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0. Introduction

Let E be an elliptic curve over Q of conductor N = N(E) and let L(E, s) =∑∞
n=1 ann−s denote the corresponding L-series.
Let X(E) be the Tate-Shafarevich group of E (conjecturally finite), E(Q) be

the group of global points, and R be the regulator (with respect to the Néron-Tate
height pairing). Finally, let ω be the real period, and c∞ = ω or 2ω (according
to whether E(R) is connected or not), and let cfin denote the fudge factor (the
Tamagawa number) of E.

The L-series L(E, s) converges for Re s > 3/2. The modularity conjecture
(completely settled by Wiles-Taylor-Diamond-Breuil-Conrad [BCDT]) implies that
L(E, s) has analytic continuation to an entire function.

Conjecture 1 (Birch and Swinnerton-Dyer). L-function L(E, s) has a zero
of order r = rank E(Q) at s = 1, and

(1) lim
s→1

L(E, s)
(s− 1)r

=
c∞(E)cfin(E)R(E)|X(E)|

|E(Q)tors|2 .

It has been known for a long time that there are elliptic curves with arbitrarily
large values of |X(E)| (Cassels [Ca] was the first one to show this by considering
quadratic twists by many different primes). Kramer [Kr] finds semistable elliptic
curves with discriminant m(16m + 1) and |X(E)| ≥ 22k−2, where k is the number
of prime factors of 16m + 1. Their methods give at best families with |X(E)| À
N

c
log log N for some positive constant. Assuming the Birch and Swinnerton-Dyer

conjecture, Mai and Murty [MM] have shown that for any elliptic curve E, and
infinitely many square-free d,

lim
d

N(Ed)
1
4−ε

|X(Ed)| = 0.



It was proved only in 1987 that there is any elliptic curve over Q for which group
X(E) is finite (Rubin [Ru], Kolyvagin [Ko], Kato). A few years later, Goldfeld and
Szpiro [GS], and Mai and Murty [Ra], proposed the following general conjecture:

(2) |X(E)| ¿ N(E)1/2+ε, N →∞.

The Goldfeld-Szpiro-Mai-Murty conjecture, (2), holds if the Birch and Swinnerton-
Dyer conjecture holds true for all rank zero quadratic twists Ed of E. Assuming
additionally the Lindelöf conjecture, L(Ed, 1) ¿ N(Ed)ε, one then easily obtains
that

|X(Ed)| ¿ N(Ed)1/4+ε.

In general, for elliptic curves that satisfy the Birch and Swinnerton-Dyer conjec-
ture, Goldfeld and Szpiro [GS] show that the Goldfeld-Szpiro-Mai-Murty conjecture
is equivalent to the Szpiro conjecture:

|∆(E)| ¿ N(E)6+ε

where ∆(E) denotes the discriminant of the minimal model of E.
It is conjectured [dW] that 6 in the exponent of the conductor is the smallest

possible number for which the above asymptotic bound holds.

Conjecture 2 (de Weger). For any ε > 0 there exist infinitely many elliptic
curves over Q with

|X(E)| À N(E)1/2−ε.

De Weger demonstrates [dW] that the above conjecture follows from the following
three conjectures: the Birch and Swinnerton-Dyer conjecture in the rank zero case,
the Szpiro conjecture, and the Riemann hypothesis for certain Rankin-Selberg zeta
functions associated to certain modular forms of weight 3

2 .
He gives eleven examples of elliptic curves with the Goldfeld-Szpiro ratio

GS(E) :=
|X(E)|√

N(E)
≥ 1,

the largest value being 6.893.... Nitaj [Ni] produces 47 other examples with GS(E) ≥
1, the largest value of GS(E) being 42.265. Note that curves with GS(E) > 1 were
already known from Cremona’s tables [Cr].

As far as the order of the Tate-Shafarevich group is concerned, De Weger [dW]
gives an example of an elliptic curve with |X(E)| = 2242, Rose [Ro] gives another
example of an elliptic curve with |X(E)| = 6352, and the curve with the largest
known order of that group:

|X(E)| = 18322



was produced by Nitaj [Ni]. For the family of cubic twists considered by Zagier
and Kramarz [ZK]

Ed : x3 + y3 = d (d cubic-free)

the largest value of |X(Ed)| does not exceed 212 when d ≤ 70000 (In this case,
standard conjectures imply that |X(Ed)| ¿ N(Ed)1/3+ε).

Under assumption of the Birch and Swinnerton-Dyer conjecture, they compute
|X(E)| for a rank zero elliptic curve E by evaluating L(E, 1) with sufficient accu-
racy. Subsequently, we shall refer to this number the analytic order of the Tate-
Shafarevich group of E, and we will continue denoting it |X(E)|. This is unlikely
to cause confusion.

