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CYCLIC HOMOLOGY OF DIFFERENTIAL OPERATORS

MARIUSZ WODZICKI

To Dear Yuri lvanovich on His Fiftieth Birthday

1. Let (X) denote the /’-algebra of differential operators on a smooth
manifold X in one of the following categories: algebraic, holomorphic or C. In
the first case X has to be an affine variety over the ground field xe of characteris-
tic zero, in the second case a Stein manifold (/’ C), assumed, for simplicity, to
possess finitely many connected components, and in the last case a compact
C-manifold (possibly with boundary or nonorientable; /’= R or C). The
purpose of this article is to determine Hochschild and cyclic homology of (X)
denoted, respectively, H,((X), (X)) and HC,((X)). In the holomorphic
and C settings, (X) is naturally a locally convex algebra with respect to
( -tensor product, and the groups above mean the corresponding topological
homology groups. For basic definitions and properties of cyclic homology see [5]
and for basics on locally convex homological algebra consult [4] and [7].

2. THEOREM.

nq( ffr( X), .(X)) -- nIvq( X) (q r; n dim X). (1)

3. THEOREM.

HCq(.@(X)) ---- H)-q(x) n2D-q+2(X) ni-q+4(X)

(q N). (2)

4. Remark. In proof of the holomorphic case of Theorem 3 we shall assume,
for simplicity, that Htl(X) is finite-dimensional; the similar condition automati-
cally holds in the two remaining cases.
The isomorphisms in (1) are canonical and functorial with respect to embed-

dings of codimension zero. The proof of Theorem 3 which is presented below will
provide similarly functorial isomorphisms in (2), for q > 2n 1. The existence
of canonical isomorphisms in the "unstable" range q < 2n 1 can be proved as
well, at least in C case, but requires stronger means (cf. Remarks 8 and 13.1
below).
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5. Recall that for a general algebra the groups H,(, ’) and HC,(
are related to each other by Connes long exact sequence (cf., e.g., [5, Thm. 1.6])

I s B

nq(d, rift) nCq(d) ’"+ nCq_2(d ) nq_l( d)

(3)

Assume that dim,H,(’, ) < . Then the following simple lemma holds.

6. LEMMA. One has

[q/21

dim HCq(d) < E dim Hq_2i(d’ oq[) (4)
i=o

for every q. If there is equality in (4) for q >> 0 (suffices for just one q) sequence
(3) splits into the short exact sequences

! s
0 Hk(dd, g’) -- HCk(dd) HCk_2(s]) 0 (kN),

and equality holds in (4) for all q.

7. Recall that HC,(s’) can be obtained as homology of Tot**(’)
where (**(), b, B) is Connes double complex ([5, (1.8)]). One has

Wt_k(, ) (k,^ > 0) where (, ) (R) (R) (j + 1 times).
Here @ denotes ( if ’ is a locally convex ,,-algebra, and the ordinary
(inductive) tensor product if ’ has no topology.
Assume that ’ is filtered: {0} cM’ c c ’P c (p l), and
’J +J. This induces the filtrations (0} c .0 .p on
spaces .(, e’) which are defined by images in (, ) of the spaces
(o j) (summation over 0 + + ij p). It is clear from the
corresponding definitions that both Hochschild and Connes boundary maps
(denoted above b and B respectively) preserve these filtrations.

If is topologized we shall assume in addition that the canonical maps
lim ,P ---, .(, ) are isomorphisms for all j. Then the spectral sequence E;q
ass---o’ciated with the considered filtration on Tot **() converges to nCp+q(’).
Similarly, the spectral sequence ’E;q associated with the filtration on
(c,(z,, sO’), b) converges to Hp+ q(, oq ).

Reduction of Theorem 3 to Theorem 2. The above remarks apply to ’ (X)
filtered by order of operator in any of the three cases quoted at the beginning.
The spectral sequence E;q =: nCp+q((S)) is a priori located in the region
(p > 0 and p + q > 0). In fact, we shall see that E;q (r 1) vanish outside the
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region shown below

(0, n- 1)

643

i.e., E;q 0 if either p > 1 and q > n or p > 1 and p + q > 2n.
Indeed, gr(X) is the graded algebra d= (9 0(.0(p) of functions onp--

oq-*X polynomial along fibres of ’*X X and algebraic, holomorphic, or C
in the X-direction (depending on the case). Thus Eq= HCp+q((O)(p)=
Hp+q(TOt **(dg)(p)). One can show that, for every p 1, the first spectral
sequence (corresponding to filtering by columns) of the double complex
**(d)(p) degenerates at E2-term (for an algebraic X this is Theorem 2.9 of [5]
plus the considerations which precede it). This yields, in particular, that

