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MET′IXNIA BAINE �EOIO1

An operator trace on a Hilbert space H is a partially defined linear function of
an operator such that

τ(AT ) = τ(TA)
for every operator T in the domain of τ and every bounded operator A on H.
No such nonzero function can be defined on the whole algebra B(H) of bounded
operators on H due to the fact that B(H) coincides with its own commutator
space [B(H), B(H)] (more precisely, any operator A ∈ B(H) is a sum of two
commutators; see [24]). The condition of linearity suggests that the domain of
an operator trace should be a vector subspace of B(H), while the ability to form
products AT and TA leads us to assume that the domain of a trace is a two-sided
ideal in B(H).

In the present article, we investigate traces on arbitrary ideals in the algebra
B(H). The support of the ordinary trace Tr is the Schatten ideal L1 of nuclear
operators (also called the ideal of trace class operators). For a positive compact
non-nuclear operator T , the sequence of partial sums

σn(T )� σn(λ(T )) =
n∑
i=1

λi(T )

diverges to ∞. The attitude of a “modern physicist” is to combat divergences of
all kinds by the process of so-called “renormalization”. The renormalization may
involve subtracting counterterms or dividing by them. We shall employ the latter
type of renormalization: for a fixed ideal J and a chosen positive sequence α (the
“counterterm”), we consider the limits limσ(T )/α, T ∈ J , as functions, possibly
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taking infinite values, on the set of “infinite” positive integers N∞ = βZ+ \ Z+.
Here βZ+ denotes, as usual, the universal compactification of the set of positive
integers, known as the Stone–Čech compactification of Z+.

If a point p ∈ N∞ satisfies the double requirement that the correspondence

T 7→ lim
p

σ(T )
α

(1)

be additive with respect to an operator T and that the values limp σ(T )/α of the
limit be finite for all T belonging to the cone of positive operators J+, then (1)
defines a trace on J (which may happen to be zero if α grows too rapidly). So, it is
important to determine the following two sets: the set Aα(J) of points p ∈ N∞ for
which the correspondence (1) is additive on the positive cone J+, and the set F α(J)
of p ∈ N∞ for which it is finite. The latter depends directly on the characteristic
set Σ(J) of the ideal J (Σ(J) is formed by the monotonically arranged sequences
of eigenvalues λ(T ) of T ∈ J+).

On the other hand, the additivity set Aα(J) is defined by a transcendental
condition, which reflects the transcendental nature of the correspondence between
an operator T and its sequence of eigenvalues λ(T ). In view of this, the discovery
that not only F α(J) but also Aα(J) admits a purely spectral description, is rather
surprising.

The first important result of the present article (Theorem 3.4 below) states that
For every positive sequence α and an ideal J ( B(H),

Aα(J) =
{
p ∈ N∞ : lim

p

λ

αω
= 0 for all λ ∈ Σ(J)

}
. (2)

Throughout, ω denotes the harmonic sequence ω = (1, 1
2 ,

1
3 , . . . ). The nonempti-

ness of the zero set on the right-hand side of (2) is often easy to verify. In fact,
our next task is to give another description of this zero set in the most interesting
case when α is concave, i. e., when α itself is the sequence of partial sums σ(π)
of some monotonic sequence π ↘ 0. The limits limp σ(T )/σ(π) are finite for all
p ∈ N∞ when T belongs to the principal ideal (π) generated by π. We prove that
the additivity set coincides for this ideal with the set of slow variation sv(σ(π))
of the sequence σ(π); see Theorem 3.18 and the definition in 1.16 below. So, only
when sv(σ(π)) = ∅, does the method of multiplicative renormalization of the di-
vergence of the ordinary trace Tr fail to produce a trace on the principal ideal
(π). Remarkably, in [18, Theorem 5.16], we proved that this happens exactly when
(π) = [B(H), (π)], in other words, when no nonzero trace exists on (π).

The equality of an ideal J with its commutator space [B(H), J ] sets an obvious
limitation on any attempt to construct a trace on J . No nonzero trace exists on
such an ideal. Other limitations arise when we seek a positive trace; see Lemma 2.15
and Remark 2.17 below.

In the opposite case, when sv(σ(π)) = N∞, the method is totally successful:
at every point p ∈ N∞ the limit limp σ(·)/σ(π) produces a positive nonzero trace
on (π). This case corresponds to the sequence σ(π) being slowly varying (in the
classical sense). It was under this hypothesis that J. Dixmier gave the histori-
cally first construction of exotic traces on some operator ideals [17]. Actually, he
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constructed his traces on a slightly larger ideal than (π), which is defined by the
requirement that limp σ(T )/σ(π) < ∞ for all T ∈ J+ and all p ∈ N∞. We prove,
without Dixmier’s assumption, that the additivity set is nonempty for this larger
ideal exactly when there exists any trace on it at all (see Theorem 3.20).

All traces discussed so far have the following strong positivity property:

if S ≺ T, then τ(S) ≤ τ(T ) (S, T ∈ J+), (3)

where S ≺ T means that σ(S) ≤ σ(T ) term by term. In Section 4, we give a
characterization of the class of ≺-positive traces (i. e., traces satisfying (3)) on a
given ideal (Theorem 4.2).

In the nuclear case, i. e., when J ⊆ L1, construction (1) gives limp 1/α multiplied
by the ordinary trace Tr. There is no divergence here in need of renormalization.
But the success with the multiplicative renormalization induced us to investigate
the renormalization of the convergence to 0 of the sequence of remainders σ∞(T )�
σ∞(λ(T )), where

σn,∞(λ)�
∞∑

i=n+1

λi (λ ∈ `1).

It is noteworthy that the theory involved in the renormalization

T 7→ lim
σ∞(T )
α

(T ∈ J+) (4)

is in most aspects parallel to that for (1) (there are certain complications though:
the sequence of remainders σ∞(π) need not satisfy the ∆ 1

2
-condition (9), while σ(π)

always does, and this is frequently very useful). Equality (2) and other results of
Section 3 have their counterparts for (4) (see Section 5), including the following
interesting fact:

For α = σ∞(π) and J = (π), the method of renormalization (4) pro-
duces nonzero traces if and only if the commutator space [B(H), J ]
is properly contained in the kernel J0 of the usual trace Tr: J → C.

In other words, the method fails to produce nonzero traces on a principal ideal (π)
only when the ordinary trace is the unique (up to a multiplicative constant) trace
on (π).

These nonzero traces are strictly exotic: all of them are positive but none is
≺-positive. The two constructions discussed above turned out to be the proverbial
“tip of the iceberg”. Shortly afterwards (Autumn 1978), the author was able to
show that the correspondence

T 7→ lim
p

σ(T ; `, u)
log u− log `

, (5)

where σ(T ; `, u) �
∑un

i=ln
λ(T ) and ` = (`1, `2, . . . ) and u = (u1, u2, . . . ) are

arbitrary sequences of positive integers subject only to the conditions

` < u and limu/` =∞
defines a nonzero positive trace on the ideal (ω) = {T ∈ K : λ(|T |) = O(ω)}
at every point p ∈ N∞. The ideal (ω) and its powers (ωs) are, implicitly, the
most studied operator ideals today. This is so due to the close connections with the
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calculi of various algebras of pseudodifferential(like) operators, the noncommutative
residue, and the extent of the influence of Alain Connes’ pioneering work ([8]–[16],
[29], [23], [38], [37]).

This brings us to the multiplicative renormalization of the double sequence of
interval sums dσ(T ) = dσ(λ(T )), where dσmn(λ)�

∑n
i=m+1 λi is indexed by pairs

of integers 0 ≤ m < n. Let P denote the set of such pairs. We consider the limits

lim
dσ(T )
α

(T ∈ J+) (6)

as continuous functions on the compact space βP \P and we introduce the maximal
compact subspace P ⊂ βP \ P (and its obvious variant for J ⊆ L1) on which the
values of (6) can possibly produce traces. Then we prove (Theorem 6.4) that for
α = dσ(π) and J = (π), the correspondence

T 7→ limq
dσ(T )
dσ(π)

(T ∈ (π)+)

defines a positive trace at every point q of this maximal subspace of βP \P if π/ω
is slowly varying. All of this is done in Section 6. The last section is independent
of the previous material and provides an alternative approach to the proof of the
characterization of the commutator space [B(H), J ] for an arbitrary ideal, which
is one of the main results of the article [18] (Theorem 5.6). This approach is based
on proving that the quotient J/[B(H), J ] is canonically isomorphic to the vector
space

K(Σ(J)/≈Σ(J))⊗R C,
where ≈Σ(J) is a simple and explicit equivalence relation on the characteristic set
Σ(J) and K denotes the group completion functor which associates a monoid M
with its “reflection” in the category of groups; see Section 7 for details.