For quadratic twists of a given curve one can calculate the analytic order of Tate-
Shafarevich group using a well known theorem due to Waldspurger [Wa] combined
with purely combinatorial methods. Consider, for example, the family

E′
d : y2 = x3 − d2x (d ≥ 1 an odd square-free integer)

of congruent number elliptic curves. Let

η(z) = q1/24
∞∏

n=1

(1− qn), Θ(z) =
∞∑

n=−∞
qn2

,

and

η(8z)η(16z)Θ(2z) =:
∞∑

n=1

a(n)qn.

When curve E′
d is of rank zero then, assuming as usual the Birch and Swinnerton-

Dyer conjecture, we have (see [Tu]):

(3) |X(E′
d)| =

(
a(d)
τ(d)

)2

where τ(d) denotes the number of divisors of d. (Coefficients a(d) can also be
calculated using the formula in [On].) Conjecturally

|X(E′
d)| ¿ N(E′

d)
1/4+ε,

hence the sequence of curves E′
d (and, more generally, families of quadratic twists)

is not a likely candidate to produce curves with large Goldfeld-Szpiro ratios.

The primary aim of this article is to present results of our search for curves with
exceptionally large analytic orders of the Tate-Shafarevich group. We exhibit 134



examples of rank zero elliptic curves with |X(E)| > 18322 which was the largest
known value for any explicit curve. Our record is a curve with

|X(E)| = 63, 4082.

We consider the family

E(n, p) : y2 = x(x + p)(x + p− 4 · 32n+1)

and its isogenous curves for p ∈ (Z \ 0) ∩ [−1000, 1000] and n ≤ 19. Compared to
previously published results, we faced working with curves of very big conductor.
Big conductor means a very slow convergence of the approximation to L(E, 1). The
main difficulty was to design a successful search strategy for curves with exception-
ally large Goldfeld-Szpiro ratios which translated into large analytic orders of the
Tate-Shafarevich group.

Our explorations brought also a number of unplanned discoveries: examples of
curves of rank zero with the value of L(E, 1) much smaller, or much bigger, than
in any previously known example (see Tables 6 and 5 below). One particularly
remarkable example involves a pair of non-isogeneous curves whose values of L(E, 1)
coincide in the first 11 digits after the point! (see formula (23)).

Details of the computations, tables and related remarks are contained in section
3. Section 2 contains some heuristics concerning an (explicit) approach to conjecture
2 via our families of elliptic curves.

The actual calculations were carried by the second author in the Summer and the
Fall 2002 on a variety of computers, almost all of them located in the Department
of Mathematics in Berkeley. Supplemental computations were conducted also in
2003 and the Summer 2004.

The results were reported by M.W. at the conference Geometric Methods in
Algebra and Number Theory which took place in December 2003 in Miami.

1. The Shimura correspondence and a theorem of Waldspurger

The Shimura correspondence is a map relating certain half-integral weight cusp
forms to modular forms of even weight.

Theorem. [Sh] Let k ≥ 3 be an odd integer, N a positive integer divisible by 4,
and χ a character modulo N . Suppose that f ∈ Sk/2(N, χ) is an eigenform for all
T (p2) with corresponding eigenvalues λp. Define a function g(z) =

∑
bnqn by the

identity

(4)
∞∑

n=1

bnqn =
∏
p

[1− λpp
−s + χ(p)2pk−2−2s]−1.



Then g ∈ Mk−1(N/2, χ2). In particular, g is an eigenform for all T (p), also having
the eigenvalues λp.

The connection between modular forms and L-series is provided by a theorem
of Waldspurger (below we state a special case of his result).

Theorem. [Wa; Theorem 1] Let Φ be a cusp form of weight 2, level divisible by 16,
and trivial character which is the image of a form f of weight 3/2 and quadratic
character χ under the Shimura correspondence. Then there is a function A(t)
from squarefree integers to C such that (i) A(t)2 = L(Φ ⊗ χ−1χ−t, 1)/π, and (ii)
for each positive integer N , there is a finite set C of functions c(n) such that
{∑A(nsf )c(n)qn|c(n) ∈ C} spans the space of cusp forms of weight 3/2, level N ,
and character χ which correspond to Φ by the Shimura map.

In constructing weight 3/2 modular forms one can use two methods. The first
is to construct weight 1 cusp forms (using representation theory, say) and multiply
these by theta series. The second is to use ternary quadratic forms to construct
modular forms directly (Shimura).

