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ABSTRACT. Importance of the pseudodifferential symbol calculus extends far be-
yond the fundamental role it is known to play in Global and Microlocal Analysis.
In this article, we demonstrate that algebras of symbols contribute to subtle phe-
nomena in characteristic p > 0.

A perfect fit between Smooth Geometry and de Rham Theory in characteristic
zero leads many to interpret the situation in characteristic p > 0 as an apparent
failure of de Rham Theory in positive characteristic. Smoothness, equated with
the existence of local coordinates, i.e., of an étale map from a neighborhood of an
arbitrary point to the affine space An, is a concept independent of the ground ring.
What however is very much dependent on the ground ring k and its characteristic
is the geometry of the affine space itself which provides a local model for Smooth
Geometry after all.

Local calculations in Smooth Geometry rely on the fact that the affine spaces
are objects of the category of commutative unipotent algebraic groups. When the
ground ring is a field of characteristic zero, this category is equivalent to the cate-
gory of finite-dimensional vector spaces, all objects are semisimple, and the addi-
tive group Ga, which corresponds to the one-dimensional affine space A1, is the
sole simple object.

In contrast, over a ring of characteristic p > 0, the line is not even semisimple:
Ga fits for example into the nontrivial extension of algebraic group schemes

(0.1) Ga Ga Ga,1u u F u x

where F : Ga → Ga, the Frobenius morphism, corresponds to the k-algebra endo-
morphism of O(Ga) = k[z] which sends z to zp.
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The kernel of the Frobenius morphism Ga,1, on the other hand, is a simple
object. It resembles, however, a circle rather than a line even though, formally
speaking, is neither smooth nor of dimension one.

Note the similarities: its module of Kähler differentials Ω1
Ga,1/k is a free module

of rank 1 over OGa,1 , its zeroth and first de Rham cohomology groups are free
modules of rank 1 over k, and the Lie algebra of vector fields on Ga,1 is the Witt
algebra

Wp(k) =
⊕

i∈Z/pZ

k ei, [ei, ej] = (j− i)ei+j (i, j ∈ Z/pZ),

considered to be a counterpart in positive characteristic to the Lie algebra of vector
fields on a circle. In particular, Wp(k) possesses a universal central extension with
one-dimensional kernel for p > 3.

Note that the Witt algebra is a simple Lie algebra of rank 1 if p > 2, the only
other simple Lie algebra of rank 1 over an algebraically closed field in positive
characteristic being sl2(k).

An important structure associated with circle is its algebra of pseudodiffer-
ential symbols CS(S1) together with the noncommutative residue trace. In present
article we will demonstrate that its counterpart in positive characteristic is equally
deserving of attention.

In Chapter 1 we introduce algebras of p-symbols, Sab(k), parametrized by pairs
of elements a and b of a commutative Fp-algebra k. If k = kp, then all Sab(k) are
isomorphic to the algebra of differential operators on the kernel of Frobenius Ga,1.

We show that each Sab(k) is equipped with a unique trace, a close relative of
the noncommutative residue in characteristic zero. Appropriately, we call it the
noncommutative p-residue.

In Chapter 2 we establish a number of useful tensor identities involving the
algebras of p-symbols and we use these identities in Chapter 3 to prove that each
Sab(k) is an Azumaya algebra. We achieve this by providing an explicit isomor-
phism between Sab(k)⊗p and a certain algebra of differential operators, cf. (2.13)
below, which shows that the similarity class of Sab(k) in the Brauer group Br(k),
which is duly introduced in Chapter 3, is of order p when nontrivial.

In Chapter 3 we also characterize the algebras of p-symbols as being precisely
the central quotients of the Weyl algebra1

(0.2) A1(k) :=
k〈z, ζ〉

([ζ, z]− 1)
.

In the next chapter we show that the Weyl algebra itself is a nontrivial Azu-
maya algebra over its center,

Z(A1(k)) = k [zp, ζ p] ,

by identifying A1(k) with the algebra of p-symbols

Szpζ p (k [zp, ζ p]) .

1The term Weyl algebra, first introduced by Dixmier [4] in 1968 (cf. [5], p. 46), may be yet another
example of wrong apellation: algebra of the Canonical Commutation Relations (CCR) was studied by
Dirac in 1926 [3], i.e., two years before CCR appear in Weyl’s book [14]. Apparently the first thorough
investigation of A1(C) was carried by Littlewood in 1930–1931 [8], but see also [6].
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As a corollary, we obtain a recent theorem of Bezrukavnikov, Mirković and
Rumynin [2] stating that the algebra of PD-differential operators on a smooth
scheme X/S, introduced by Berthelot [1] and studied by himself, Ogus, Vologod-
sky, among others, is an Azumaya algebra over the algebra of functions on the
cotangent space of the Frobenius twist X(p)/S. Our proof is totally explicit and
elementary.2

An adelic noncommutative residue trace on the Weyl algebra over an arbitrary
ring of coefficients k is presented in Chapter 5.

In Chapter 6 we collect a number of identities for powers of certain elements
in general associative rings and in Fp-algebras. With help of these identities we
establish a sufficient condition for triviality of the class of Sab in Br(k). These iden-
tities are also used in an essential way in the final two chapters.

Tensor identities of Chapter 2 are special cases of general identities associated
with certain actions of the symplectic groups Spn(k), n ≥ 2: these are the subject
of Chapter 7. The orbits of the aforementioned actions correspond to elements in

(0.3) pBr(k) := {β ∈ Br(k) | pβ = 0}
whereas the elements of Spn(k) provide nontrivial relations in pBr(k).

In the final chapter we represent cyclic p-algebras, which are defined as crossed
products k′ Yb Z/pZ of Artin-Schreier extensions k′/k and Gal(k′/k) = Z/pZ, as
algebras of p-symbols. By combining this with a classical result of Teichmüller we
deduce that any element of order p in the Brauer group of a field of characteristic
p is represented by a suitable algebra of p-symbols.

Originally we encountered the noncommutative p-residue and the algebras of
pseudodifferential p-symbols in our study of the structure of differential operators
on the algebra of divided-power polynomials, Γk[x], as documented in [15].

We would like to conclude this introduction by saying that the noncommuta-
tive residue, nontrivial extension (0.1), and the Cartier operations, are so intimately
connected—they can be thought of as being manifestations of a single phenome-
non.