The first two sections serve as a reference for the rest of the article and there-
fore should be viewed in this light. Section 2 contains a notable result, however.
Any ideal in B(H) is equipped with a canonical nondegenerate positive structure
(J, J+). While it is true that an operator T = X + iY , where X and Y are self-
adjoint, belongs to [B(H), J ] if and only if both its “real” and “imaginary” parts
do, the positive and the negative parts of a compact selfadjoint operator X usually
do not belong to [B(H), J ] when X does. In view of this, the following result
(Theorem 2.9) may seem to be rather surprising:

J/[B(H), J ] inherits a nondegenerate positive structure from J .
Historically, Jacques Dixmier appears to be the first one to discover that, beyond

the ordinary trace, there is a realm of “exotic” traces [17]. His work became very
widely known after Alain Connes linked it to a plethora of problems in Noncommu-
tative Geometry and Quantum Field Theory (see the references cited above). In his
thesis [34], followed by the two articles [35] and [36], Gary Weiss proved that there
are many nonequivalent traces on L1. Independently, this result was obtained in
1981 by Tadeusz Figiel and Stanis law Kwapień (unpublished; see the final remark
in [31]). Apparently, Nigel Kalton was the first to realize that there existed exotic
positive traces on certain principal ideals of nuclear operators (the ordinary trace
is the only positive or continuous trace on L1; see Corollary 2.16 below). This was
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later rediscovered by Albeverio, Guido, Ponosov and Scarlatti [1]–[3], who seem to
have been influenced by an original article of Várga [33], whose construction gives
a subclass of the traces of Section 3 via a different approach.

The current study complements and is a sequel to the article [18], where an
exhaustive description of the commutator structure of ideals in B(H) is given in
its numerous aspects. We refer the reader to that article for additional motivation
and references.

1. Preliminaries about sequences

1.1. Multiplication by a real number t ∈ (0, ∞) induces the map

t• : Z+ → Z+, n 7→ dtne, (7)

where dxe� −[−x]. The fact that (7) does not constitute an action of the multi-
plicative group R∗

+ poses certain problems in comparison with the case of functions
on (0, ∞) (cf., e. g., [5]), though it becomes an action when restricted to the sub-
monoids Z×+ and (Z−1

+ )×, where Z−1
+ = {1, 1

2 ,
1
3 , . . . }. We have (1/`)•◦`• = idZ+ 6=

`• ◦ (1/`)• for ` ∈ {2, 3, . . . }.

1.2. The pseudo-action (7) induces linear endomorphisms t•� (t•)∗ of the vector
space CZ+ of Z+-indexed sequences

(t•α)n = αdtne (α ∈ CZ+). (8)

We shall frequently use the notation

D`α = (1/`)•α (` ∈ Z+).

Recall that a positive sequence α ∈ (0, ∞)Z+ satisfies the ∆t-condition for some
t > 0 if

sup
t•α

α
<∞. (9)

1.3. Besides (8), we shall consider the following operations on CZ+ :
a) the sequence of partial sums

α 7→ σ(α), σn(α)� α1 + · · ·+ αn;

b) the arithmetic mean sequence

α 7→ αa� σ(α)ω,

where ω will always denote the harmonic sequence

ω = (1, 1
2 ,

1
3 , . . . );

c) the difference sequence

α 7→ ∆α, ∆nα� αn − αn−1.

(It will be convenient to extend any Z+-indexed sequence to N by setting α0 = 0.)
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1.4. On the space `1 of summable sequences, we also have the following two
operations:

a′) the sequence of remainders

α 7→ σ∞(α), σn,∞(α)�
∞∑

i=n+1

αi

and
b′) the sequence of “arithmetic means at infinity”

α 7→ αa,∞(α)� ωσ∞(α).

1.5. The set of nonnegative monotonic sequences λ ∈ c0 will be denoted c�0 .
The internal direct sum λ � µ of two sequences in c�0 is defined as the monotonic
rearrangement of the sequence

(λ1, µ1, λ2, µ2, . . . ).

We record here for future reference several closely related inequalities involving the
above operations. Below, λ denotes an arbitrary sequence from c�0 , m and n are
positive integers such that m ≤ n, and 0 < s ≤ t <∞ are real numbers.

1.6. (n−m)λn ≤ σn(λ)− σm(λ) ≤ (n−m)λm .

Replacing n by dtne and m by dsne in 1.6, we obtain

1.7. ((t• − s•)ω−1)t•λ ≤ (t• − s•)σ(λ) ≤ ((t• − s•)ω−1)s•λ.

Note that (t• − s•)ω−1 = (t− s)ω−1 if s, t ∈ Z+. In this case, inequality 1.7 takes
the form

1.7bis. (t− s)t•λ ≤ (t t• − ss•)λa ≤ (t− s)s•λ.

1.8. 0 ≤
(
s•ω

t•ω
− 1

)
t•λ

s•(λa)
≤ t•σ(λ)
s•σ(λ)

− 1 ≤
(
s•ω

t•ω
− 1

)
s•λ

s•(λa)
.

1.9. 0 ≤
(

1− t•ω

s•ω

)
t•λ

s•(λa)
≤ 1− s•σ(λ)

t•σ(λ)
≤

(
1− t•ω

s•ω

)
s•λ

t•(λa)
.

If λ ∈ `�1 � `1 ∩ c�0 , then we also have

1.10. (n−m)λn ≤ σm,∞(λ)− σn,∞(λ) ≤ (n−m)λm.

1.11.
(
s•ω

t•ω
− 1

)
t•λ

s•(λa,∞)
≤ 1− t•σ∞(λ)

s•σ∞(λ)
≤

(
s•ω

t•ω
− 1

)
s•λ

s•(λa,∞)
.

1.12.
(

1− t•ω

s•ω

)
t•λ

t•(λa,∞)
≤ s•σ∞(λ)
t•σ∞(λ)

− 1 ≤
(

1− t•ω

s•ω

)
s•λ

t•(λa,∞)
.

1.13. Any function α : Γ→ C on a set Γ has a unique extension to a continuous
function βΓ → C, where C = R + iR and R = [−∞, ∞]. We shall denote its
restriction to βΓ \ Γ by limα. The value at a point p ∈ βΓ \ Γ will be denoted
limp α; it can be calculated as follows. For any base B of the ultrafilter p, there
exists precisely one point v ∈ C which is a cluster point of α(E) ⊆ C for each
E ∈ B. This is the value of limp α (cf. [6, Ch. I, § 7.2]).
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1.14. The level sets {p ∈ βΓ \ Γ: limp α = v}, where v ∈ C, will be denoted by
Zv(α) or Z(α), if v = 0. They are compact subspaces of βΓ \ Γ.

1.15. As usual, for α, α′ ∈ CΓ we shall write α � α′ if |α′| ≤ K|α| ≤ K ′|α′| for
some constants K, K ′ > 0.

For a sequence α ∈ (C∗)Z+ , we define the set of slow variation sv(α) as the
following subset of N∞� βZ+ \ Z+ = βN \ N:

sv(α)�
⋂

0<t<∞
Z1

(
t•α

α

)
.

1.16. The case sv(α) = N∞ corresponds to the classical definition of a slowly
varying sequence. The following characterization theorem combines a number of
subtle results (cf. Section 1.9 of the book [4] and the references therein, in particular,
[5]).

Note that, because we use dxe instead of [x] in Definition 1.1, it is not entirely
obvious that our definition of a slowly varying sequence is the same as in [28], [5],
and [4]. That in fact it is, follows from the observation (used also in the proof of
the implication (a)⇒ (b) below) that, for any given irrational t > 1,

αn+1

αn
=
αd 1

t dtnee

αn
=
αd 1

t dtnee

αdtne

αdtne

αn
→ 1

as n → ∞ (compare with the remark of de Haan and Balkema mentioned in the
footnote to Section 1.9 of [4], p. 52).

