 2× 3

You give many examples before stating the general fact above.



Let us prove 14
6 = 7

3.

We must show that the 7th point to the right of 0 in the
sequence of thirds is also the 14th point to the right of 0 in the
sequence of sixths. (Observe that with a clear-cut definition of
a fraction, there is no ambiguity about what we must prove.)

We divide each of the thirds into 2 equal parts:

0 1 2 3 4 5

7
3

The number line now has a sequence of sixths, and the 14th
point to the right of 0 is therefore exactly the 7th point to the
right of 0 in the sequence of thirds, as claimed.



The reasoning in general for c k
c " = k

" is exactly the same.

This theorem lies behind every statement about the operations
of fractions. We now give some illustrations.

Here is a standard problem:

Which of 19
54 and 6

17 is bigger?

Before we try to answer this question, we ask what is meant
by “bigger”? The number line allows us to give an unambigu-
ous definition: a fraction m

n is said to be bigger than another
fraction k

" if on the number line, m
n is to the right of k

" .

k
"

m
n



Now we have to decide which of 19
54 and 6

17 lies to the right of
the other on the number line. This is the point about definitions:
if we agreed on “lying further to the right” as the meaning of
“bigger”, then we are obligated to follow through by showing
one of 19

54 and 6
17 lies further to the right and not by appealing

to another metaphor.

It must be recognized that the difficulty lies in having to compare
the 19th point (to the right of 0) in the sequence of 54ths with
the 6th point (to the right of 0) in the sequence of 17ths. How
to compare a 54th with a 17th, i.e., 1

54 with 1
17 ?



Consider, for example, the analogous problem:

Which is longer, 19 feet or 6 meters?

You try to find a common unit. In this case, cm is good:

19 ft. = 19× 12 in. = 228 in. = 228× 2.54 cm = 579.12 cm

Since 6 meters is 600 cm, we see that 6 meters is longer.

Thus, faced with comparing 19 54ths and 6 17ths , we try to
find a common unit for 1

54 and 1
17 . The Theorem says

1

54
=

17

54× 17
and

1

17
=

54

54× 17

So 1
54×17 will serve as a common unit for 1

54 and 1
17 .



Now we apply the Theorem twice to get:

19

54
=

19× 17

54
=

323

54× 17

6

17
=

54× 6

54× 17
=

324

54× 17

In terms of 1
54×17, the 324th point to the right of 0 is clearly on

the right side of the 323rd point. We therefore conclude that
6
17 is bigger than 19

54 .



The basic idea of the above can be abstracted: given two frac-
tions m

n and k
" , the Theorem says we can rewrite them as two

fractions with equal denominators,

kn

"n
and

"m

"n

Thus any two fractions may be regarded as two fractions with
the same denominator. We call this FFFP, the Fundamental

Fact on Fraction Pairs. FFFP has far reaching consequences.
For examples, it immediately implies:

Cross-Multiplication Algorithm (CMA) : Given any two frac-
tions k

" and m
n ,

k
" = m

n if and only if kn = "m

k
" < m

n if and only if kn < "m



We apply FFFP to the comparison of decimals. By definition,
a decimal is a fraction whose denominator is a power of 10
written in the special notation introduced by the German Jesuit
astronomer C. Clavius (1538-1612):

write
235

102 as 2.35; write
57

104 as 0.0057

Therefore comparing decimals is a special case of comparing
fractions (tell your students that!), with one advantage. If we
want to compare, let us say, 0.12 with 0.098, there is no doubt
as to what common denominator to use:

rewrite
12

100
and

98

1000
as

120

1000
and

98

1000
,

respectively. Clearly 0.12 is bigger.



We can finally consider the addition of fractions. First, how do
we add whole numbers? 4+3 is the length of the concatenation

of one segment of length 4 followed by a second segment of
length 3:

︸ ︷︷ ︸
4

︸ ︷︷ ︸
3

Now the meaning of 4
5 + 3

5 should be the same: we define it
to be the length of the concatenation of one segment of length
4
5 followed by a second segment of length 3

5 :

︸ ︷︷ ︸
4
5

︸ ︷︷ ︸
3
5



The continuity from the definition of the addition of whole num-
bers to the definition of the addition of fractions is of critical
importance for learning fractions.