1. The algebras of p-symbols Sab(k)

Let a and b be a pair of elements of a unital commutative ring k of prime
characteristic p > 0. The latter means that pk = 0 or, equivalently, that k is an
Fp-algebra.

We shall denote by Sab(k) the quotient of the free k-algebra

k〈z, ζ〉 = Tk
(
Wzζ

)
,

generated by the free k-module of rank 2 with basis {z, ζ},
Wzζ = kz⊕ kζ,

by the ideal Iab = Iab(k) generated by the following three relations

(1.1) [ζ, z] = 1, zp = a, and ζ p = b,

2In [10], Théorème 2, Philippe Revoy proves that A1(k) is a central and separable algebra over
k [zp, ζ p]. This is equivalent to A1(k) being an Azumaya k [zp, ζ p]-algebra (cf. [7], Théorème 5.1).
Revoy’s article escaped our notice until the present work has been completed. There is no reference to
Revoy in [2].
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and call it the algebra of p-symbols defined by the pair of elements a and b of ground
ring k. We shall omit k from notation when the ground ring is clear from the
context.

The composition law. As a k-module, Sab(k) is free of rank p2 with the mono-
mial basis {zlζm}0≤l,m<p where we identify zlζm, for 0 ≤ l, m < p, with their
images in Sab(k).

If we identify Sab(k) as a k-module with the commutative k-algebra

Oab := Oa ⊗Ob,

where

(1.2) Oc := k[t]/(tp − c) (c ∈ k),

by sending z to t ⊗ 1 and ζ to 1 ⊗ t, then multiplication in Sab is given by the
familiar law for composition of pseudofifferential symbols.

More precisely, for polynomial symbols α, β ∈ k[z, ζ], where k denotes an arbi-
trary commutative ring of coefficients, their composition is given by the formula

(1.3) α ◦ β =
∞

∑
j=0

∂
j
ζ α ∂

[j]
z β.

Here ∂
[j]
z denotes the j-th divided-power of ∂:

∂[j](zl) =


(

l
j

)
zl−j if l ≥ j

0 otherwise

which is a differential operator of order j on k[z]. If j! is invertible in k, then

∂[j] =
1
j!

∂j.

Since we are assuming pk = 0 the operator ∂
j
ζ is identically zero for j ≥ p.

Thus, the composition law for polynomial symbols in characteristic p is in fact
given by the finite expression

(1.4) α ◦ β =
p−1

∑
j=0

1
j!

∂
j
ζ α ∂

j
zβ .

Note that the ideal (tp − c) ⊂ k[t] defining Oc is ∂-invariant, hence the right-
hand side of (1.4) is well defined for α, β ∈ Oab, and (1.4) is precisely the formula
for multiplication in Sab.

We shall henceforth refer to elements of Sab, represented as elements of Oab
but multiplied according to (1.4), as p-symbols.

Noncommutative p-residue. In view of the remark made in the previous para-
graph, the standard Poisson bracket on the algebra of polynomials k[z, ζ],

{ f , g} = ∂ζ f ∂zg− ∂z f ∂ζ g,

passes to the quotient algebra Oab thus making it a Poisson algebra. Similarly, the
associated symplectic form on A2,

ω = dζ ∧ dz,
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passes to a differential 2-form on the quotient algebra.
The algebra of differential forms on Oab is a free graded-commutative algebra

over Oab generated by the free Oab-module with basis {dζ, dz} of degree 1,

(1.5) Ω∗Oab/k ' Ω∗Oa/k ⊗k Ω∗Ob/k ' Oab ⊗k Λ∗k (dζ, dz).

PROPOSITION 1.1. The correspondence

(1.6) τ : α 7→ [αω] ∈ H2
dR(Oab)

which sends a symbol α to the cohomology class of the 2-form αω, is a trace on the algebra
of symbols Sab.

This trace is unique, in the sense that (1.6) induces an isomorphism

(1.7)
Sab

[Sab, Sab]
' H2

dR(Oab)

and H2
dR(Oab) is a free k-module of rank 1 generated by the class of the 2-form

(1.8) zp−1ζ p−1ω.

PROOF. The commutator formula

(1.9) [α, β]ω = d
(
ρ(α, β)dz + σ(α, β)dζ

)
,

where

(1.10) ρ(α, β) :=
p−1

∑
j=1

1
j!

j−1

∑
i=0

∂
j−i−1
ζ α (−∂ζ)

i∂
j
zβ

and

(1.11) σ(α, β) :=
p−1

∑
j=1

1
j!

j−1

∑
i=0

∂
j−i−1
z α ∂

j
ζ(−∂z)

iβ,

shows that (1.6) is a k-linear trace on Sab with values in H2
dR(Oab).

The de Rham cohomology algebra H∗dR(Oab) is free graded-commutative, and
generated by the classes of the differential 1-forms

zp−1dz and ζ p−1dζ.

In particular, H2
dR(Oab) is a free k-module generated by the class of (1.8), and thus

map (1.6) is surjective.
The kernel of (1.6) is a free k-module of rank p2 − 1 with the monomial basis

(1.12) {zlζm}0≤l,m≤p−1; l+m≤2p−3.

Each basic monomial in (1.12) is a single commutator:

zlζm =

{
1

l+1 [ζ, zl+1ζm] if l , p− 1

− 1
m+1 [z, zlζm+1] if m , p− 1

(1.13)

which demonstrates that the kernel of (1.6) coincides with [Sab, Sab] and thus cor-
respondence (1.6) induces a k-module isomorphism (1.7). �
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By identifying H2
dR(Oab) with k, we can also describe τ as the k-linear func-

tional τ : Oab → k which sends

α = ∑
0≤l,m≤p−1

clmzlζm ∈ Oab, (clm ∈ k),

to

(1.14) τ(α) := cp−1,p−1.

When both a and b are invertible in k, then τ(α) is the classical double Cauchy
Residue in z and ζ variables:

1
ab
× the coefficient of α at z−1ζ−1.

We shall be refering to τ as the noncommuattive p-residue.

2. Symplectic isomorphisms

Below we establish a number of special k-algebra isomorphisms

(2.1) Sa1b1 ⊗ · · · ⊗ Sanbn ' Sa′1b′1
⊗ · · · ⊗ Sa′nb′n (n ≥ 1).