Theorem 1.17. For any sequence α ∈ (0, ∞)Z+ , the following conditions are
equivalent :

(a) α is slowly varying ;
(b) the function x 7→ αdxe on (0, ∞) is slowly varying ;
(c) α = γeσ(δω) for some sequence γ ∈ (0, ∞)Z+ which converges to a limit

c > 0 and some real-valued sequence δ ∈ c0;
(d) α ∼ α′, where α′ is a sequence whose difference sequence β = ∆α′ has the

property
|β| = o(βa); (10)

(e) limαωs =

{
0 for every s > 0,
∞ for every s < 0;

(f) for any 0 < s < t <∞ and ε > 0, there exists an N such that∣∣∣∣αmαn − 1
∣∣∣∣ < ε (11)

for all integers m and n such that dsne ≤ m ≤ dtne and n ≥ N . �

We close this section with the following theorem describing the sets of slow
variation for the sequence of partial sums σ(λ) and, when λ ∈ `�1 , for the sequence
of remainders σ∞(λ) of a sequence λ ∈ c�0 .
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Theorem 1.18. For any nonzero sequence λ ∈ c�0 ,

sv(σ(λ)) =
∞⋂
m=1

Z

(
Dmλ

λa

)
and, when λ is summable,

sv(σ∞(λ)) =
∞⋂
m=1

Z

(
Dmλ

λa,∞

)
.

Proof. The double inequality 1.8 with s = 1 gives us the following inequality be-
tween functions on N∞:

0 ≤ lim
t•σ(λ)
σ(λ)

− 1 ≤ (t− 1) lim
λ

λa
(t > 1),

whereas inequality 1.9 with t = 1 gives us the inequality

0 ≤ 1− lim
s•σ(λ)
σ(λ)

≤ (1− s) lim
s•λ

λa
(0 < s < 1). (12)

Combined together, they produce the inclusion
∞⋂
m=1

Z

(
Dmλ

λa

)
=

⋂
s>0

Z

(
s•λ

λa

)
⊆ sv(σ(λ)). (13)

Conversely, inequality 1.8 with t = 1/m gives us the inequality

0 ≤
(

1
ms
− 1

)
Dmλ

s•(λa)
≤ (1/m)•σ(λ)

s•σ(λ)
− 1

(
0 < s <

1
m

)
,

which, combined with the fact that

s•(λa) � λa (14)

for all s > 0, implies that sv(σ(λ)) is contained in the intersection of the zero sets
Z

(
Dmλ
λa

)
.

Suppose now that λ ∈ `�1 . In a similar vein, inequality 1.11 with s = 1 gives

0 ≤ 1− lim
t•σ∞(λ)
σ∞(λ)

≤ (t− 1) lim
λ

λa,∞
(t > 1), (15)

whereas inequality 1.12 with t = 1 produces the inequality

0 ≤ s•σ∞(λ)
σ∞(λ)

− 1 ≤ (1− s) lim
s•λ

λa,∞
(0 < s < 1). (16)

Together, (15) and (16) imply the inclusion
∞⋂
m=1

Z

(
Dmλ

λa,∞

)
=

⋂
s>0

Z

(
s•λ

λa,∞

)
⊆ sv(σ∞(λ)). (17)

Inequality 1.11 with t = 1/m gives the inequality(
1
ms
− 1

)
Dmλ

s•λa,∞
≤ 1− (1/m)•σ∞(λ)

s•σ(λ)

(
0 < s <

1
m

)
. (18)
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The obvious analog of (14), s•(λa,∞) � λa,∞, is false in general. However,

lim
s•λa,∞
λa,∞

=
1
s

(0 < s <∞)

on the set sv(σ∞(λ)). In conjunction with (18), this implies the reverse inclusion
in (17). �

2. Preliminaries about traces on operator ideals

The purpose of this section is to prepare the ground for the sections that follow.
The lack of clear exposition of some of the most basic aspects of operator ideal
traces results in an inevitable verbosity, for which the author requests the reader’s
forgiveness.

2.1. For any ideal J ( B(H), the set

Σ(J)� {s(T ) : T ∈ J} ⊆ c�0 (19)

of the monotonically arranged sequences of singular numbers of operators T ∈ J
has the property:

if λ = O(µ � ν) for µ, ν ∈ Σ(J), then λ ∈ Σ(J), (ChS)

which characterizes such sets, i. e., any subset Σ ⊆ c�0 which satisfies (ChS) is of
the form Σ = Σ(J) for a unique ideal J . Set (19) is called the characteristic set of
the ideal J .

2.2. For any sequence π ∈ c�0 , the union Oπ�
⋃∞
m=1Oπ,m of sets

Oπ,m� {λ ∈ c�0 : λ = O(Dmπ)}
is the smallest characteristic set containing π. We shall denote the associated ideal
by (π).

2.3. Any ideal J generated by finitely many compact operators T1, . . . , T` is
principal (i. e., singly generated). Indeed, J = (π), where π = s(T1) + · · ·+ s(T`).

2.4. Every characteristic set Σ ⊆ c0 is a semimodule over the semifield [0, ∞)
(the more appropriate name “semi-vector space” seems to be too inconvenient to
use. The theory of semimodules over semirings is fairly well developed; see, e. g.,
[25] and the references therein). In particular, linear maps between semimodules
constitute morphisms in the category of semimodules.

2.5. Let V be a complex vector space. A linear map τ : J → V will be called
a V -valued trace on J if τ(AT ) = τ(TA) for all A ∈ B(H) and T ∈ J . It is
convenient to allow vector-valued traces. The quotient map

τ : J → J/[B(H), J ] (20)

where [B(H), J ] denotes the commutator space

[B(H), J ]�

{
m∑
i=1

[Ai, Ti] : Ai ∈ B(H), Ti ∈ J

}
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is tautologically a universal trace; i. e., the V -valued traces on J are in a one-to-one
correspondence with the linear maps J/[B(H), J ]→ V .

2.6. Real traces. Recall that a real structure on V is an isomorphism ρ : V → V
of the vector space V with its complex conjugate space V such that ρ̄ ◦ ρ = idV .
Equivalently, it is a choice of a real vector subspace VR ⊆ V such that V = VR⊕ iVR
(VR coincides with the fixed points of ρ). In this case, VR is called the real part
of V , and a trace τ : J → V is said to be real if τ(T ∗) = τ(T )ρ for T ∈ J , or,
equivalently, if τ maps the Hermitian part Jh of J to VR.

Since T ∈ [B(H), J ] if and only if T ∗ ∈ [B(H), J ], the quotient J/[B(H), J ]
inherits a real structure from J , and the tautological trace τ defined by (20) is real.

2.7. Positive traces. A choice of a cone V+ (i. e., a [0, ∞)-semimodule) of V
such that VR = V+ − V+ will be called a positive structure on a real vector space
(V, ρ). In particular, V+ determines VR and, a fortiori, the involution ρ. By abuse
of language, we shall call the pair (V, V+) a positive vector space, and linear maps
preserving positive cones will be referred to as positive linear maps.

A positive space (V, V+) will be said to be nondegenerate if V+ ∩ (−V+) = {0}.

2.8. Examples. (a) (C, [0, ∞)).
(b) For every C-vector space V , the correspondence v ⊗ w̄ 7→ w ⊗ v̄ defines a

canonical real structure on V ⊗C V , and

(V ⊗C V )+ �

{
m∑
i=1

vi ⊗ v̄i : vi ∈ V

}
defines a nondegenerate positive structure on it.

(c) (A variant of the previous example.) If V is a Banach space then the com-
pleted injective tensor product V ⊗̌ε V is canonically a positive Banach space.

In the case of a Hilbert space, V is canonically isomorphic to V ∗ and the positive
structure on the space K = H ⊗̌εH∗ of compact operators thus obtained coincides
with the usual one.

(d) Let C be any [0, ∞)-semimodule. The group completion KC (see Section 7.1
below) is canonically a real vector space, and V � KC ⊗R C becomes a positive
vector space with V+ being the image of C. The map C → V is injective precisely
if the additive monoid of C is cancellative. The obtained positive vector space is
nondegenerate precisely when no nonzero v ∈ C has an additive inverse. We shall
call KC ⊗R C the positive vector space associated with the semimodule C. This
construction is discussed in a slightly greater detail in Section 7.

(e) For any ideal J ( B(H), the quotient J/[B(H), J ] inherits the positive
structure from J :

(J/[B(H), J ])+ � J+/J+ ∩ [B(H), J ].

It is not at all clear that this structure is nondegenerate. However, it is.