Let E be an elliptic curve over Q, of conductor N ; let f denote the corresponding
modular form of weight 2. Below (Examples) we give examples, when modular form
F of weight 3/2 and level N ′ (N |N ′) with respect to Γ0(N ′) which is an eigenform
of the Hecke operators Tp2 and is mapped to f under the Shimura map, can be
constructed explicitly. In general case one can show, using [Ko1], that such F exists
for E with odd conductor.

We have the following result of Waldspurger (Corollary 2 of Theorem 1 in [Wa]).

Corollary. If d and d′ are square-free natural numbers prime to N such that dd′ ∈∏
p|N Qp/Q2

p, and if a(d) resp. a(d′) are d-th resp. d′-th Fourier coefficients of F ,
then

(5)

√
dL(Ed, 1)
a(d)2

=

√
d′L(Ed′ , 1)
a(d′)2

.

Fix d0 such that L(E0, 1) ·a(d0) 6= 0. Take d such that dd0 ∈
∏

p|N Qp/Q2
p. Then

Corollary combined with the Birch and Swinnerton-Dyer conjecture implies

(6) a(d) ³ |X(Ed)| ·
∏

p|6Nd

cp.

The work of Goldfeld and Viola [GV] implies (conjectural) average value of
|X(Ed)| in the rank zero case. For example, take E = X0(11). Then for d = p,
primes satisfying p ≡ 3(mod 4), we obtain

(7) the average value of |X(Ed)| ∼ AEd1/2,



where AE is an explicit constant depending only on E.
Kohnen and Zagier presented in [KZ],[Ko2] elementary proof of a version of

Waldspurger’s theorem for the case of modular forms on congruence subgroups.
Their result gives explicitly the constant of proportionality between a(d)2’s and
central critical values of the quadratic twists of modular L-series. This allows, in
particular, to deduce some results about the distribution of L(Ed, 1) and partially
confirm the above conjecture of Goldfeld and Viola.

The average value of L(Ed, 1) is established in the work of Murty and Murty
[MuM], and a good error term is derived in a paper of Iwaniec [Iw].

Examples

Notations. If q := e2πiz, η(z) = q
1
24

∏∞
n=1(1 − qn), Θ(z) =

∑
n∈Z qn2

, Θt(z) =
Θ(tz) =

∑
n∈Z qtn2

. χt := ( t
· ) shall denote Kronecker’s character for Q(

√
t).

Example 1. [Tu] Let E : y2 = x3−x; let Ω = ΩE = 2.622... denote the real period.
For any square-free integer d consider the quadratic twist Ed : y2 = x3 − d2x.

Let fi(z) := η(8z)η(16z)Θ(2iz) (i = 1, 2). It turns out that f1(z) =
∑

a1(n)qn ∈
S3/2(128, χ0) and f2(z) =

∑
a2(n)qn ∈ S3/2(128, χ2) are mapped to Φ(z) =

η2(4z)η2(8z) (the cusp form associated to E) by the Shimura correspondence. If
d ≥ 1 is an odd square-free integer, then Tunnell [Tu] proved that

(8) L(Eid, 1) =
2i−1ai(d)2Ω

4
√

2i−1d
.

Therefore assuming the Birch and Swinnerton-Dyer conjecture, Eid has Q-rank zero
iff ai(d) 6= 0. In addition, if ai(d) 6= 0, then

(9) |X(Eid)| =
(

ai(d)
τ(d)

)2

,

where τ(d) denotes the number of divisors of d.
One can check that

η(8z)η(16z) = (Θ(z)−Θ(4z))(Θ(32z)− 1
2
Θ(8z)).

Hence
f1(z) =

∑

x,y,z∈Z
q2x2+y2+32z2 − 1

2

∑

x,y,z∈Z
q2x2+y2+8z2

and
f2(z) =

∑

x,y,z∈Z
q4x2+y2+32z2 − 1

2

∑

x,y,z∈Z
q4x2+y2+8z2

.



Consequently, for odd d,
ai(d) =
|{(x, y, z) ∈ Z3 : d = 2ix2 +y2 +32z2}|− 1

2 |{(x, y, z) ∈ Z3 : d = 2ix2 +y2 +8z2}|.

Assuming the Birch and Swinnerton-Dyer conjecture, if Ed has rank zero, then
Ono [On] proves that

√
|X(Ed)| is a simple explicit finite linear combination of√

|X(Ed′)|, where 1 ≤ d′ ≤ d.

Example 2. [Fr1],[Fr2],[Fe] Let E : y2 = x3 − 1. For any square-free positive
integer d ≡ 1(mod 4, (d, 6) = 1, consider the quadratic twist Ed : y2 = x3 − d3.