The left-hand-side of (2.1) is a quotient of the tensor algebra

(2.2) Tk(Wz1ζ1 ⊕ · · · ⊕Wznζn)

and, similarly, the right-hand-side is a quotient of the tensor algebra

(2.3) Tk(Wz′1ζ ′1
⊕ · · · ⊕Wz′nζ ′n).

If the k-algebra isomorphism, (2.1), is induced by an isomorphism of k-modules,

(2.4) Wz1ζ1 ⊕ · · · ⊕Wznζn 'Wz′1ζ ′1
⊕ · · · ⊕Wz′nζ ′n ,

the latter preserves the symplectic form(
0 1
−1 0

)⊕n

that both sides of (2.4) are equipped with, and we propose to call (2.1) a symplectic
isomorphism.

We shall signal symplectic isomorphisms by employing notation

� instead of usual ' .

Elementary observations. In the following proposition we collect prelimi-
nary observations about algebras Sab.

PROPOSITION 2.1. (a) For any a, b ∈ k, one has

(2.5) Sab � S−a,−b � Sb,−a.

(b) The opposite algebra,(Sab)
op, is canonically isomorphic to Sba,

(2.6) (Sab)
op � Sba.

(c) Algebra Sa0 is canonically isomorphic to the algebra of differential operators, Dk(Oa).
The latter coincides with the algebra of all k-module endomorphisms,

(2.7) Dk(Oa) = Endk-mod(Oa),
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and thus is isomorphic to the algebra of p × p matrices Mp(k) with coefficients in k.
Under this isomorphism, the noncommutative p-residue trace corresponds to the matrix
trace with the reverse sign:

τ = −Tr .
(d) If b ∈ kp ⊂ k, then

(2.8) Sab � Sa0.

�
If b = cp, then the isomorphism in (2.8),

k〈z, ζ〉
(zp = a, ζ p = b, [ζ, z] = 1)

�
k〈z, ζ ′〉

(zp = a, ζ ′p = 0, [ζ ′, z] = 1)
,

is induced by the substitution
ζ 7→ ζ ′ + c.

Tensor identities.

PROPOSITION 2.2. One has the following canonical symplectic isomorphisms:

Sab ⊗ Sa′b′ � Sa,b−a′ ⊗ Sa′ ,b′−a(2.9)

Sab ⊗ Sbc � Sa0 ⊗ Sb,c−a(2.10)

Sab ⊗ S
op
ab � Sab ⊗ Sba � Sa0 ⊗ Sb0

' Dk(Oa)⊗Dk(Ob) ' Mp(k)⊗2(2.11)

S⊗l
ab � S

⊗(l−1)
a0 ⊗ Sb,−la ' Dk(Oa)

⊗(l−1) ⊗ Sb,−la

' Mp(k)⊗(l−1) ⊗ Sb,−la
(2.12)

S
⊗p
ab � S

⊗(p−1)
a0 ⊗ Sb0 ' Dk(Oa)

⊗(p−1) ⊗Dk(Ob) ' Mp(k)⊗p.(2.13)

PROOF. The k-module map

(2.14) ϕ : Wzζ ⊕Wz′ζ ′ →Wzθ ⊕Wz′θ′

which sends z and z′ to themselves, and

(2.15) ζ 7→ θ + z′, ζ ′ 7→ θ′ + z,

induces k-algebra homomorphisms

(2.16) ϕaba′b′ : Sab ⊗ Sa′b′ → Sa,b−a′ ⊗ Sa′ ,b′−a,

while the map inverse to (2.14),

ψ : Wzθ ⊕Wz′θ′ →Wzζ ⊕Wz′ζ ′ ,

which sends

(2.17) θ 7→ ζ − z′, θ′ 7→ ζ ′ − z,

induces the inverse k-algebra homomorphisms

(2.18) ψa,b−a′ ,a′ ,b′−a : Sa,b−a′ ⊗ Sa′ ,b′−a → Sab ⊗ Sa′b′ .

Indeed, if
zp = a, ζ p = b, z′p = a′, ζ ′p = b′



8 MARIUSZ WODZICKI

and
[ζ, z] = 1 = [ζ ′, z′],

then

(ζ − z′)p = b− a′, (ζ ′ − z)p = b′ − a,(2.19)

[ζ − z′, z] = 1 = [ζ ′ − z, z′](2.20)

and

(2.21) 0 = [ζ − z′, ζ ′ − z] = [ζ − z′, z′] = [ζ ′ − z, z].

This establishes the existence of a canonical symplectic isomorphism in (2.9).
Isomorphism (2.10) is a special case of (2.9), and (2.11) is a special case of (2.10)

if one takes into account parts (b) and (c) of Proposition 2.1.
Isomorphism (2.12) is proven by induction on l by using (2.9) again:

S
⊗(l+1)
ab � Sab ⊗ S⊗l

ab � Sab ⊗ S
⊗(l−1)
a0 ⊗ Sb,−la

� S
⊗(l−1)
a0 ⊗ Sab ⊗ Sb,−la � S⊗l

a0 ⊗ Sb,−(l+1)a.

Finally, isomorphism (2.13) is a special case of (2.12) combined with part (c) of
Proposition 2.1. �

REMARK 2.3. If algebras Sab are thought of as “1-dimensional,” then the tensor
products

(2.22) Sa1,...,an ; b1,...,bn = Sa1b1 ⊗ · · · ⊗ Sanbn

should be considered “n-dimensional” algebras of p-symbols.

REMARK 2.4. Tensor identities (2.9)–(2.13) are special cases of a general iden-
tity established in Section 6, cf. Theorem 7.1.

3. The Brauer group Br(k).

Azumaya algebras. Let us recall that a unital algebra A is said to be an Azu-
maya algebra over k if there exist: a unital k-algebra B and a faithfully projective
k-module P such that

A⊗ Bop ' Endk-mod(P).
Since A⊗ Bop possesses an identity, k-module P must be finitely generated.

In this case we say that algebras A and B are similar, and denote this fact by

A ∼ B.

Similarity is an equivalence relation on the class of Azumaya algebras over a
given ground ring k, and the set of similarity classes of such algebras, equipped
with the multiplication induced by tensor product, forms a group, denoted Br(k),
which is called the Brauer group of ring k. The inverse of [A] in Br(k) is the similar-
ity class of the opposite algebra, [Aop].

Several characterisations of Azumaya algebras are provided in Chapter III,
Section 5, of [7] (cf. Théorème 5.1 ibid.)