Theorem 2.9. For every ideal J ⊆ B(H), the positive structure on J/[B(H), J ]
is nondegenerate.
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Proof. Suppose that T1 = −T2 + K for some positive operators T1, T2 ∈ J and
K ∈ [B(H), J ]. Then T � T1 + T2 ∈ [B(H), J ]. By Theorem 5.11(i) of [18], the
principal ideal (T ) generated by T is contained in [B(H), J ] in view of positivity
of T . Since λ(Ti) ≤ λ(T ) for i = 1, 2, the operators Ti belong to (T ) and, hence,
to [B(H), J ]. �

Theorem 5.11 used in the proof is deduced from the main result of [18]. No
simple proof of Theorem 2.9 is known to the author.

The tautological trace (20) is, of course, a universal positive trace on J . Even
when J/[B(H), J ] 6= 0, there may be no scalar (i. e., C-valued) positive trace on J .

2.10. Every trace τ : J → V is uniquely determined by its restriction to the
positive cone J+. Since any T ∈ J+ equals UD(λ(T ))U∗, where D(λ) denotes the
diagonal operator having a sequence λ on its diagonal and U is a suitable partial
isometry, we have

T −D(λ(T )) = [U, D(λ(T ))U∗] ∈ [B(H), J ]

and τ(T ) = τ(D(λ(T ))). In particular, τ |J+ factors through the characteristic set
Σ(J)

J+

τ |J+ //

λ ��:
::

::
::

V

Σ(J)

BB

where λ : J+ → Σ(J) denotes the map that associates a positive operator with its
sequence of eigenvalues.

In practice, the map Σ(J) → V is the restriction of τ to the semimodule of
diagonal operators D(Σ(J)) � {D(λ) : λ ∈ Σ(J)} which identifies naturally with
Σ(J). Guided by this remark and the desire to keep notation simple, we usually
denote a trace J → V and the corresponding semimodule map Σ(J) → V by the
same symbol.

Lemma 2.11. There is a natural bijection{
V -valued

traces on J

}
←→

{
semimodule maps τ : Σ(J)→ V

such that τ ◦ λ : J+ → V is additive

}
. �

2.12. The requirement that τ ◦ λ be additive implies that τ is �-additive, i. e.,
that τ(λ � µ) = τ(λ) + τ(µ).

2.13. If V is equipped with a real structure, then real traces correspond to semi-
module maps Σ(J)→ VR.

2.14. Positive traces require a little more care, since λ ≤ µ in Σ(J) does not imply
that µ− λ ∈ Σ(J). Instead, we have to consider monotonic (i. e., order preserving)
maps Σ(J) → V+. Thus, for a positive vector space (V, V+), there is a natural
bijection {

positive V -valued
traces on J

}
←→

 monotonic semimodule maps
τ : Σ(J)→ V such that
τ ◦ λ : J+ → V is additive

 .
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For any characteristic set Σ ⊆ c�0 , the set

Σ(o)
� {λ ∈ c�0 : λ = o(µ) for some µ ∈ Σ}

is characteristic and coincides with the product set c�0 Σ.

Lemma 2.15. Let f be a monotonic homogeneous and �-additive function f : Σ→
[0, ∞) on a characteristic set Σ such that Σ = Σ(o). If Σ ⊆ `�1 , then f = cσ, where
c = f(1) is the value of f on the sequence

1� (1, 0, 0, . . . ).

If Σ * `�1 , then f vanishes identically.

Proof. For any sequence α ∈ CZ+ , let α[k]n�αn−k if n− k > 0 (otherwise put 0).
If λ ∈ Σ(o), then λ = αµ for some positive sequence α ∈ c0.

Suppose that f vanishes on c�f �{λ ∈ c�0 : λn = 0 for n� 0}. The monotonicity
of f implies that

f(λ[−`]) = f(α[−`]µ[−`]) ≤ ‖α[−`]‖∞ f(µ[−`])
≤ ‖α[−`]‖ f(µ)→ 0 as `→∞.

On the other hand, the �-additivity of f combined with the vanishing of f on
sequences with finite support shows that f(λ) = f(λ[−`]) for all ` ∈ Z+. Hence f
vanishes identically on Σ(o) = Σ.

In the general case, by using all the three properties of f , we obtain the inequality

σn(λ)f(1) = f(λ11 � · · · � λn1) ≤ f(λ) (λ ∈ Σ)

(which is an equality if λ has finite support), which implies that f(1) = 0 if Σ * `�1
and that g� f − f(1)σ is a positive �-additive function on Σ. Since g vanishes on
c�f , it must vanish identically on Σ. �

For an ideal J ⊆ B(H), let J (o) denote the ideal whose characteristic set equals
Σ(J)(o). We have J = K J , of course.

Corollary 2.16. The ordinary trace Tr is the only (up to a multiple) positive
trace on any ideal of nuclear operators J ⊆ L1 such that J = J (o), in particular,
on J = L1. Moreover, any positive trace τ : J → C vanishes on J (o) if J * L1. �

Remark 2.17. According to Theorem 7.3 below or to the chronologically earlier
Theorem 5.11(ii) proven in [18], an ideal J ( B(H) admits a nonzero trace if and
only if λa /∈ Σ(J) for at least one λ ∈ Σ(J). In particular, for every sequence π
such that π 6� πa, there are sequences µ = o(π) such that µa 6= O(π), which means
that the ideal (π)(o) supports scalar nonzero traces but, in view of Lemma 2.15,
not a single one is positive.

For future reference, we close this section with four different forms of an impor-
tant inequality relating the sequences of eigenvalues of positive compact operators
S, T , and S+T to each other. The notation σ(S) for σ(λ(S)), etc., is used through-
out.

2.18. σ(S + T ) ≤ σ(S) + σ(T ) ≤ 2•σ(S + T ).
2.19. λ(S + T )a ≤ λ(S)a + λ(T )a ≤ 2(2•(λ(S + T )a)).
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2.20. 0 ≤ σ(S) + σ(T )− σ(S + T ) ≤ (2• − 1•)σ(S + T ) ≤ λ(S + T )
ω

.

2.21. 0 ≤ (λ(S) + λ(T ))a − λ(S + T )a ≤ λ(S + T ).

The double inequality 2.18 follows immediately from the min-max characteriza-
tion of eigenvalues of a positive operator (which is essentially due to Ernest Fischer
[20]).

3. The renormalization of the sequence of partial sums

3.1. Let us fix an arbitrary positive sequence α and an ideal J ( B(H). The
correspondence

T 7→ lim
σ(T )
α

defines a unitary invariant map J+ → C(N∞, [0, ∞]) which needs be neither addi-
tive nor finite, so we associate it with the following two subsets of N∞:

the additivity set

Aα(J)�
⋂

S,T∈J+

{
p ∈ N∞ : lim

p

σ(S) + σ(T )− σ(S + T )
α

= 0
}

(21)

and the finiteness set

F α(J)�
⋂

λ∈Σ(J)

{
p ∈ N∞ : lim

p

σ(λ)
α

<∞
}

=
⋂

λ∈Σ(J)

(
N∞ \ Z∞

(
σ(λ)
α

))
. (22)

The additivity set is always compact, whereas F α(J) is the intersection of cozero
sets.

3.2. Local Marcinkiewicz ideals. Recall that the Marcinkiewicz ideal M (ψ)
associated with a sequence ψ ∈ (0, ∞)Z+ consists of all compact operators whose
sequence of singular numbers belongs to the set

m�(ψ)� {λ ∈ c�0 : ‖λ‖m(ψ) <∞}, (23)

where ‖λ‖m(ψ) � sup(λaψ). Equipped with ‖ ‖m(ψ), M (ψ) is a symmetrically
normed ideal (cf. [18, Sections 4.4 and 2.25]).

We can define a local analog of (23), since, for any subset X ⊆ N∞, the set

m�(ψ; X)� {λ ∈ c�0 : lim
p

(λaψ) <∞ for any p ∈ X}

is characteristic (put m�(ψ; ∅) = c�0 ). We shall call the corresponding ideal
M (ψ; X) the local Marcinkiewicz ideal (associated with a subset X ⊆ N∞). The
system of rearrangement invariant seminorms

‖T‖M (ψ),K � sup
p∈K

lim
p

(s(T )aψ)

(K being an arbitrary nonempty compact subset of X) makes it a complete locally
convex ideal (a Banach ideal, if X is closed).

Every ideal J ( B(H) whose finiteness set contains X, i. e., such that

F α(J) ⊇ X,
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is contained in M (ω/α; X), and M (ω/α; X) is the largest among such ideals.