Let a(d) denote the d-th Fourier coefficient of η2(12z)Θ(z). Frey proves the
following result

(10) L(Ed, 1) =





0 if d ≡ 3(mod 4)

a(d)2 L(E,1)√
d

if d ≡ 1(mod 24)
(

a(d)
a(13)

)2 √
13
d L(E, 1) if d ≡ 13(mod 24)

(
a(d)
a(5)

)2 √
5
dL(E, 1) if d ≡ 5(mod 24)

(
a(d)
a(17)

)2 √
17
d L(E, 1) if d ≡ 17(mod 24)

One can show that a(d) = 1
2

∑
(−1)n, where the sum is taken over all m,n, k ∈ Z

satisfying m2 + n2 + k2 = d, 3 6 |m, 3|n and 2 6 |m + n.
Let l = l1 + [ l2+1

2 ], where li = |{p|d : p ≡ i(mod 3)}|. Assuming the Birch and
Swinnerton-Dyer conjecture, we obtain

(11) |X(Ed)| =
(

a(d)
2l

)2

,

if a(d) 6= 0.

Example 3. [Le] Let E : y2 = x3 +21x2 +112x be the elliptic curve with complex
multiplication by the ring of integers in Q(

√−7). Let Ω be the real period of E;
let Ωd be the real period of Ed. Let φ be the cusp form associated to E. Then
Φ = φ⊗ χ2 ∈ S2(2672, χ1).

Let g = g1 + ... + g6 and h = h1 + ... + h6, where

g1 =
∑

[q(14m+1)2+(14n)2 − q(14m+7)2+(14n+6)2 ]

g2 =
∑

[q(14m+3)2+(14n)2 − q(14m+7)2+(14n+4)2 ]



g3 =
∑

[q(14m+5)2+(14n)2 − q(14m+7)2+(14n+2)2 ]

g4 =
∑

[q(14m+1)2+(14n+2)2 − q(14m+5)2+(14n+6)2 ]

g5 =
∑

[q(14m+3)2+(14n+6)2 − q(14m+1)2+(14n+4)2 ]

g6 =
∑

[q(14m+5)2+(14n+4)2 − q(14m+3)2+(14n+2)2 ]

h1 =
∑

[q(7m+1)2+(2(7n)2 − q(7m)2+2(7n+2)2 ]

h2 =
∑

[q(7m+3)2+2(7n)2 − q(7m)2+2(7n+1)2 ]

h3 =
∑

[q7m+1)2+2(7n+1)2 − q(7m+3)2+2(7n+2)2 ]

h4 =
∑

[q(7m+2)2+2(7n)2 − q(7m)2+2(7n+3)2 ]

h5 =
∑

[q(7m+2)2+2(7n+2)2 − q(7m+1)2+2(7n+3)2 ]

h6 =
∑

[q(7m+3)2+2(7n+3)2 − q(7m+2)2+2(7n+1)2 ],

and all sums are taken over all m,n ∈ Z. One checks that gΘ28 ∈ S3/2(784, χ7),
hΘ14 ∈ S3/2(392, χ7), hΘ7 ∈ S3/2(392, χ14).

Let
√

χ2 be the Dirichlet character of conductor 16 which is defined by
√

χ2(3) =
i =

√
χ2(5). It turns out that the cusp form φ⊗χ2 is the image under the Shimura

correspondence of each of the forms gΘ28 ⊗√χ2, hΘ14 ⊗√χ2, and hΘ7 ⊗√χ2.
Let gΘ28 =

∑
anqn and hΘ14 =

∑
bnqn. Let d be a positive square-free integer,

prime to 7. Lehman proves the following results:
(1) If d ≡ 1(mod 4), then

(12) L(Ed, 1) =
{ 1

2Ωda
2
d if (d/7) = 1

Ωda
2
d if (d/7) = −1

(2) If d ≡ 2, 3(mod 4), then

(13) L(Ed, 1) =
{

2Ωdb
2
d if (d/7) = 1

4Ωdb
2
d if (d/7) = −1

Therefore, assuming the Birch and Swinnerton-Dyer conjecture, we obtain (for d
positive, square-free and prime to 7):

if d ≡ 1(mod 4) and ad 6= 0, then |X(Ed)| = a2
d

4l ,



if d ≡ 2, 3(mod 4) and bd 6= 0, then |X(Ed)| = b2d
4l .

Here l = l(d) is defined as follows. Let l1 be the number of odd prime divisors
p|d such that (p/7) = 1, and let l2 be the number of prime divisors p|d such that
(p/7) = −1. Define l to be l1 + 1

2 l2 if l2 is even, and to be l1 + 1
2 (l2− 1) if l2 is odd.