The following is an immediate corollary of the existence of symplectic isomor-
phisms (2.11) and (2.13) in Proposition 2.2.
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COROLLARY 3.1. For any a and b in k, the algebra of symbols, Sab(k), is an Azumaya
k-algebra and defines an element in

pBr(k) = {β ∈ Br(k) | pβ = 0}.

REMARK 3.2. For any n ≥ 1, the correspondence

(3.1) (a1, . . . , an; b1, . . . , bn) 7→
[
Sa1,...,an ; b1,...,bn

]
produces a map

k2n → pBr(k),

whose fibers are invariant under the action of the group Sp2n(k) of symplectic
matrices with coefficients in k. We discuss this in detail in Section 7.

In the final Section we prove that the cumulative map⋃
n≥1

k2n → pBr(k)

is surjective when k is a field, cf. Theorem 8.3.

A characterisation of the algebras of p-symbols. We shall say that a k-algebra
is a central quotient of a k-algebra B, if it is of the form A = B/J for a certain
twosided ideal J ⊆ B and the structural homomorphism k → A identifies k with
the center of A.

PROPOSITION 3.3. Every k-algebra Sab is a central quotient of the Weyl k-algebra
A1(k), cf. (0.2), and vice-versa: every central quotient of A1(k) is of the form Sab for a
suitable pair of a, b ∈ k.

PROOF. If we consider Sab as a free k[z]-module of rank p,

Sab =
⊕

0≤m≤p−1
k[z]ζm,

then the inner derivation adz = [z, ] identifies k[z]ζm with k[z]ζm−1, for m > 0,
and annihilates k[z]ζ0. In particular, ker adz = k[z]. Similarly, ker adζ = k[ζ]. It
follows that

k ⊆ Z(Sab) ⊆ ker adz ∩ ker adζ = k

where Z (Sab) denotes the center of Sab.
Assume now that a k-algebra A is a central quotient of A1(k). We shall identify

z and ζ with their images in A. The commutator identity

(adz)
p = adzp

combined with
[z, [z, ζ]] = 0

shows that zp ∈ Z(A) = k. Similarly for ζ p. Thus, A is a quotient of Sab for a = zp

and b = ζ p.
Above we demonstrated that Sab is an Azumaya k-algebra, cf. Corollary 3.1. It

remains to apply the following lemma.

LEMMA 3.4. If A = B/J is a central quotient of an Azumaya algebra, then J = 0
and A = B.
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Indeed, any twosided ideal in an Azumaya k-algebra is of the form J = IB
for some ideal I ⊆ k (cf. [7], Chapter III, Cor. 5.2). The structural homomorphism
k→ A is a monorphism in view of the hypothesis that A is a central quotient of B.
Since it factors through the quotient map k → k/I, the latter is injective and thus
I = 0. �

4. The Weyl algebra in positive characteristic

The center of the (1-dimensional) Weyl algebra A1(k) = k〈z, ζ〉/([ζ, z] − 1)
with coefficients in an Fp-algebra k contains

(4.1) K = k[zp, ζ p].

Viewed as an algebra over K, the Weyl algebra is nothing but the following K-
algebra of p-symbols

A1(k) = Szpζ p(K).
In particular, Z(A1(k)) = K, and the Weyl algebra is an Azumaya over its center.

Aided by tensor identity (2.13) we obtain a very precise form of that last state-
ment.

PROPOSITION 4.1. There exists a canonical isomorphism of K-algebras

A1(k)⊗K p ' DK(Oa)
⊗K(p−1) ⊗K DK(Ob) ' Mp(K)⊗K p.

where a = zp, b = ζ p, and K is given by (4.1).

�

PROPOSITION 4.2. The n-dimensional Weyl algebra, An(k) ' A1(k)⊗kn, is an
Azumaya algebra over its center

Kn = k
[
zp

1 , . . . , zp
n; ζ

p
1 , . . . , ζ

p
n

]
,

and its similarity class in the Brauer group Br(Kn) has exactly order p.

PROOF. In view of Proposition 4.1, it remains only to prove that [An(Kn)] , 0
in Br(Kn).

Let us consider the homomorphism

Kn = k
[
zp

1 , . . . , zp
n; ζ

p
1 , . . . , ζ

p
n

]
→ k

[
zp

1 , ζ
p
1

]
= K1

which sends zj and ζ j to zero for j > 1. The associated base-change functor sends
Kn-algebra An(k) to the K1-algebra

K1 ⊗Kn An(k) ' A1(k)⊗k Mp(k)⊗(p−1),

and [An(k)] ∈ Br(Kn) is sent to [A1(k)] ∈ Br(K1).
Let k̄ be the residue field of k at any maximal ideal. The base change functor

associated with the quotient homomorphism k→ k̄ sends K1-algebra A1(k) to the
K̄1-algebra A1(k̄), where

K̄1 = k̄
[
zp

1 , ζ
p
1

]
.

The latter is a domain. Let F be the field of fractions of K̄1. The base change functor
associated with the inclusion K̄1 ↪→ F sends K̄1-algebra A1(k̄) to

(4.2) F⊗K̄1
A1(k̄) ' Szp

1 ζ
p
1
(F).



ALGEBRAS OF p-SYMBOLS, NONCOMMUTATIVE p-RESIDUE 11

The right hand side of (4.2) is an Azumaya F-algebra of dimension p2 over F.
Thus, it is either a central division F-algebra or is isomorphic to Mp(F). It also
contains A1(k̄), and the latter satisfies the left and the right Ore conditions. This
was first noted in print perhaps by Dudley Ernest Littlewood3 ([8], Thm. XIX,
pp. 219-220; Littlewood considers there only the case of real or complex numbers
but his proof of Thm. XIX applies to any field of coefficients).4

Algebra A1
(
k̄
)

is a domain. Thus, the ring of fractions

Frac A1
(
k̄
)
= {DE−1 | D, E ∈ A1

(
k̄
)

, E , 0}
is a division ring. Since it contains Szp

1 ζ
p
1
(F), the latter cannot be isomorphic to a

matrix algebra.
This proves that the class of Szp

1 ζ
p
1
(F) in Br(F) is not zero and as a consequence

also the class of An(Kn) in Br(Kn). It also demonstrates that Szp
1 ζ

p
1
(F), being a

division algebra itself, must coincide with the total algebra of fractions of A1
(
k̄
)
,

(4.3) Szp
1 ζ

p
1
(F) = Frac A1

(
k̄
)

.