HCp+q(d))(p) i+q(p)/di+q-l(p) (p >:

(for brevity, f will denote 2/t). Since the fight-hand side of (5) vanishes for
q > n, as well as for p + q > 2n, we obtain the required location region for
nonvanishing terms of Elpq.
The same spectral sequence for **(d)(p) yields, if p 0, that

Eq HCq((P)(O) HCq((P(O)) H(4)( (q > n)

where t parity of q and H((X) denotes the standard ’/2-grading of
HIR(X). In view of the shape of EX**, the terms Eq (q >/2n 1) survive to
infinity and we have HCq((X)) H(O):X)DR (q > 2n 1). By comparing this
with the statement of Theorem 2, we obtain equality in (4) for q > 2n 1. An
application of Lemma 6 then finishes the proof of Theorem 3.

$. Remark. As a corollary of the proof, we obtain that the natural embedding
of the algebra d(X) of functions on X viewed as differential operators of order
zero induces an isomorphism in cyclic homology HCq(d)(X)) -% HCq(.(X)) for
q > 2n 1. This is an "additive analog" of the theorem of D. Quillen saying
that dg(X) ’--, (X) induces an isomorphism in algebraic K-theory (for X smooth
affine). In the unstable range q < 2n 1 the maps HCq((.O( X)) HCq(.(X))
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are always surjective, and usually with nontrivial kernel, as shows an easy
inductive argument (q going from the stable range to zero) which involves
comparing Connes exact sequences for t0(X) and (X).
Note that our proof does not necessitate information about the behavior of the

spectral sequence inside the marked region. This additional information, how-
ever, can be useful, e.g., in proving that the surjections HCq(O(X))---,
HCq((X)) split or, equivalently, that the short exact sequences

0 Hq((X), (X)) --+ HCq((X)) HCq_2((X)) ---)0

admit a canonical splitting (cf. Remark 13.i below), for all q, therefore giving
canonical identifications in (2).
Theorem 2 is a corollary of the proposition describing the term E of the

spectral sequence ’E;q Hp+q((X), (X)) of subsection 7 above.

9. PROPOSITION. There is a natural identification ’gq-" 2n-p-q(n- q)
(p > 0 and p + q > 0). Under this identification dlpq corresponds to de Rham

n-p-q( n-p--q+differential dDR: n q) l(n q).

10. COROLLARY. 2 142n-p- q( otherwise 2Evq --Ol X), if q n, Evq O. In par-
ticular, ’Eq degenerates at EE-term and H((X),(X))= ’E 2

k-n,n

n-(X).HDR

(Notice that 2n-P-q(n q) 0 for p < 0.)
We shall need one general construction. For a given algebra and an

-bimodule let a denote z regarded as a Lie algebra, and rrt denote t’ as a
right a-module (i.e. n. a na a). Let (C.(a; m), 0) be the standard
Koszul chain complex: Cq( a; m) rrt (R) Aq a, and

O(n (R) al A Aaq)

E (1) i+jen _] aI Aai- Aaj(R) tai, aij A A A A Aa
16i<j<q

n a (R) ax A Aa A Aaq.
< < q

(6)

Define a set-theoretic embedding r/: C.( a; m) -, .(s, t’) by

a (R) a1A A aq-+ (signo)cn (R) aoo) (R) (R)ao(q), (7)

and let .W,(off, /4) C,( a; m).



CYCLIC HOMOLOGY OF DIFFERENTIAL OPERATORS 645

11. LEMMA. One has b,1 ,10, i.e., HochschiM boundary induces Lie algebra
boundary (6) on ..(, g).

12. Remark. The induced map : H,(a; ad)-o H,(ad, ) coincides with
the edge homomorphism of a certain spectral sequence "E2_pq H,(ad, Hq(a;
..q’ ad)) =* Ht,+q(a; ad) where ad a’ is an ad-bimodule via the action: a’(a
(R) a2)a" a’a (R) a2a", and a fight a-module via: (a (R) a2) a ata (R) a 2

a (R) aa 2. There is a similar interpretation of r/: H,(a; m) -o H,(ad, vg) for a
general ad-bimodule ,t’.