3.3. The restriction of limσ(·)/α to the set

T α(J)�Aα(J) ∩ F α(J) (24)

defines a trace functional on J :

τJα : J+ → C(T α(J), [0, ∞)), T 7→
(

lim
σ(T )
α

) ∣∣∣∣
T α(J)

(25)

provided T α(J) 6= ∅. For this reason, (24) will be called the trace set (of τJα ). The
trace τJα is ≺-positive (see definition (32) below).

The finiteness set F α(J) is defined directly in terms of the sequence α and the
characteristic set Σ(J), while the definition of the additivity set Aα(J) is entirely
“transcendental”. It is, therefore, rather remarkable that the additivity set admits
a purely spectral description too.

Theorem 3.4. For any sequence α ∈ (0, ∞)Z+ and any ideal J ( B(H),

Aα(J) =
⋂

λ∈Σ(J)

Z

(
λ

αω

)
=

{
p ∈ N∞ : lim

p

λ

αω
= 0 for any λ ∈ Σ(J)

}
. (26)

3.5. The map c�0 → Z � {closed subsets of N∞} given by the correspondence

λ 7→ Z

(
λ

αω

)
is a morphism of directed sets (c�0 , ≤)→ (Z , ⊇).

Since each characteristic subset of c�0 is directed by the relation ≤ and since N∞
is compact, we infer that ⋂

λ∈Σ(J)

Z

(
λ

αω

)
= ∅

if and only if
αω = O(µ) for some µ ∈ Σ(J). (27)

Condition (27) implies and, when αω is equivalent to a monotonic sequence, is
equivalent to the simple condition

α
α2
2

α3
3

. . .

 ∈ J.
Thus we obtain the following corollary of Theorem 3.4.

Corollary 3.6. For a sequence α ∈ (0, ∞)Z+ and an ideal J ( B(H), the addi-
tivity set Aα(J) is empty if and only if condition (27) holds. �

The assertion of Theorem 3.4 is no less interesting when α is taken to be the
constant sequence of 1’s; the set A1(J) is the additivity set of the ordinary, un-
renormalized, trace Tr.

Corollary 3.7. For any ideal J ( B(H), the following conditions are equivalent :
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(a) J is contained in the ideal

(ω)(o) = {T ∈ K : s(T ) = o(ω)}; (28)

(b) A1(J) = N∞ , i. e., the ordinary trace Tr, when considered on J , is “every-
where” additive. �

Recall that (28) does not admit any nonzero positive trace (see the second as-
sertion of Corollary 2.16 above).

Corollary 3.8. For any ideal J ( B(H), the following conditions are equivalent :
(a) (ω) * J ;
(b) A1(J) 6= ∅;
(c) there exists a trace τ : J → C which extends the ordinary trace Tr from

J ∩L1. �

The equivalence of conditions (a) and (c) is established in Corollary 7.5 below.
Note that, in accordance with Corollary 2.16, no such extension can be positive,
except in the trivial case J ⊆ L1.

3.9. For any sequence ψ ∈ (0, ∞)Z+ and a subset X ⊆ N∞, the set z�(ψ; X)�⋂∞
m=1 z

�
m(ψ; X), where

z�m(ψ; X)� {λ ∈ c�0 : lim
p

(Dmλ)ψ = 0 for any p ∈ X},

is characteristic (we set z�(ψ; ∅) = c�0 ). The corresponding ideal, denoted Z (ψ;X),
is the largest among the ideals J such that⋂

λ∈J

Z(λψ) ⊇ X.

This leads to the following corollary of Theorem 3.4.

Corollary 3.10. For any sequence α ∈ (0, ∞)Z+ and a subset X ⊆ N∞, the ideal
Z

(
1
αω ; X

)
is the largest among the ideals J such that

Aα(J) ⊇ X. �

3.11. For a principal ideal J = (µ), where µ ∈ c�0 , the obvious inclusions

Z
( µ

αω

)
⊇ Z

(
D2µ

αω

)
⊇ Z

(
D3µ

αω

)
⊇ · · ·

combined with the equality⋂
λ∈(µ)

Z

(
λ

αω

)
=

∞⋂
m=1

Z

(
Dmµ

αω

)
yield the following assertion.

Corollary 3.12. If a sequence µ ∈ c�0 satisfies the ∆ 1
2
-condition (9), then

Aα((µ)) = Z
( µ

αω

)
. �

The proof of Theorem 3.4 will be split into several steps. The first step is a
direct consequence of inequality 1.8 for s = 1.
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Lemma 3.13. For any integer ` > 1 and λ ∈ c�0 ,

Z

(
λ

αω

)
⊆ Z

(
(` • − 1)σ(λ)

α

)
⊆ Z

(
` •λ

αω

)
. (29)

�

Proposition 3.14. For any integer ` > 1 and characteristic set Σ ⊆ c�0 ,⋂
λ∈Σ

Z

(
(` • − 1)σ(λ)

α

)
=

⋂
λ∈Σ

Z

(
λ

αω

)
.

Proof. Lemma 3.13 combined with the identity D` ◦ ` • = id produces the inclusion

Z

(
(` • − 1)σ(Dlλ)

α

)
⊆ Z

(
l •(Dlλ)
αω

)
= Z

(
λ

αω

)
,

which implies the inclusion⋂
λ∈Σ

Z

(
(` • − 1)σ(λ)

α

)
⊆

⋂
λ∈Σ

Z

(
λ

αω

)
,

since D`λ ∈ Σ whenever λ ∈ Σ. The reverse inclusion follows directly from (29). �

The assertion of the next lemma is a direct consequence of inequality 2.20.

Lemma 3.15. For any positive compact operators S and T ,

Z

(
(2• − 1•)σ(S + T )

α

)
⊆ Z

(
σ(S) + σ(T )− σ(S + T )

α

)
. �

Lemma 3.16. For any ideal J ( B(H),⋂
λ∈Σ(J)

Z

(
λ

αω

)
⊆ Aα(J). (30)

Proof. ⋂
λ∈Σ(J)

Z

(
λ

αω

)
Prop. 3.14

=
⋂

λ∈Σ(J)

Z

(
(2• − 1•)σ(T )

α

)
Lem. 3.15
⊆

⋂
S,T∈J+

Z

(
σ(S) + σ(T )− σ(S + T )

α

)
= Aα(J). �

Consider the projection P on H = `2(Z+) given by

P (ei) =

{
ei if i is odd,
0 if i is even

and, for a given sequence λ ∈ c�0 , set

S = P

λ1

λ2

. . .

P and T = (1− P )

λ1

λ2

. . .

 (1− P ). (31)

We have σ(S) + σ(T ) = 2•σ(λ) and σ(S + T ) = σ(λ). Hence

(2• − 1•)σ(λ) = σ(S) + σ(T )− σ(S + T )
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and, accordingly,

Z

(
(2• − 1•)σ(λ)

α

)
= Z

(
σ(S) + σ(T )− σ(S + T )

α

)
,

where the operators S and T are as in (31). Combined with Lemma 3.13, this yields
the reverse of inclusion (30) and completes the proof of Theorem 3.4.

3.17. Renormalization with a concave sequence α. The sequence of partial
sums σ(T ) is concave, so it is natural to focus attention on concave renormalizing
sequences. Each such sequence is of the form α = σ(π) for a unique π ∈ c�0 .
Consider the principal ideal (π)� {T ∈ K : s(T ) ∈ Oπ}, where

Oπ� {λ ∈ c�0 : λ = O(Dmπ) for some m ∈ Z+}
denotes the smallest characteristic set containing the sequence π. The finiteness set
F σ(π)((π)) is the whole space N∞. It turns out that the additivity set Aσ(π)((π))
coincides with the slow-variation set of σ(π).

Theorem 3.18. For any nonzero π ∈ c�0 ,

Aσ(π)((π)) = sv(σ(π)). �

This theorem is proved by combining Theorem 3.4 with the assertion of Theo-
rem 1.19.

In the particularly interesting case when D2π � π, i. e., when π satisfies the
∆ 1

2
-condition (9), inequality 1.8 shows that

t•σ(π)
s•σ(π)

− 1 � π

πa

for any 0 < s < t <∞. Hence we have the following corollary.

Corollary 3.19. For any nonzero sequence π ∈ c�0 satisfying the ∆ 1
2
-condition and

any pair of distinct positive real numbers s and t,

Aσ(π)((π)) = Z

(
π

πa

)
= Z1

(
t•σ(π)
s•σ(π)

)
= sv(σ(π)). �

The following theorem combines certain results of [18] with the results of this
section.