Example 4. [Ne] Let E : x3 + y3 = 1 denote the Fermat’s curve; let Ω = Γ(1/3)3

2π
denote the real period. L-series of E equals

L(E, s) =
∑

α≡1(3)

α(Nα)−s,

where α runs through all elements of the Eisenstein ring Z[ρ] congruent to 1 modulo
3. It is well known that L(E, s) = L(f, s) for f ∈ S2(Γ0(27), χ0).

Let F−(z) = η(6z)η(18z)Θ(3z) and F+(z) = η(6z)η(18z)Θ(9z). Then F− ∈
S3/2(108, χ0) and F+ ∈ S3/2(108, χ−3) are mapped, under Shimura’s correspon-
dence, to f . Let F±(z) =

∑∞
n=1 c(±n)qn. Put

c′(n) = c(n)×
{

e(n), for n < 0
e(−3n), for n > 0,

where

e(n) =
{

1, for n 6≡ 5(mod 8)
1/3, for n ≡ 5(mod 8).

Let d be a square-free integer prime to 3. Nekovár proves, that

(14) L(Ed, 1) = Ω∆−1/2c′(d)2 ×
{

1, for d < 0√
3, for d > 0,

where ∆ is the conductor of
(

d
·
)
. Therefore, assuming the Birch and Swinnerton-

Dyer conjecture, if c(d) 6= 0, then

(15) |X(Ed)| =
(

t(d)c′(d)
2β(d)

)2

,

where t(d) = |Ed(Q)tors|, and

β(d) = #{p|d : p = x2 + 27y2}+
1
2
#{p|d : p ≡ 2(mod 3)}.

Example 5. Let E : y2+y = x3−x be the curve of conductor 11. The correspond-
ing cusp form f equals qη(z)2η(11z)2. The weight 3/2 form F =

∑∞
n=1 a(n)qn =

1
2 (θ1(q)− θ2(q)) is mapped to f by the Shimura correspondence, where

θ1(q) =
∑

qx2+11y2+11z2
,



(summation over (x, y, z) ∈ Z3 satisfying x ≡ y(mod 2)) and

θ2(q) =
∑

q(x2+11y2+33z2)/3.

(summation over (x, y, z) ∈ Z3 satisfying x ≡ y(mod 3) and y ≡ z(mod 2))
One proves, that

(16) L(Ed, 1) =
Ka(|d|)√

|d| , d < 0, d ≡ 2, 6, 7, 8, 10(mod 11)

where K = 2.917633233876991... It turns out that K =
√

3Ω, where Ω is the
period of the elliptic curve y2 + y = x3 − 3x − 5. Therefore, assuming the Birch
and Swinnerton-Dyer conjecture, if a(|d|) 6= 0, then

(17) |X(Ed)| = |Ed(Q)tors|2a(|d|)2
c(Ed)

.

Remarks concerning representations of integers by ternary quadratic
forms

Let r(n; a, b, c) denote the number of representations on n by diagonal ternary
quadratic form ax2 + by2 + cz2. Let L(s,−n) denote the Dirichlet L-series at-
tached to the quadratic character

(
·
−n

)
. Let h(−n) denote the class number of the

imaginary quadratic field Q(
√−n).

According to Gauß, we have r(n; 1, 1, 1) = 12h(−n), for positive n ≡ 1(mod 4).
By using Lomadze’s method [Lo] one can prove, for example, the following results

(i) Assume n is odd, square-free positive integer. Then

(18) r(n; 1, 2, 8) =
8
√

n

π
L(1,−n);

(ii) For any square-free n ≡ 1, 3(mod 8), such that L(En, 1) 6= 0, (here E : y2 =
x3 − x) we have

(19) r(n; 1, 2, 32) ∼ 4h(−n)

as n tends to infinity.
It is a classical problem to find an asymptotic formula for the number of integral

points (in the region) on the ellipsoid q(x1, ..., xk) = n as n → ∞, where q is a
positive definite integral quadratic form. It is well known, that

(20)
∑

n≤x

r(n; 1, 1, 1) =
4
3
πx

3
2 + O(x).



The general asymptotic formula (including positive ternary quadratic forms) is
discussed in [DS-P].

2. An (explicit) approach to Conjecture 2

Fix a prime r of the type 4k + 3. Let E(r, n; p, q) denote the elliptic curve
y2 = x(x + p)(x − q), with p + q = 4r2n+1, where p is an odd prime and q is a
positive square-free integer. (Chen [Ch] showed that every sufficiently large even
number is the sum of a prime and a natural number which has at most two prime
factors.)

Standard descent methods lead to the following result.