Equality in (4.3) is equivalent to the following property of Weyl algebra A = A1(k):

if k is a field of positive characteristic, then for any α ∈ A, there exists
α′ ∈ A such that αα′ is a nonzero element of the center of A.

Wedderburn in [13] calls these algebras Hamiltonian since the algebra of quater-
nions at that time was the best known example of such algebras. �

REMARK 4.3. Proposition 4.2 implies that the algebra of the so called PD-
differential operators, introduced by Berthelot [1], is an Azumaya algebra over its
center. This fact seems to have been first noted in print in [2] where it was also
proved (Theorem 2.2.3 ibidem).

REMARK 4.4. In Section 6 of the present article we establish a sufficient condi-
tion for the triviality of class

[
Sab
]

in Br(k) and, when k is a field, we prove it to be
also necessary, cf. Corollary 6.10 and Proposition 6.11 below.

5. A trace on the Weyl algebra

Let k be an arbitrary comutative ring with identity. For any prime p, the com-
position of the reduction modulo p map

A1(k)� Fp ⊗Z A1(k)

with the trace map introduced in Section 1,

Fp ⊗Z A1(k) ' Szpζ p
(
Fp ⊗Z k [zp, ζ p]

)
� Fp ⊗Z k [zp, ζ p] =: Fp ⊗Z k

[
zp, ζp

]
,

3Dudley Ernest Littlewood (1903–1979), not to be confused with Hardy’s friend and collaborator,
John Edensor Littlewood (1885–1977).

4In the same year 1933 appeared article [9] in which Öystein Ore introduced and thoroughly
investigated a very general type rings of polynomials of one variable with multiplication twisted by a
certain endomorphism α and a derivation δ acting on the “coefficients”; in particular, Ore proved for
such rings the noncommutative versions of the Euclid Division Algorithm, from which he derived that
such rings of twisted polynomials satisfy the conditions that today bear his name—if and only if α is
an automorphism. Ore’s article was submitted in December 1932, Littlewood’s—in June 1931.
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cf. (1.14), defines a trace on A1(k):

(5.1) resp : A1(k)� Fp ⊗Z k
[
zp, ζp

]
.

One has

(5.2) resp
(
zlζm) =

z
l+1

p −1
p ζ

m+1
p −1

p if l = m = −1 mod p

0 otherwise
.

Note that
resp

(
zlζm) , 0

only for primes dividing the greatest common divisor of l + 1 and m+ 1. It follows
that the k-linear map

(5.3) res : A1(k)→
⊕

p
Fp ⊗Z k

[
zp, ζp

]
, res(α) := ∑

p
resp(α),

where summation extends over all primes, is well defined and annihilates the com-
mutator k-module [A1(k), A1(k)].

Map (5.3) is surjective. Indeed, for i, j ∈N and a prime p, let π be the product
of all primes different from p which divide the greatest common divisor of i + 1
and j + 1,

π := ∏
q|gcd(i+1,j+1)

q,p

q.

If π′ ∈ Z satisfies
ππ′ = 1 mod p,

then, for any prime q,

resq

(
ππ′z(i+1)p−1ζ(j+1)p−1

)
=

{
zi

pζ
j
p if q = p

0 otherwise
.

By taking the n-th tensor power of (5.3) we obtain the corresponding trace on
the n-dimensional Weyl algebra

res⊗kn : An(k) = A1(k)⊗kn �
⊕

p
Fp ⊗Z k

[
zp, ζp

]⊗kn .

6. Power identities

Two power-of-the-product identities. Let R be a unital ring. Below we adopt
the convention that x0 = 1 for any x ∈ R.

PROPOSITION 6.1. Let r and s be a pair of elements of R satisfying

(6.1) [[r, s], r] = 0 = [[r, s]s].

Then

(6.2) (rs)n =
n

∑
i=0

anl [r, s]n−lslrl (n ≥ 0)

and

(6.3) (rs)n =
n

∑
i=1

bnl [s, r]n−lrlsl (n ≥ 1)
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where

(6.4) anl = φn−l
(l+1)(1, 2, . . . , l + 1) (n ≥ 0)

and

(6.5) bnl = φ
(n−l)
l (1, 2, . . . , l) (n ≥ 1)

Here φ
(d)
m ∈ Z[X1, . . . , Xm] is the symmetric form of degree d in m variables

(6.6) φ
(d)
m (X1, . . . , Xm) = ∑

d,...,dm≥0
d1+···+dm=d

Xd1
1 · · ·X

dm
m .

PROOF. Formulae (6.2) and (6.4) are obviously valid for n = 0. By multiplying
both sides of (6.2) on the left by rs, we obtain the following expression for (rs)n+1,

(rs)n+1 =
n

∑
l=0

anl [r, s]n−l(rs)slrl

=
n

∑
l=0

anl [r, s]n−lsl+1rl+1 +
n

∑
l=0

anl [r, s]n−l
l+1

∑
m=0

sl [r, s]sl−mrl

=
n+1

∑
l=1

an,l−1[r, s]n+1−lslrl +
n

∑
l=0

anl [r, s]n+1−lslrl

(6.7)

which can be re-written as

(6.8) (rs)n+1 =
n+1

∑
l=0

(an,l−1 + (l + 1)anl)[r, s]n+1−lslrl ,

if we adopt the convention

(6.9) anl = 0 for either l < 0 or l > n.

The latter is compatible with the fact that

(6.10) a0l =

{
1 if l = 0
0 otherwise

.

Induction on n with help of (6.8) demonstrates that formula (6.2) holds for
certain integral coefficients anl satisfying the “boundary” conditions

(6.11) an0 = ann = 1

and the recurrence formula

(6.12) an+1,l = an,l−1 + (l + 1)anl (0 < l < n).

Note that the coefficients

a′nl := φ
(n−l)
l+1 (1, . . . , l + 1)

obviously satisfy boundary conditions (6.11),

φ
(n)
1 (1) = 1n = 1, φ

(0)
n+1(1, . . . , l + 1) = 10 · · · (l + 1)0 = 1,
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while formula (6.12), for a′nl , is a consequence of the identity

(6.13) φ
((n+1)−l))
l+1 (X1, . . . , Xl+1) =

φ
(n−(l−1))
l (X1, . . . , Xl) + Xl+1φ

(n−l)
l+1 (X1, . . . , Xl+1)

which holds in Z[X1, . . . , Xl+1].
Induction on n shows that

anl = a′nl (0 ≤ l ≤ n).