Theorem 3.20. For any nonzero sequence π ∈ c�0 , the following conditions are
equivalent :

(a) Aσ(π)((π)) = ∅;
(b) Aσ(π)(M (1/πa)) = ∅;
(c) no nonzero trace exists on the principal ideal (π);
(d) no nonzero trace exists on the Marcinkiewicz ideal M (1/πa);
(e) π � πa.

Proof. The implication (e)⇒ (a) follows from Theorem 3.4. If the additivity set
of the Marcinkiewicz ideal M (1/πa) is empty, then there exists a µ ∈ c�0 such
that µa = O(πa) and πa = O(µ) (the latter so by Corollary 3.6). It follows that
µ � µa � πa and therefore

(πa)a � (µ)a � πa.
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By Theorem 3.8 of [18], the condition (πa)a � πa implies that πa � π. Finally,
the equivalence of the last three conditions is guaranteed by Theorems 5.16 and
5.22 combined with Proposition 2.26 (all three in [18]). �

3.21. The theorem just proven implies and simultaneously improves one of the
two main results in [33] (Theorem IRR). It is particularly notable that the mul-
tiplicative renormalization method fails to produce a trace on the ideal (π) or on
the Marcinkiewicz ideal M (1/πa) only if no nonzero trace exists on either of these
ideals. Besides, being ≺-positive, the trace τJσ(π) is continuous with respect to the
Marcinkiewicz norm (see (3.4) above).

4. The ≺-positive traces

The multiplicatively renormalized trace τJα : J+ → C(T α(J), [0, ∞)) discussed
in the previous section has a strong positivity property built into it:

σ(S) ≤ σ(T ) implies τJα (S) ≤ τJα (T ). (32)

In other words, τJα is ≺-positive. This is so because τJα (T ) is a monotonic function
of the arithmetic mean sequence λ(T )a rather than just λ(T ).

Lemma 4.1. Any ≺-positive trace τ : J+ → [0, ∞] is of the form

τ(T ) = ϕ(λ(T )a) (33)

for a unique monotonic linear map ϕ : a(Σ(J))→ [0, ∞]. �

Indeed, if λ(S)a = λ(T )a, then S and T have the same sequences of eigenvalues.
Note that the semimodule a(Σ(J)) is invariant under the action of the multi-

plicative monoid of positive integers Z×+, because ` •(λa) coincides with µa for the
sequence of “interval” means

µn�
λ(`−1)n+1 + · · ·+ λ`n

`
,

which belongs to Σ(J) when λ does.
The following theorem completely characterizes the ≺-positive traces on a given

ideal.

Theorem 4.2. Let (V, V+) be a positive vector space, and let ϕ : a(Σ(J))→ V+ be
a monotonic linear map. The following conditions are equivalent :

(a) formula (33) defines a trace on J ;
(b) ϕ ◦ ` • = 1

`ϕ for every integer ` ≥ 1;
(b′) ϕ ◦ ` •0 = 1

`0
ϕ for some integer `0 ≥ 2;

(c) ϕ is constant on the equivalence classes of the following relation on a(Σ(J)):

η ∼Σ(J) ζ if |η − ζ| = O(λ) for some λ ∈ Σ(J).

Proof. The implication (b′)⇒ (a) (for `0 = 2) is a consequence of inequality 2.19.
Let η = λa ∈ a(Σ(J)), and let S and T be the operators defined in (31). Then the
equalities

2ϕ(2 •λa) = ϕ(λ(S)a + λ(T )a) = ϕ(λ(S)a) + ϕ(λ(T )a)
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and
ϕ(λa) = ϕ(λ(S + T )a)

demonstrate the equivalence of conditions (a) and (b′) for `0 = 2.
Suppose that (b′) holds for a particular `0. By iteration, we obtain ϕ ◦ (`m0 ) • =

(1/`m0 )ϕ, and the double inequality

η ≤ `(` •η) ≤ `m0 ((`m0 ) •η) (η ∈ a(Σ(J))),

where m = dlog `e/log `0, give the implication (b′)⇒ (b) in view of the monotonicity
of ϕ.

Inequality 1.7bis with s = 1 and t = ` gives the implication (c)⇒ (b). When
applied to the sequence D`λ, the same inequality aided by the identity `• ◦D` = id
produces the inequality

1
`− 1

(D`λ)a + λ ≤ `

`− 1
` •((D`λ)a).

Suppose that |η − ζ| ≤ λ for some η, ζ ∈ a(Σ(J)) and λ ∈ Σ(J). Then, by adding
(`− 1)−1(D`λ)a to both sides of the inequality η ≤ ζ +λ, we obtain the inequality

η +
(
D`λ

`− 1

)
a

≤ ζ +
(
D`λ

`− 1

)
a

+ λ ≤ ζ + `

(
` •

((
D`λ

`− 1

)
a

))
. (34)

If ϕ is a monotonic additive map satisfying the condition (b′) for `0 = `, then (34)
results in the inequality

ϕ(η) + v ≤ ϕ(ζ) + v,

which holds in V+ for

v = ϕ

((
D`λ

`− 1

)
a

)
= ϕ

(
`

(
` •

((
D`λ

`− 1

)
a

)))
.

By exchanging the roles of η and ζ, we obtain the reverse of inequality (34). Thus,
ϕ(η) + v = ϕ(ζ) + v. But the monoid V+, being embedded in the Abelian group
V , is cancellative. Hence ϕ(η) = ϕ(ζ). This proves the implication (b′)⇒ (c) and
completes the proof of Theorem 4.2. �

Remark 4.3. If ϕ is a monotonic linear map Ξ→ V+ defined on some semimodule
Ξ containing both a(Σ(J)) and Σ(J), then condition (c) is clearly equivalent to the
following simpler condition

(c′) ϕ vanishes on Σ(J).

5. The renormalization of the sequence of remainders

5.1. In this section, we shall consider exclusively ideals J ( B(H) contained in
the ideal of nuclear operators L1. Construction (25) produces in this case essentially
the ordinary trace Tr. More precisely, τJα multiplies TrT by the function lim 1/α
restricted to T α(J), which coincides with the set of points p ∈ N∞ where limα
does not vanish:

τJα : T 7→ (TrT )(lim 1/α)|T α(J)

In particular, the image of τJα consists of scalar multiples of the function lim 1/α.
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We still have another spectral invariant of T ∈ J+ at our disposal: the sequence
of remainders σ∞(T ) � σ∞(λ(T )). We shall renormalize its convergence to 0 by
investigating the correspondence

J+ → C(N∞, [0, ∞]), T 7→ lim
σ∞(T )
α

.

By replacing the sequence σ(T ) with σ∞(T ) in the definitions (21), (22), and (24),
we obtain the corresponding additivity set Aα,∞(J), the finiteness set F α,∞(J),
and the trace set T α,∞(J) = Aα,∞(J) ∩ F α,∞(J). If Tα,∞(J) is nonempty, then
the correspondence

τJα,∞ : T 7→ lim
σ∞(T )
α

∣∣∣∣
T α,∞(J)

defines a positive vector-valued trace on J . Note that τJα,∞ is not ≺-positive. We
have now the following analog of Theorem 3.4.

Theorem 5.2. For any sequence α ∈ (0, ∞)Z+ and any ideal J ( B(H) contained
in L1,

Aα,∞(J) =
⋂

λ∈Σ(J)

Z

(
λ

αω

)
. (35)

Note that the right-hand side of (35) is exactly like in (26).
Regarding the proof, it is essential to observe that

σ(S) + σ(T )− σ(S + T ) = −(σ∞(S) + σ∞(T )− σ∞(S + T ))

and
(`• − 1•)σ(λ) = −(`• − 1•)σ∞(λ) (λ ∈ `�1 ).

Now, the proof of Theorem 3.4 carries over word for word by replacing everywhere
σ by σ∞.

5.3. Renormalization with a convex sequence α. The sequence of remainders
σ∞(T ) is convex. In accordance with this, we shall now analyze the case when the
normalizing sequence α is convex and converges to 0. In such a case, α = σ∞(π)
for a unique π ∈ `�1 .

The following theorem is an analog of Theorem 3.18.

Theorem 5.4. For any nonzero sequence π ∈ `�1 , the additivity set Aσ∞(π),∞((π))
of the map

T 7→ lim
σ∞(T )
σ∞(π)

(T ∈ (π)+) (36)

coincides with the set of slow variation sv(σ∞(π)). �

This results from combining Theorem 5.2 with the second assertion of Theo-
rem 1.19. If π satisfies the ∆ 1

2
-condition (9), we obtain a more precise statement.