At the moment, students in elementary school learn the addition
of whole numbers as “combining things”, but when they come
to the addition of fractions, suddenly “addition” becomes an un-
fathomable maneuver about getting the least common multiple
of the denominators and rewriting the numerator. They become
disoriented and mathphobia would be a natural consequence.

The above definition of fraction addition shows clearly why adding
fractions still means “combining things”.



By the definition,

4

5
+

3

5
=

4 + 3

5
which is the same addition as 4 + 3 above, except that the
number 1 is now replaced by 1

5.

Next, we consider something more complicated: We define 4
7 +

2
5 in exactly the same way: it is the length of the concatenation

of one segment of length 4
7 followed by a second segment of

length 2
5:

︸ ︷︷ ︸
4
7

︸ ︷︷ ︸
2
5



By definition, 4
7 + 2

5 is the total length of 4 of the 1
7’s and 2

of the 1
5’s.

This is like adding 4 feet and 2 meters; we cannot find its exact
value until we can find a common unit for foot and meter.

The same with fractions. FFFP tells us what to do: use 1
7×5 as

the common unit.

4

7
+

2

5
=

4× 5

7× 5
+

7× 2

7× 5
=

34

35



In general, we define the addition of k
" and m

n in exactly the

same way: k
! + m

n is the length of the concatenation of one

segment of length k
" followed by a second segment of length m

n :

︸ ︷︷ ︸
k
"

︸ ︷︷ ︸
m
n

By FFFP,

k

"
+

m

n
=

kn

"n
+

"m

"n
=

kn + "m

"n

Note that we have added fractions without once considering the
Least Common Denominator. The LCD contributes nothing to
the understanding of fraction addition.



A 1978 NAEP question in eighth grade:

Estimate
12

13
+

7

8
.

(1) 1

(2) 19

(3) 21

(4) I don’t know

(5) 2



The statistics:

• 7% chose “1”.

• 28% chose “19”.

• 27% chose “21”.

• 14% chose “I don’t know”.

• 24% chose “2” (the correct answer).

Could this be exclusively the fault of our students?



Students need a mental image of a fraction to replace the mental
image of a whole number given by the fingers on their hands.

12
13

1& 20

7
8

10 &

Direct concatenation gives:

1 20



We now take up the more subtle aspects of the addition of
fractions. Recall the above formula:

k

"
+

m

n
=

kn

"n
+

"m

"n
=

kn + "m

"n

Thus far, this is valid only when k, ", m, n are whole numbers.
But suppose k, ", m, n are fractions?

First, we have to make sense of, for example, k
" when k and " are

fractions. In this case, k
" is a division of fractions and is called

a complex fraction. Every complex fraction can be expressed
as an ordinary fraction by use of invert-and-multiply. We have
no time to discuss the division of fractions here, but there is a
fairly long discussion of this in the September 2009 issue of the
AFT house journal American Educator.



The fact that the formula for adding (ordinary) fractions is still
valid even when the fractions are complex fractions is not diffi-
cult to prove. You can do it either by brute force (just invert
and multiply all the way through; very tedious), or by abstract
reasoning (short). The proof notwithstanding, this fact about
complex fractions has to be taught explicitly, but at the moment
it is not.

Here is one small reason why this should be taught: would you
like to do the following computation as is,

1.5

0.028
+

42

1.03
=

(1.5× 1.03) + (42× 0.028)

0.028× 1.03
,

or would you prefer to change all the complex fractions to ordi-
nary fractions before adding?



The validity of the formula for adding fractions,

k

"
+

m

n
=

kn

"n
+

"m

"n
=

kn + "m

"n
,

when k, ", m, n are themselves fractions is important for a dif-
ferent reason. Wouldn’t you like to do the following as is?

√
3

4
+

1.2√
5

=
(
√

3
√

5) + (4× 1.2)

4×
√

5

What is at stake here is the validity of the formula, not only for
all fractions, but also for (positive) irrational numbers such as

√
3

or
√

5. It turns out that the latter depends on the former. This
highlights the importance of the formula for complex fractions.



What needs to be explicitly addressed in the school curriculum
is a clear discussion of the following Fundamental Assumption

of School Mathematics (FASM):

If an identity between numbers holds for all fractions,
then it holds for all (real) numbers ≥ 0.

FASM points out

why fractions are important in school mathematics,

why the arithmetic operations for complex fractions should
be taught, and

the intrinsic limitation of school mathematics (we only
teach fractions but not irrational numbers).