This yields equality (6.4).
Multiplication of both sides of (6.2) on the left by s and, on the right, by r,

produces equalities (6.3) and (6.5), respectively. �

Arithmetic of the form φ
(p−l)
l . For a given prime p, let us consider the func-

tions Fl
p → Fp associated with forms φ

(p−l)
l for 0 ≤ l ≤ p,

(6.14) (x1, . . . , xl) 7→ φ
(p−l)
l (x1, . . . , xl).

PROPOSITION 6.2. One has

(6.15) φ
(p−l)
l (ν1, . . . , νl) = 0,

for any 1 < l < p and any l-tuple (ν1, . . . , νl) ∈ (F∗p)
l such that

(6.16) νi , νj (1 ≤ i , j ≤ l).

PROOF. Note the identity

(6.17) φ
(n+1−l)
l−1 (X1, . . . , X̂i, . . . , Xl)− φ

(n+1−l)
l−1 (X1, . . . , X̂j, . . . , Xl)

= (Xi − Xj)φ
(n−l)
l (X1, . . . , Xl)

in Z[X1, . . . , Xl ].
It follows that when νi − νj ∈ F∗p, then φ

(p−l)
l (ν1, . . . , νl) vanishes if and only if

(6.18) φ
(p+1−l)
l−1 (ν1, . . . , ν̂i, . . . , νl) = φ

(p+1−l)
l−1 (ν1, . . . , ν̂j, . . . , νl).

Since
φ
(p−1)
1 (ν) = νp−1 = 1 (ν ∈ F∗p),

we observe that both sides of (6.18) are equal to 1 for l = 2 and any νi, νj ∈ F∗p.
Induction on l in the range 2 ≤ l ≤ p− 1 proves that both sides of (6.18) are equal
and, indeed, for 3 ≤ l ≤ p− 1, both vanish, provided condition (6.16) is satisfied.

�

In the rest of this Section we assume that pR = 0, i.e., that R is an Fp-algebra.
Under suitable hypotheses relevant to the study of algebras of p-symbols, we
present two formulae for the p-th power of the product and of the sum of two
elements in R.
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A pth-power-of-the-product identity for an Fp-algebra. We begin from the
formula for the p-th power of the product.

PROPOSITION 6.3. Let p be a prime. For any pair r and s of elements of an Fp-
algebra R, satisfying condition (6.1), one has

(6.19) (rs)p = [s, r]p−1rs + rpsp.

This is a corollary of formulae (6.3) and (6.5) combined with the congruences

(6.20) φ
(p−l)
l (1, . . . , l) = 0 mod p (2 ≤ l ≤ p− 1)

which form a special case of Proposition 6.2.

A pth-power-of-the-sum identity. The following formula is well known even
though probably not in the form presented below.

LEMMA 6.4. Let r0 and r1 be a pair of elements in an Fp-algebra R. One has the
following formula
(6.21)

(r0 + r1)
p − (rp

0 + rp
1 ) = ∑

ι : {1,...,p−2}→{0,1}

1
1+ | supp ι | [rι1 , . . . [rιp−2 , [r0, r1]] . . . ]

where | supp ι | is the cardinality of the support of ι,

supp ι = {1 ≤ j ≤ p− 2 | ιj = 1}.
�

Summation in (6.21) extends over all functions from {1, . . . , p − 2} to {0, 1},
including the case p = 2 when the domain is the empty set.

COROLLARY 6.5. Let r and s be a pair of elements in an Fp-algebra R, satisfying the
commutation relations[

adl
r(s), s

]
= [[r, . . . [r, [r︸       ︷︷       ︸

l times

, s]] . . . ], s] = 0 (0 < l < p).

Then
(r + s)p − (rp + sp) = [r, . . . [r, [r︸       ︷︷       ︸

p− 1 times

, s]] . . . ].

�

DEFINITION 6.6. We shall call a 2n-tuple of elements (z1, . . . , zn; ζ1, . . . , ζn) in
an arbitrary unital ring R, a CCR-system (of length n), if it satisfies the Canonical
Commutation Relations

(6.22) [zi, zj] = [ζi, ζ j] = 0 and [ζi, zj] =

{
1 if i = j
0 otherwise

.

If n = 1 we shall call it a CCR-pair.

COROLLARY 6.7. Suppose that (z1, . . . , zn; ζ1, . . . , ζn) is a CCR-system in an alge-
bra A over an Fp-algebra k. Then the p-th power of any linear combination of elements of
the system

(6.23) (c+1 ζ1 + · · ·+ c+n ζn + c−1 z1 + · · · c−b zn)
p (c±i ∈ k; 1 ≤ i ≤ n)
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equals

(6.24)
(
c+1
)p

ζ
p
1 + · · ·+

(
c+n
)p

ζ
p
n +

(
c−1
)p zp

1 + · · ·+
(
c−n
)p zp

n

if p > 2, and

(6.25)
(
c+1
)2

ζ2
1 + · · ·+

(
c+n
)2

ζ2
n +

(
c−1
)2 z2

1 + · · ·+
(
c−n
)2 z2

n +(c+1 c−1 + · · ·+ c+n c−n )

if p = 2. In particular, the p-th power of any linear combination with coefficients in k
belongs to k if all zp

i and ζ
p
j belong to k. �

The following proposition follows easily from Corollary 6.5 and the congru-
ence

(p− 1)! = −1 mod p (Wilson’s Theorem).

PROPOSITION 6.8. Let f ∈ k[X] be a polynomial,

(6.26) f (X) = c0 + c1X + · · ·+ cp−1Xp−1,

over a commutative Fp-algebra k. For any CCR-pair z and ζ in an arbitrary k-algebra A,
one has

(6.27) (ζ + f (z))p = ζ p + f (p)(zp)− cp−1

where f (p) denotes the Frobenius-twist of f :

(6.28) f (p)(X) = cp
0 + cp

1 X + · · ·+ cp
p−1Xp−1.

As a corollary we obtain some important non-symplectic isomorphisms be-
tween the algebras of p-symbols.

COROLLARY 6.9. Given a polynomial (6.26), the correspondence

(6.29) z 7→ z′, ζ 7→ ζ ′ + f (z′),

induces an isomorphism of k-algebras

(6.30) Sab(k) ' Sa,b− f (p)(a)+cp−1
(k).