Proof of Proposition 9. We have tE’pq np+q((}, O)(p)--the component of
weight p of the Hochschild homology of the graded algebra . Let 0 f(1) be
the canonical symplectic form. For/’ we denote by i interior product with
the Hamiltonian vector field corresponding to/’. Then the correspondence

defines surjections if’: (tV, tP)(p)-o f],-J(p-j + n). One verifies directly
that b 0. One can also show that Ker )r consists entirely of boundaries (in
the algebraic case this is essentially the dual formulation of the Hochschild-
Kostant-Rosenberg theorem [3, Thm. 3.1]; the other two cases are more subtle
but not difficult). Thus ’i’pP+q induce identifications ’Epq-- n-p-q(p). In these
terms d’,q are determined as follows. Notice that already the restriction of ’l’pP+q
to p+q(), )(p) is a surjection onto n-p-q(n q). Denote this by {Pp+q. One
has .W,(tV, tP)= gr .L#,(( X), .@( X)), and by Lemma 11 we know that
Hochschild boundary induces on .W,((X), (X)) the Lie algebra boundary
(6). Recall that commutator of two operators of orders, say, and rn modulo
operators of order + m 2 induces on tV the structure of the graded Poisson
algebra (denote it by ). Now, it should be clear that Jr1/2 on n-P-q(n q) is
the corresponding homogeneous component of the projection of the boundary
homomorphism in the Koszul complex C,(; ad), under the composite map
C,(; ad) .,(d, d) ., where f., denotes de Rham complex with the
dual grading f], k f]- and ,/is the identification (7). This composite map is,
in fact, a morphism of complexes (we proved this, e.g., in a slightly different
context in [8, 1.25 and 1.19]; mind there the opposite sign convention for the
boundary in Koszul complex). In particular, g,1/2 identifies with de Rham
differential JDR: n-p-q(n q) -o n-p-q+l(n q). m

13. Final remarks. (i) It follows from the proof of Theorem 2 that the
homomorphism Hq(d)(X), tV(X)) Hq((X), (X)) induced by the natural
embedding t0(X) (X) is zero except q n where it corresponds to the
projection f --* HR(X).
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It is worth noting that Proposition 9 plus a rather substantial amount of
diagram chasing plus an argument involving "counting dimensions" similar to
that of Lemma 6 yield together an almost complete description of the spectral
sequence Eq =, HCp+q(,(X), .(X)) used previously to prove Theorem 3.

This can be summarized as follows. The term E 2 is given by

q-2HR HDR "’’, p 0, q > n,
q-2 q-4

= HDR HDR (D ’’., p 0, q < n,

H’+1 2 <p < n q < n

0, otherwise

(HrR HrR(X)). The only nontrivial differentials d’;q (r > 2) are d’ffq: EpPq
P which inject 2 q-p+1Eo, l+q_ Epq El,q HDR (X) into E’0,e+q_ 1- In particular,

E, never stops earlier than at E n+l (the "last" differential being d n
n,n--1

HDR( X) E :z E" E"n, n, 0,2n- 2), and the term E, E7- vanishes
except Eoo A slightly more precise information about differentials is necessary0 .
to conclude that the composition of the inclusion

nvq ( nvq+2 ( t._> ,../-/()=DR Egq (q > n)

with the canonical projection Eq--, Eq is, in fact, an isomorphism. Since
E2oq HCq(O(X)), this gives, in equivalent terms, canonical splitting of the
surjections HCq((9(X)) --, HCq((X)) and hence, canonical isomorphisms in (2)
(cf. the discussion in Remarks 8 and 4 above).

For a fuller treatment of the presented results, their extension to noncompact
Co manifolds and yet another proof of Theorem 2 in the Coo case (actually
chronologically prior; based on a certain kind of "noncommutative" Poincar6
lemma) the reader will be referred to [9]. One may add that the point-of-view
adopted here has its source in the author’s work on noncommutative residue.

(ii) Homology of (X) for an affine space X= An reduces to the single
nonvanishing group H2n(.q(An), .@(An)) (this was found by B. B. Feigin and
B. B. Tsygan, and also by T. Masuda (cf. [2], [6])).
Our approach gives immediately what the corresponding generator is. Denote

by Oj, the partial derivative O/Oxj, and let ,j 1 (R) 1 (R) 1 1 (R) Xj (R) Oj + 1 (R)

Oj (R) Xj. Then , *1 *n is a nontfivial 2n-cycle (the symbol denotes
the shuffle product that identifies H2n((/), (A)) with the n-th tensor power
of H2((A1), (A1))). For a general smooth affine variety (in characteristic 0),
Hochschild homology of (X) was determined also by Ch. Kassel and C.
Mitschi (as is reported by J.-L. Brylinski in [1]; we do not know, however, what

Which is known to the author at present in C case and seems very likely in the two remaining
cases.
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their method is2). The evidence towards the existence of isomorphisms like (1)
and (2) was given also in the preprint of Brylinski mentioned above (the author
thanks Ezra Getzler for drawing his attention to it).
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