To summarize: When fractions are taught correctly, students

learn to use the symbolic notation naturally (Theorem on
equivalent fractions; CMA; formula for addition)

learn abstract reasoning (concept of fraction as point
on number line; Theorem on equivalent fractions; CMA;
formula for addition)

learn the concept of generality (Theorem on equivalent
fractions; CMA; formula for addition)

learn the importance of precision (definition of fraction;
addition of complex fractions; FASM)

They get a good introduction to algebra.



3b. Multiplication of rational numbers

We want to explain why, if x, y are fractions, (−x)(−y) = x y.

We first prove the special case where x and y are whole numbers.
The critical fact in this context is the following:

Theorem 1 (−1)(−1) = 1

Unlike other equalities in arithmetic, this equality will not be
obtained by performing a straightforward computation. A little
thinking is necessary, and it is the required thinking that throws
students off.



We state our basic premise: we assume that for all rational
numbers x,

(M1) Addition and multiplication of rational numbers sat-
isfy the commutative, associative, and distributive laws.

(M2) 0 · x = 0.

(M3) 1 · x = x.

Consider the general question: How to show that a number b is
equal to 1? One way is to show that b + (−1) = 0. Indeed, if
this is true, i.e., if we know b + (−1) = 0, then we can add 1
to both sides to get b + (−1) + 1 = 0 + 1, from which b = 1
follows.



We now prove Theorem 1. Let b = (−1)(−1) and we have
to show b = 1. As remarked above, it suffices to prove that
b + (−1) = 0. To this end, we compute:

b + (−1) = (−1)(−1) + 1 · (−1) (use (M3))

= ( (−1) + 1) (−1) (use dist. law)

= 0 · (−1)

= 0 (use (M2))

We are done.

It will be seen that the distributive law is the crucial ingredient
that accounts for (−x)(−y) = x y.



Let us now prove that (−3)(−4) = 3 · 4 = 12. We first prove:

(−1)(−4) = 4

This is because we can use the distributive law to expand, as
follows:

(−1)(−4) = (−1) ((−1) + (−1) + (−1) + (−1))

= (−1)(−1) + (−1)(−1) + (−1)(−1) + (−1)(−1)

= 1 + 1 + 1 + 1 (Theorem 1)

= 4

Therefore,

(−3)(−4) = ((−1) + (−1) + (−1))(−4)

= (−1)(−4) + (−1)(−4) + (−1)(−4) (dist. law)

= 4 + 4 + 4 = 3 · 4 = 12



We now prove in general that if m and n are whole numbers,
then

(−m)(−n) = mn

As before, we first prove

(−1)(−n) = n

This is because

(−1)(−n) = (−1)((−1) + · · ·+ (−1)︸ ︷︷ ︸
n

)

= (−1)(−1) + · · ·+ (−1)(−1)︸ ︷︷ ︸
n

(dist. law)

= 1 + · · ·+ 1︸ ︷︷ ︸
n

(Theorem 1)

= n



Therefore,

(−m)(−n) = ((−1) + · · ·+ (−1)︸ ︷︷ ︸
m

) (−n)

= (−1)(−n) + · · ·+ (−1)(−n)︸ ︷︷ ︸
m

(dist. law)

= n + · · ·+ n︸ ︷︷ ︸
m

= mn



We now explain in general why:

If x, y are fractions, (−x)(−y) = x y .

We will need the analog of Theorem 1:

Theorem 2 If y is a fraction, then (−1)(−y) = y.

For the proof, observe that one way to prove a number b is equal
to y is to prove that b + (−y) = 0. Because if this is true, then
adding y to both sides gives b + (−y) + y = 0 + y, which then
gives b = y. Now let b = (−1)(−y). Then once again we use
the distributive law:

b + (−y) = (−1)(−y) + 1 · (−y) = ((−1) + 1)(−y) = 0 · (−y) = 0

This completes the proof of Theorem 2.



So now, let x, y be any fractions. We will show (−x)(−y) = x y.
By Theorem 2,

(−x)(−y) = (−1)x(−1)y = (−1)(−1)xy

By Theorem 1, (−1)(−1) = 1. Therefore

(−x)(−y) = (−1)(−1)xy = xy

We are done.

What we learned: The extensive use of the associative and
commutative laws, and especially the distributive law, is a good
introduction to algebra. The reasoning is abstract and general,
as the identity (−x)(−y) = xy is about all fractions.
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