PROOF. The homomorphism of free k-algebras k〈z, ζ〉 → k〈z′, ζ ′〉 induced by
correspondence (6.29) sends the three generators of ideal Iab, cf. (1.1), to elements
of ideal Iab′ where b′ = b− f (p)(a) + cp−1. Thus, it induces a homomorphism from
Sab to Sab′ . The inverse is induced by the correspondence

z′ 7→ z, ζ ′ 7→ ζ − f (z).

�

Consider the following Dependency Condition connecting exponents a and b:

there exists a polynomial (6.26) such that
b = f (p)(a)− cp−1.

(D)

COROLLARY 6.10. If the pair of exponents a, b ∈ k satisfies Dependency Condition
(D), then

Sab ' Dk(Oa) ' Mp(k).
�
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When the ground ring is a field, this condition is not only sufficient but also
necessary.

PROPOSITION 6.11. If k is a field, then [Sab] = 0 in Br(k) if and only if the exponents
satisfy Dependency Condition (D) introduced above.

The necessity of Condition (D) is an immediate consequence of the following
fact.

PROPOSITION 6.12. Let z and ζ be any CCR-pair in the matrix algebra Mp(k) over
an arbitrary field of characteristic p. Then

(6.31) zp ∈ k and ζ p ∈ k,

the set {z, ζ} generates Mp(k) as a k-algebra, and the exponents a = zp and b = ζ p

satisfy Condition (D).
Vice-versa, for any pair a, b ∈ k which satisfies Condition (D), there exists a CCR-pair

z, ζ ∈ Mp(k) with zp = a and ζ p = b.

PROOF. Suppose z and ζ form a CCR-pair in Mp(k), and let φ and ψ be their
respective minimal polynomials. Since φ(z) = ψ(ζ) = 0, we have

0 = [ζ, φ(z)] = φ′(z) and 0 = [ψ(ζ), z] = ψ′(ζ),

which implies that φ′ = ψ′ = 0. Since the degrees of φ and ψ do not exceed p, we
infer that

φ(X) = Xp − a and ψ(X) = Xp − b
for certain a, b ∈ k. This proves (6.31).

Thus the subalgebra A ⊆ Mp(k) generated by z and ζ is isomorphic to a quo-
tient of the algebra of p-symbols, Sab. In view of simplicity of the latter, A is iso-
morphic to Sab. Both Sab and Mp(k) have the same dimension as vector spaces
over k, hence A = Mp(k).

If a ∈ kp, then exponents a and b satisfy Condition (D) with the polynomial

f (X) = −bXp−1 + b
( p√a

)p−1.

If a ∈ k \ kp, then the polynomial Xp − a is irreducible and thus coincides with
the minimal polynomial of z. In particular, z is similar to the companion matrix of
Xp − a

(6.32) Z =


0 a

1
. . .
. . . 0

1 0


and the latter forms with the matrix

(6.33) Ξ =


0 1

0 2
. . . . . .

0 p− 1


a CCR-pair. This shows that there exists ξ ∈ Mp(k) such that [ξ, z] = 1 and ξ p = 0.
In particular, ζ − ξ belongs to the centralizer of z in Mp(k) which coincides with
k[z] ⊂ Mp(k) since the centralizer of matrix Z coincides with k[Z] ⊂ Mp(k). It
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follows that ξ = ζ − f (z) for some polynomial f ∈ k[X] of degree less than p,
whence

0 = ξ p = b− f (p)(a) + cp−1,

in view of identity (6.27). This completes the proof of the first part of Proposition
6.12

In order to show that any pair of exponents satisfying Condition (D) is real-
ized by some CCR-pair in Mp(k), note that for a given a ∈ k, matrices Z and Ξ,
cf. (6.32)–(6.33) above, form a CCR-pair with exponents a and 0, respectively.

If b = f (p)(a)− cp−1, then by replacing Ξ with Ξ+ f (Z), we obtain a CCR-pair
satisfying zp = a and ζ p = b. �

7. The general form of a symplectic isomorphism between n-dimensional
algebras of p-symbols

A 2n× 2n-matrix with coefficients in k

C =

(
D+ E+

E− D−
)

,

where D±, E± ∈ Mn(k), induces a homomorphism of free algebras

(7.1) k〈z′1, . . . , z′n; ζ ′1, . . . , ζ ′n〉 → k〈z1, . . . , zn; ζ1, . . . , ζn〉

by sending z′j to

d+1jz1 + · · ·+ d+njzn + e−1jζ1 + · · ·+ e−njζn

and ζ ′j to

e+1jz1 + · · ·+ e+njzn + d−1jζ1 + · · ·+ d−njζn.

If C ∈ Sp2n(k), then homomorphism (7.1) induces an isomorphism of the corre-
sponding n-dimensional Weyl algebras
(7.2)

A′n = k〈z′1, . . . , z′n; ζ ′1, . . . , ζ ′n〉/CCR′n
∼−→ An = k〈z1, . . . , zn; ζ1, . . . , ζn〉/CCRn

where CCR′n and CCRn denote the ideals generated by the Canonical Commuta-
tion Relations, cf. (6.22).

For a given 2n-tuple

π = (a1, . . . , an; b1, . . . , bn) ∈ k2n

define

(7.3) ρC(π) = (a′1, . . . , a′n; b′1, . . . , b′n) ∈ k2n

where

(7.4)

a′j :=


(

d+1j

)p
a1 + · · ·+

(
d+nj

)p
an +

(
e−1j

)p
b1 + · · ·+

(
e−nj

)p
bn p > 2(

d+1j

)2
a1 + · · ·+

(
d+nj

)2
an +

(
e−1j

)2
b1 + · · ·+

(
e−nj

)2
bn + d+1je

−
1j + · · ·+ d+nje

−
nj p = 2

and
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(7.5)

b′j :=


(

e+1j

)p
a1 + · · ·+

(
e+nj

)p
an +

(
d−1j

)p
b1 + · · ·+

(
d−nj

)p
bn p > 2(

e+1j

)2
a1 + · · ·+

(
e+nj

)2
an +

(
d−1j

)2
b1 + · · ·+

(
d−nj

)2
bn + d−1je

+
1j + · · ·+ d−nje

+
nj p = 2

.