Proposition 0. Assume p < q are odd primes, with p ≡ 5(mod 8). Then E(r, n; p, q)
have Q-rank zero.

Proposition 0 strongly supports the following expectation.

Conjecture A. Fix a prime r of the type 4k+3. For any ε > 0 there exist infinitely
many n ∈ N such that E(r, n; p, q) has Q-rank zero, where 4r2n+1 = p + q with p a
prime and q a positive square-free integer satisfying p ¿ qε.

Proposition 1. Assume p < q, with q having at most two prime factors. Then we
have

c∞(E(r, n; p, q)) =
π

rn+1/2 ·AGM(1,
√

q/(p + q))
(i)

and

cfin(E(r, n; p, q)) = 2c2cqcr,(ii)

where

c2 =
{

2 if p ≡ 1(mod 4)
4 if p ≡ 3(mod 4),

, cr =
{ 2(2n + 1) if

(−p
r

)
= 1

4 if
(−p

r

)
= −1,

and

cq =
{

2 if q is a prime
4 if q is a product of two primes ;

The conductor is given by the formula

(iii ) N(E(r, n; p, q)) = 2f2pr · rad(q),

where

f2 =
{

3 if p ≡ 1(mod 4)
4 if p ≡ 3(mod 4) .

Proof. Use [Ni], Propositions 2.1, 3.1 and 3.2. ¤



Proposition 2. Fix a prime r of the type 4k+3. Assume the Birch and Swinnerton
-Dyer conjecture holds true for the family E(r;n, p, q). Then

|X(E(r;n, p, q))| ¿ N(E(r;n, p, q))1/2+ε.

Proof. It is easy to see that the Szpiro conjecture holds true for our family (combine
∆(E(r; n, p, q)) = 28p2q2r2 with Proposition 1(iii)). Now use the main result from
[GS]. ¤

Conjecture B. For a fixed prime r of the type 4k + 3 and ε > 0 there exist an
infinite sequence {(n, p, q)} satisfying Conjecture A and

L(E(r, n; p, q), 1) À N(E(r, n; p, q))−ε.

”Proof” of the conjecture 2. Assume the conjecture of Birch and Swinnerton-
Dyer and hypothesis B hold true. Then we have, using proposition 1,

|X(E(r, n; p, q))| À c−1
fin rn+(1/2)L(E(r, n; p, q), 1) À N(E(r, n; p, q))(1/2)−ε.

3. Examples of elliptic curves with large |X(E)|

In this section we compute the analytic order of X(E), i.e., the quantity

(21) |X(E)| = L(E, 1) · |E(Q)tors|2
c∞(E)cfin(E)

,

for certain special curves of rank zero. We use the following approximation of
L(E, 1) (within an error of size 10−k) [Co]:

(22) Sm = 2
m∑

n=1

an

n
e
−2πn√

N ,

with m ≥
√

N
2π (2 log 2 + k log 10− log(1− exp(−2π/

√
N)).

Consider the family

E(n, p) : y2 = x(x + p)(x + p− 4 · 32n+1),



with (n, p) ∈ N × (Z \ {0}). Any member of the family admits three isogenous
(over Q) curves Ei(n, p) (i = 2, 3, 4):

E2(n, p) : y2 = x3 + 4(2 · 32n+1 − p)x2 + 16 · 34n+2x,

E3(n, p) : y2 = x3 + 2(4 · 32n+1 + p)x2 + (4 · 32n+1 − p)2x,

and

E4(n, p) : y2 = x3 + 2(p− 8 · 32n+1)x2 + p2x.

Isogenous curves do have the same L-series and ranks but may have different tor-
sion subgroups, periods, Tamagawa numbers and orders of X(E). In our situation
(of 2-isogenies) the order of X(E) can only change by a power of 2.