Corollary 5.5. For any nonzero sequence π ∈ `�1 satisfying the ∆ 1
2
-condition and

any pair of distinct positive real numbers s and t,

Aσ∞(π),∞((π)) = Z

(
π

πa,∞

)
= Z1

(
t•σ∞(π)
s•σ∞(π)

)
= sv(σ∞(π)).
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Proof. The inclusion Z1

( t•σ∞(π)
σ∞(π)

)
⊆ Z

(
π

πa,∞

)
, t > 1, follows directly from inequal-

ity 1.11, and the inclusion Z1

( s•σ∞(π)
σ∞(π)

)
⊆ Z

(
π

πa,∞

)
, 0 < s < 1, from inequal-

ity 1.12. �

Finally, we establish an analog of Theorem 3.20.

Corollary 5.6. For any nonzero sequence π ∈ `�1 , the following conditions are
equivalent :

(a) Aσ∞(π),∞((π)) = ∅;
(b) any trace τ on (π) is a multiple of the ordinary trace Tr;
(c) πa,∞ = O(Dmπ) for some m ∈ Z+.

Proof. The equivalence of (a) and (c) follows from Theorem 5.4. The equivalence
of (b) and (c) is an immediate consequence of Theorem 7.3 below. An alternative
proof was given in [18, Theorem 5.11(iii)]. �

6. The renormalization of the sequence of interval sums

Guided by the constructions of traces in Sections 3 and 5, we shall now undertake
a single construction of a positive vector-valued trace which encompasses the infinite
hierarchy (5) of increasingly finer classes of scalar traces.

6.1. Consider the set of pairs of natural numbers

P � {(m, n) ∈ N× Z+ : m < n}.
The natural projections

P

p1

����
��

�� p2

��6
66

66
66

N Z+

induce maps between the sequence spaces p∗1 : CN → CP and p∗2 : CZ+ → CP , and
the compact space βP \P decomposes into the disjoint union of fibers of the induced
map p̄1 : βP → N ∪∞:

βP \ P = P0 ∪ P1 ∪ · · · ∪ P∞,
where Pm� {q ∈ βP \ P : p̄1(q) = m} and p̄1 denotes the map induced by p1.

The function
r : P → [1, ∞], (m, n) 7→ n

m+ 1
,

induces the continuous map βr : βP → [1, ∞]. The fiber of βr at∞ will be denoted
P . It is a compact subspace of βP \ P and, in fact, P is the disjoint union

P =
∞⋃
m=0

Pm ∪ P∞,

where P∞� P∞ ∩ P .
Later, we shall encounter the space P 0∞ = P0 ∪ P∞. As mentioned in Sec-

tion 1.3, it will be convenient to extend any Z+-indexed sequence α to N by putting
α0 = 0.
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6.2. For any sequence α ∈ CZ+ , let dα ∈ CP be the double sequence dα =
(p∗2 − p∗1)α. Its terms are given by the formula

dαmn =

{
αn if m = 0,
αn − αm if m > 0.

6.3. Fix a nonzero sequence π ∈ c�0 and let P (π) denote the additivity set of the
map (π)+ → [0, ∞) given by

T 7→
(

lim
dσ(T )
dσ(π)

) ∣∣∣∣
P

,

i. e., let

P (π)�
⋂

S,T∈(π)+

{
p ∈ P : lim

p

dσ(S) + dσ(T )− dσ(S + T )
dσ(π)

= 0
}
.

The set P (π) is compact and, if it is nonempty, the correspondence

itrπ : (π)+ → C(P (π), [0, ∞)), T 7→
(

lim
dσ(T )
dσ(π)

) ∣∣∣∣
P

defines a trace on the principal ideal (π). We will refer to it as the interval trace.
The sequences π such that π/ω is slowly varying constitute a particularly im-

portant class of sequences for which (π) 6= [B(H), (π)]. We shall now prove that
the additivity set P (π) for such sequences is as large as possible.

Theorem 6.4. If π/ω is slowly varying, then

P (π) =

{
P 0∞ for π ∈ `1,
P for π /∈ `1.

Proof. For operators S, T ∈ (π)+, inequality 2.21 gives the following double in-
equality on P :

−p∗1(λ(S + T )/ω) ≤ dσ(S) + dσ(T )− dσ(S + T ) ≤ p∗2(λ(S + T )/ω), (37)

or, in “point coordinates”,

−mλm(S + T ) ≤ dσmn(S) + dσmn(T )− dσmn(S + T ) ≤ nλn(S + T ).

The key to the proof of the theorem is provided by the following assertion.

Theorem 6.5. Let π ∈ c�0 , and suppose that π/ω is slowly varying. Then, for
every point q ∈ βP \ P ,

lim
q

p∗2(π/ω)
dσ(π)

=
1

log βr(q)
(38)

and

lim
q

p∗1(π/ω)
dσ(π)

=


mπm∑∞
i=m+1 πi

if π ∈ `1 and p̄1(q) = m <∞,

1
log βr(q)

if π /∈ `1 or p̄1(q) =∞.

(39)



VESTIGIA INVESTIGANDA 791

Note that when βr(q) is equal to 1 or ∞, 1/ log βr(q) obviously has the meaning
of 0 or ∞.

Corollary 6.6. For π ∈ c�0 and slowly varying π/ω, the zero set of lim
p∗2(π/ω)
dσ(π)

on βP \ P coincides with P :

Z

(
p∗2(π/ω)
dσ(π)

)
= P ,

whereas

Z

(
p∗1(π/ω)
dσ(π)

)
=

{
P 0∞ if π ∈ `1 and p̄1(q) = m <∞,
P if π /∈ `1.

Proof of Theorem 6.4 (continued). In view of inequality (37) and Corollary 6.6, it
remains only to show that, in the case when π is summable, Pm ∩ P (π) = ∅ for
0 < m <∞.

Take a q ∈ Pm. Its image under the projection p1 is the principal ultrafilter
containing the singleton set {m} ⊂ Z+. In particular, the family

Bq� {E ∈ q : p1(E) = {m}} (40)

is a base of q. Since q ∈ βP \ P , we have
⋂
E∈Bq

E = ∅ and, consequently, for any
operator S ∈ (π)+, the point∑∞

i=m+1 λi(S)∑∞
i=m+1 πi

∈ [0, ∞] (41)

is the only common cluster point of the images under the map

dσ(S)
dσ(π)

: P → [0, ∞)

of all the sets E ∈ Bq. It follows that lim
q

dσ(S)
dσ(π)

is equal to the expression in (41).

For m = 0, this is TrS up to a multiplicative factor, while for m > 1, (41) fails to
be a trace even on finite rank operators. �

For the proof of Theorem 6.5, we need the following lemma.

Lemma 6.7. Suppose that π/ω is slowly varying, and let ε > 0.
(a) For any 1 < ρ1 < ρ2 <∞, there exists such an integer N that

1− ε
log(n/m)

<
nπn

dσmn(π)
<

1 + ε

log(n/m)
(42)

if n ≥ N and n/m ∈ [ρ1, ρ2].
(b) For any ρ > 1, there exists such an integer N that

nπn
dσmn(π)

>
1− ε
log ρ

(43)

if n ≥ N and n/m ∈ (1, ρ].
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(c) For any ρ > 1, there exists such an integer N that

nπn
dσmn(π)

<
1 + ε

log ρ

if n ≥ N and n/m ∈ ρ.

Proof. (a) Since π/ω is slowly varying, there exists an integer N0 such that

1√
1 + ε

<
(π/ω)dtne
(π/ω)n

<
1√

1− ε
(44)

if n ≥ N0 and t ∈ [1/ρ1, 1] (see Theorem 1.18(f) above). By applying (44) to the
sequence of

t ∈
{
m+ 1
n

,
m+ 2
n

, . . . ,
n− 1
n

, 1
}
,

we obtain the estimates
1

k
√

1 + ε
<

πk
nπn

<
1

k
√

1− ε
,

which holds for k ∈ {m + 1, . . . , n} provided n/m ≤ ρ2 and n ≥ N0. Hence the
inequalities √

1− ε
dσmn(ω)

<
nπn

dσmn(π)
<

√
1− ε

dσmn(ω)
are valid in the same range of (m, n). Since

log(n/m)
dσmn(ω)

→ 1 as n→∞

uniformly on the set {(m, n) ∈ P : n/m ≥ ρ1 > 1}, there exists an N ≥ N0 for
which the estimates in (42) hold.