Equalities (7.4)–(7.5) can be expressed in a more compact form as follows

(7.6) ρC(π) :=

{
πC(p) if p > 2
πC(2) + C+ · C− if p = 2

where C(p) =
(

cp
ij

)
denotes the Frobenius twist of C, and C+, C− ∈ Mn,2n(k) are

n× 2n matrices representing the top n, and the bottom n rows of C, respectively.
Finally, C+ ·C− is the row 2n-vector formed by the dot products of columns of C+

with the corresponding columns of C−,

C+ · C− =
(
C+

1 · C
−
1 , . . . , C+

2n · C
−
2n
)

.

It follows from Corollary 6.7 that the ideal in A′n, generated by the elements(
z′1
)p − a′1, . . . ,

(
z′n
)p − a′n,

(
ζ ′1
)p − b′1, . . . ,

(
ζ ′n
)p − b′n,

is being sent by isomorphism (7.2) to the ideal in An generated by the elements

zp
1 − a1, . . . , zp

n − an, ζ
p
1 − b1, . . . , ζ

p
n − bn.

Thus (7.2) descends to a homomorphism of the corresponding n-dimensional k-
algebras of p-symbols

(7.7) Sa′1,...,a′n ; b′1,...,b′n −→ Sa1,...,an ; b1,...,bn .

The inverse matrix C−1 induces a homomorphism that is inverse to (7.7).
We arrive at the following theorem that describes a general symplectic isomor-

phism between algebras of p-symbols.

THEOREM 7.1. For any

π = (a1, . . . , an; b1, . . . , bn) ∈ k2n,

and any symplectic matrix C ∈ Sp2n(k), one has the following canonical isomorphisms

(7.8) Sa′1b′1
⊗ · · · ⊗ Sa′nb′n ' Sa′1,...,a′n ; b′1,...,b′n � Sa1,...,an ; b1,...,bn ' Sa1b1 ⊗ · · · ⊗ Sanbn

where
(a′1, . . . , a′n; b′1, . . . , b′n) = ρC(π)

is given by equalities (7.3)–(7.5).
In a compact form, (7.8) can be expressed as

(7.9)
(p > 2) SπC(p)

(p = 2) SπC(2)+C+ ·C−

}
= SρC(π) � Sπ .

�

As mentioned in Remark 2.4, tensor identities (2.9)–(2.13) of Section 2 are noth-
ing but special cases of identity (7.8) for suitably chosen symplectic matrices C.
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8. Cyclic p-algebras as algebras of p-symbols

For b ∈ k∗ and c ∈ k, let us denote by (b, c]k the quotient of the free k-algebra
k〈ζ, η〉 by the ideal Jbc = Jbc(k) generated by the following three relations

(8.1) ζ p = b, ηp = η + c and ζη = (η + 1)ζ.

We shall omit subscript k if the ground ring is clear from the context.
Algebra (b, c] is the crossed product

(8.2) (b, c] =
k[η]

(ηp − η − c)
Yb (Z/pZ)

with the twisting cocyle

Z/pZ×Z/pZ→ k∗, (i, j) 7→
{

1 if i + j < p
b if i + j ≥ p

,

where 0 ≤ i, j < p.
These algebras were perhaps first introduced by Hermann Ludwig Schmid

in his 1934 Ph.D Thesis at Mahrburg ([11], §2) with Helmut Hasse acting as his
advisor. They were studied also by Teichmüller and Witt. Notation adopted here
is the one used by Teichmüller in [12], and is a slight modification of the notation
employed for symbol pairings in Algebraic Number Theory. Algebras (b, c] form
a special class of the so called cyclic p-algebras.

PROPOSITION 8.1. The correspondence

(8.3) η 7→ zζ, ζ 7→ ζ,

induces an isomorphism of algebras

(8.4) (b, c] ' Scb−1,b.

PROOF. Proposition 6.3 guarantees that the homomorphism k〈ζ, η〉 → Scb−1,b
induced by correspondence (8.3) descends to a homomorphism of k-algebras

(8.5) (b, c]→ Scb−1,b.

In order to show that (8.5) is an isomorphism, let us consider the homomorphism
k〈z, ζ〉 → (b, c] induced by the correspondence

z 7→ z′ := b−1ηζ p−1, ζ 7→ ζ.

Note, that (z′, ζ) is a CCR-pair in (b, c],

[ζ, z′] = b−1((η + 1)ζ p − ηζ p) = 1.

Identity (6.19) is thus applicable and yields

ηp = η + (z′)pζ p

which combined with (8.1) implies that (z′)pb = c. It follows that the homomor-
phism k〈z, ζ〉 → (b, c] descends to a homomorphism of k-algebras Scb−1,b → (b, c]
which supplies the inverse to homomorphism (8.5). �

Tensor identities of Proposition 2.2 yield several canonical isomorphisms in-
volving cyclic algebras. We would like to record just one.
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COROLLARY 8.2. For any pair b ∈ k∗, and c ∈ k, there exists a canonical isomor-
phism

(b, c]⊗p ' Dk(Ocb−1)⊗(p−1) ⊗Dk(Ob) ' Mp(k)⊗p.

In the case when the ground ring, k, is a field, we can say more.

THEOREM 8.3. Any element of order p in the Brauer group, Br(k), is represented by
an algebra of p-symbols

Sπ = Sa1,...,an ; b1,...,bn ,

cf. (2.22), for some π = (a1, . . . , an; b1, . . . , bn) ∈ k2n and n ≥ 1.

PROOF. Let us invoke a few known facts about central simple algebras over a
field k of characteristic p > 0. The absolute Frobenius map

(8.6) F : k→ k, c 7→ cp,

induces on Br(k) the endomorphism of multiplication by p. Map (8.6) can be repre-
sented as the canonical inclusion k ↪→ k1/p followed by the isomorphism k1/p ' k.
This means that if the similarity class [A] ∈ Br(k) of an algebra A has order p in
Br(k), then A is split by a finitely generated subfield k(u1, . . . , un) ⊂ k1/p.

A theorem of Teichmüller ([T], Satz 29) implies existence of b, c ∈ k∗ such
that A⊗ (b, c] splits over k(u1, . . . , un−1). By applying this factorization argument
repetitively we find that there exists

(b1, . . . , bn, c1, . . . , cn) ∈ (k∗)2n

such that
A⊗ (b1, c1]⊗ · · · ⊗ (bn, cn]

splits over k, and this means that the opposite algebra, Aop, is similar to

(b1, c1]⊗ · · · ⊗ (bn, cn].

It remains now to invoke Proposition 8.1. �
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