3.1. Tables.

(n, p) N(n, p) |X| |X2| |X3| |X4|
(11, 336) 15816054028824 5292 10582 5292 10582

(11, 301) 5440722586421136 5762 11522 5762 2882

(11, 865) 15635299103673360 6172 12342 6172 6172

(11,−489) 1473152464197864 6802 6802 13602 6802

(11, 163) 1473152461647240 3462 13842 1732 13842

(12, 63) 63264216170568 5542 11082 5542 11082

(12.24) 81339706505952 6032 12062 6032 12062

(12, 22) 143157883450560 4162 16642 4162 16644

(12, 262) 42622006206125760 4682 18722 2342 18722

(12,−605) 4473683858657640 10312 10312 10312 20622

(12,−56) 569377945555104 10492 10492 20982 10492

(12, 934) 151942571712321216 5122 20482 2562 20482

(12, 694) 112899512607942336 5762 23042 2882 23042

(12, 382)∗ 62143535763983040 6482 25922 3242 25922

(12,−257) 20904304573762872 15452 15452 30902 30902

(12, 466) 75808606453660608 14352 57402 14352 57402

(13, 136) 264786704158368 2582 10322 2582 10322

(13,−69) 16837319246889384 5162 5162 2582 10322

(13, 60) 457535849098320 5522 11042 2762 5522

(13, 96) 10765549390536 5882 11762 2942 5882

(13, 876) 835002924582096 3402 13602 852 13602

(13,−672) 1281100377506040 3892 15562 3892 7782

(13, 544) 3111243773819208 9292 18582 9292 9292

(13, 928) 5307415849389480 4702 18802 4702 9402

(13, 73) 610744996281840 4942 19642 2472 9882

(13,−42) 20497606039673280 5022 20082 2512 20082

(13,−160) 915071698203240 10792 10792 21582 10792

(13,−3) 1464114717117648 23642 23642 11822 23642

(13, 66) 32210523776515392 6182 24722 3092 24722

(13,−125) 3660286792808760 6392 12782 6392 25562

(13,−17) 12444975095505720 3482 13922 3482 27842

(13,−5) 3660286792794360 15832 15832 15832 31662

(13, 708) 21595692076981920 8122 32482 4062 16242

Table 1. Elliptic curves E(n, p) (11 ≤ n ≤ 13; −1000 ≤ p ≤ 1000) with
max1≤i≤4 |Xi| ≥ 106.



(n, p) N(n, p) |X| |X2| |X3| |X4|
(14,−212) 21824460002049648 5602 5602 5602 11202

(14,−3) 775119556121040 5882 11762 2942 11762

(14, 96) 167129056756616 3062 12242 1532 6122

(14,−948) 2033174929441680 3122 12482 1562 6242

(14, 528) 18118419624294264 3562 14242 3562 7122

(14,−800) 8235645283809960 3902 15602 1952 15602

(14, 268) 726037150017264 8582 17162 4292 17162

(14,−281) 15300603799975032 2532 10122 2532 20242

(14, 652) 33560254531348080 2682 21442 672 21442

(14,−12) 3294258113514528 10772 21542 10772 21542

(14, 240) 8235645283778760 11842 23682 5922 11842

(14, 100) 16471290567565920 11862 23722 5932 23722

(14,−596) 61355557364338608 5982 11962 5982 23922

(14,−11) 144947356994638704 18062 36122 9032 36122

(14,−33) 72473678497325160 10022 20042 10022 40082

(14,−672) 11529903397328568 23102 46202 23102 23102

(14, 12) 205891132094640 5642 22562 2822 45122

(15,−852) 8222777088032880 5622 11242 2812 11242

(15,−12) 5929664604325920 5762 11522 2882 11522

(15,−1) 59296646043258936 1622 6482 812 12962

(15,−80) 74120807554076040 6792 13582 6792 13582

(15,−84) 3242785330490832 7752 16502 7752 16502

(15, 88) 130452621295164960 12322 24642 12322 24642

(15, 172) 2489995878769488 12582 25162 6292 12582

(15,−96) 14824161510815304 14342 28382 7172 28382

(15,−48) 14824161510815016 30572 30572 30572 30572

(15, 12) 336912761609424 2402 19202 602 38402

(15,−240) 74120807554080840 9652 38602 9652 38602

(15,−212) 280600200026160 4982 19922 2492 39842

(15, 375) 26953020928749960 11432 45722 11432 45722

(15, 60) 37060403777035920 22992 45982 22992 22992

(15,−248) 141399694410862368 11852 47402 11852 47402

(15,−6) 237186584173036224 37052 37052 37052 74102

(15, 1) 118593292086517776 40322 80642 20162 80642

(15,−116) 107475170953411824 23682 47362 23682 94722

Table 2. Examples of elliptic curves E(n, p) (n = 14, 15, −1000 ≤ p ≤ 1000)



with max1≤i≤4 |Xi| ≥ 106.