To prove part (b), we apply the inequality
nπn

dσmn(π)
≥ nπn
dσdn/ρe,n(π)

valid when n/m ∈ (1, ρ] and to prove part (c), the inequality
nπn

dσmn(π)
≤ nπn
dσdn/ρe,n(π)

,

which holds for n/m ≥ ρ; then we proceed like in part (a). �

6.8. Remark. All three assertions of Lemma 6.7 remain valid for nπn replaced
by mπm and n ≥ N by m ≥ N in (42)–(43). Only small changes to the proof are
needed (in particular, the interval [1/ρ1, 1] is replaced by the interval [1, ρ2]).

Proof of Theorem 6.5. Let q ∈ βP \P and βr(q) = ρ ∈ (1, ∞). Then q ∈ P∞ and,
for every ε ∈ (0, ρ), the ultrafilter q possesses a base B whose members E ∈ B are
subsets of {(m, n) ∈ P : |n/m − ρ| < ε}. Let an integer N be chosen so that (42)
holds for ρ1 = ρ− ε and ρ2 = ρ+ ε. The set

B′� {E ∈ B : n ≥ N}
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is cofinal in B, hence it is a base of q itself. The image of each E ∈ B′ under the
function

p∗2(π/ω)
dσ(π)

: P → [0, ∞]

is contained, in view of part (a) of Lemma 6.7, in the closed interval[
1− ε

log(ρ+ ε)
,

1 + ε

log(ρ− ε)

]
. (45)

It follows that the number

lim
q

p∗2(π/ω)
dσ(π)

(46)

belongs to the interval (45). In view of the arbitrariness of ε ∈ (0, ρ), this demon-
strates formula (38) for 0 < ρ <∞. For βr(q) = 1, a similar argument with passing
to a subbase of the base

B� {E ∈ q : n/m < 1 + ε}

shows, with the help of part (b) of Lemma 6.7 (for ρ = 1 + ε), that the limit (46)
belongs to the set ⋂

0<ε<1

[
1− ε

log(1 + ε)
, ∞

]
= {∞},

i. e., equals ∞. Finally, in the same spirit, if ρ = ∞, we show with the help of
part (c) of Lemma 6.7 (for ρ = 1/ε) that the limit (46) belongs to the set⋂

ε>0

[
0,

1 + ε

log(1/ε)

]
= {0},

i. e., equals 0.
In view of Remark 6.8, the same reasoning proves formula (39) for q ∈ P∞.
When q ∈ Pm, family (40) is a base of q. By passing to the subbases Bq,N�{E ∈

Bq : p2(E) ⊆ Z≥N}, we see that

lim
q

p∗1(π/ω)
dσ(π)

= lim
n→∞

mπm∑∞
i=m+1 πi

,

which gives the requested values, since βr(q) =∞ if p̄1(q) = m <∞. �

The interval trace itr generates a hierarchy of C(N∞)-valued traces: just choose
any pair of sequences `, u ∈ ZZ+

+ subject to the conditions

` ≤ u and ` = o(u) (47)

and consider the sequence of interval -sums

σn(α; `, u)�
u(n)∑
i=`(n)

αi (α ∈ CZ+).
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Corollary 6.9. Let π ∈ c�0 be a nonzero sequence such that π/ω is slowly varying,
and let ` and u be a pair of integer-valued sequences satisfying conditions (47).
Then the correspondence

S 7→ lim
σ(λ(S); `, u)
σ(π; `, u)

(S ∈ (π)+) (48)

defines a positive C(N∞)-valued trace on the principal ideal (π) if π is not summa-
ble. The same is true for summable π provided lim ` =∞. �

We have
σ(λ(S); `, u)
σ(π; `, u)

= f∗
(
dσ(λ)
dσ(π)

)
,

where f : Z+ → P is the function f(n) = (`(n) − 1, u(n)), so tha trace (48) is
the composition of the interval trace itr and the linear map (βf)∗ : C(βP \ P ) →
C(βN \ N).

7. Universal trace

7.1. The inclusion of the category of groups Gr into the category of monoids
Mon has the group completion functor K : Mon → Gr as its left and the group-of-
invertible-elements functor G : Mon → Gr as its right adjoint functor. Recall that,
for a monoid M , KM can be realized as the quotient of the free group FM spanned
by the set M modulo the normal subgroup generated by the relations between
elements of the monoid M . For Abelian monoids, there is a simpler construction:
KM = M×M/∼, where (m, m′)∼(n, n′) if m+n′ = m′+n in M . The equivalence
class of (m, m′) will be denoted m−m′.

If C is a semimodule over the semifield [0, ∞), then KC is automatically a real
vector space with the obvious action of the multiplicative group R∗:

a(v − w)�


av − aw if a > 0,
0− 0 if a = 0,
(−a)w − (−a)v if a < 0.

7.2. For any semimodule C ⊆ [0, ∞)Z+ , the relation of equivalence on CZ+

α ≈C β if |αa − βa| = O(ξ) for some ξ ∈ C

is a congruence, i. e., it is compatible with the [0, ∞)-semimodule structure on C.
We have encountered a similar relation in part (c) of Theorem 4.2. The quotient
of any semimodule by a congruence is a semimodule again.

Theorem 7.3. For any ideal J ( B(H), the correspondence

utr : S 7→ the class of λ(S) in K(Σ(J)/≈Σ(J)) (S ∈ J+) (49)

defines a trace on J . This trace is universal, i. e., for any vector-valued trace
τ : J → V , there exists a unique C-linear map

t : K(Σ(J)/≈Σ(J))→ V

such that τ = t ◦ utr.
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Proof. Inequality 2.21 shows that, for any S, T ∈ J+,

(λ(S) + λ(T )) ≈Σ(J) λ(S + T ).

It follows that J+ → Σ(J)/≈Σ(J) is a homomorphism of [0, ∞)-semimodules and,
therefore, the composite map

J+ → Σ(J)/≈Σ(J) → K(Σ(J)/≈Σ(J))⊗R C

induces a trace map

utr : J → K(Σ(J)/≈Σ(J))⊗R C, (50)

(see Lemma 2.11 above). The map (50) is surjective by construction. Every element
in the kernel of utr has the form S + iT for unique Hermitian operators S, T ∈
Ker(utr). Finally, every hermitian operator S in the kernel of (50) is equal modulo
[B(H), J ] to the operator

U


λ1

−µ1

λ2

−µ2

. . .

U∗, (51)

where U is a suitable unitary operator and λ ≈Σ(J) µ. We know from Theorem 5.6
(the implication (f)⇒ (b)) of [18] that any operator of the form (51) is a sum of at
most three commutators from [B(H), J ]. Thus, Ker(utr) = [B(H), J ], and (50)
induces an isomorphism of vector spaces

J/[B(H), J ] ∼−→ K(Σ(J)/≈Σ(J))⊗R C

proving that the trace utr is indeed universal. �

Corollary 7.4. For any ideal J ( B(H) and positive vector space (V, V+), there
are natural identifications{

V -valued
traces on J

}
←→

 [0, ∞)-semimodule maps
τ : Σ(J)→ V such that
τ(λ) = τ(µ) if λ ≈Σ(J) µ

 .

In this picture, real V -valued traces correspond to maps τ : Σ(J)→ VR and positive
V -valued traces to maps τ : Σ(J)→ V+.2

Corollary 7.5 (cf. [19]). For any ideal J ( B(H), the following conditions are
equivalent :

(a) (ω) * J ;
(b) there exists a trace τ : J → C which extends the ordinary trace Tr from

J ∩L1.

2Note that the monotonicity of such semimodule maps is automatic in view of the additivity

of the composite map τ ◦ λ : J+ → V .
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Proof. Suppose that no trace extending Tr from J ∩L1 to J exists. This happens
precisely when TrT = 1 for some T ∈ J ∩L1 ∩ [B(H), J ]. Since T ∗ ∈ J ∩L1 ∩
[B(H), J ] and TrT ∗ = 1, we may assume that T = T ∗.

We have
|λ(T+)a − λ(T−)a| ∼ |TrT |ω = ω,

where T = T+ − T− is the representation of T as the difference of its positive and
negative parts. Thus, ω ∈ Σ(J), in view of Theorem 7.3.

On the other hand, any rank one projection is an element of [B(H), (ω)]. �

7.6. Remark. Our demonstration that the correspondence (49) defines a trace
on J supplies a new proof of the nontrivial implication (a)⇒ (f) of Theorem 5.6 of
[18], in the case when one of the ideals equals B(H).
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