(16,−8) 106733962877866080 8912 8912 8912 17822

(16, 92) 61372028654772720 10642 21282 5322 21282

(16, 588) 116740271897662896 5492 21962 5492 10982

(16, 624) 102025111574427912 11002 22002 5502 11002

(16,−408) 72579094756950240 18632 37262 37262 37262

(16, 300) 166771816996663440 10182 40722 5092 40722

(16, 12) 2084647712458320 7922 31682 3962 63362

(16,−96) 133417453597333128 38042 76082 19022 76082

(16, 592) 17950711938549720 22212 88842 22212 44422

(16, 48) 7021971241964856 46082 92162 23042 92162

(16,−32) 133417453597332744 54632 109262 54632 109262

(16, 268) 279342793469411664 29162 116642 14582 116642

(16, 472) 186310763603371680 31192 124762 31192 124762

(16,−33) 234814718331305640 37172 74372 37172 148682

(17,−404) 118434048164038608 32462 64922 16232 129482

(17,−68) 10206435200195943696 82842 331362 41422 331362

(19,−32) 19452264734491086120 317042 634082 317042 634082

Table 3. Examples of elliptic curves E(n, p) (16 ≤ n ≤ 19; −1000 ≤ p ≤ 1000)
with max1≤i≤4 |Xi| ≥ 106.

3.2. Values of the Goldfeld-Szpiro ratio.

Let GS(E) denote the ratio |X(E)|/
√

N(E). In [dW] and [Ni] together there
are 58 examples of elliptic curves of conductor less than 1010 with GS(E) greater
than 1 (the largest value being 42.265...). The largest values of GS(E) we observed
for our curves are as follows:



E |X(E)| GS(E)

E2(9, 544) 3442 1.20290...

E2,4(16, 48) 92162 1.01357...

E2(10, 204) 5042 0.98366...

E2,4(19,−32) 634082 0.91159...

E2(11, 160) 3222 0.57131...

E4(17,−404) 129842 0.48986...

E4(16,−33) 148682 0.45618...

E2,4(16, 472) 124762 0.36060...

E2,4(17,−68) 331362 0.34368...

E2,4(16,−32) 109262 0.32682...

E2,4(16, 268) 116642 0.25741...

Table 4. Elliptic curves Ei(n, p) (9 ≤ n ≤ 19, −1000 ≤ p ≤ 1000; 1 ≤ i ≤ 4)
with the largest |X(E)|. Notation Ei,j(n, p) means that the given values of |X(E)|
and GS(E) are shared by curves the isogeneous curves Ei(n, p) and Ej(n, p).

3.3. Small non-zero and large values of L(E, 1).

Let Sk(N) denote the linear space of holomorphic cusp forms of weight k and level
N . Let H+

k (N) ⊂ Sk(N) be the subset of newforms with ε = 1. Iwaniec and Sarnak
[IS] proved that the percentage of f ’s in H+

k (N) for which L(f, k
2 ) ≥ (log N)−2 is

at least 50 as N →∞, with technical assumption φ(N) ∼ N (N squarefree).
Note that L(E(7, p), 1) ≥ (log N(7, p))−2 for any −1000 ≤ p ≤ 1000) in a rank

zero case. It may not be true in general:

L(E(8,−131), 1) = 0.0002764516... < 0.0012048710... = (log N(8,−131))−2,

L(E(9, 160), 1) = 0.0007372044... < 0.0015186182... = (log N(9, 160))−2,

L(E(10, 142), 1) = 0.0002457384... < 0.0009026601... = (log N(10, 142))−2,

L(E(11, 168), 1) = 0.0003276464... < 0.0009902333... = (log N(11, 168))−2,

L(E(12, 800), 1) = 0.0001706491... < 0.0009613138... = (log N(12, 800))−2.



Here are some examples of large and small values of L(E, 1):

E L(E, 1)

E(11,−733) 88.203561907255071...

E(13,−160) 71.523635814751843...

E(12, 466) 56.224807584564927...

E(7,−433) 36.275918867296195...

E(10, 687) 30.274774697662334...

E(9, 767) 29.638568367562609...

E(9,−93) 28.032198538875886...

E(10,−837) 28.032198538875886...

Table 5. Elliptic curves E(n, p) (n ≤ 19, −1000 ≤ p ≤ 1000) with the largest
values of L(E, 1) known to us.

E L(E, 1)

E(12, 800) 0.0001706491750110...

E(10, 142) 0.0002457348122099...

E(11, 168) 0.0003276464160384...

E(14, 672) 0.0006067526222261...

E(9, 160) 0.0007372044423472...

E(10,−534) 0.0009829392448696...

E(10, 408) 0.0009829392504019...

Table 6. Elliptic curves E(n, p) (n ≤ 19, −1000 ≤ p ≤ 1000) with the smallest
positive values of L(E, 1) known to us.

Note that

(23) L(E(10, 408))− L(E(10,−534)) = 0.00000000000553237117... .

This is the smallest gap between the values of L(E, 1) of two elliptic curves which
is known to us. The analytic orders of the Tate-Shafarevich group are 2, 4, 1, 4 for
the isogeneous curves Ei(10, 408), and 2, 8, 8, 8 for Ei(10,−534) where i as usual
takes values from 1 to 4.
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