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Excision in cyclic homology and in
rational algebraic K-theory

By Mariusz Wobzickr*

We prove in this article that the following implication holds:

a ring &/ has the excision the Q-algebra &/ ® Q has
(1) property in rational algebraic = the excision property in
K-theory cyclic homology.

Recall that a ring &/ (without unit) is said to ppssessfthe excision property
in algebraic K-theory if for every ring extension &/ > R > & the K -groups of
&, # and & are related to each other by the natural long exact sequence

L K (F) —K () S K (R) DK (F) —
(for a precise definition, see §1 below). By replacing everywhere K,( ) by
K.( ) ® Q, one obtains the corresponding notion in rational algebraic K-theory.

The above definition has an obvious counterpart for cyclic homology and
algebras over a fixed field. In the case of a general commutative ground ring k
some restrictions on the class of allowable extensions seem inevitable (due to the
well-known limitations of cyclic homology considered as a homology functor for
algebras not flat over a ground ring). An extension of k-algebras will be called
pure if it is pure as an extension of k-modules (in the sense of P. M. Cohn [6]; cf.
also Appendix A.3 below). The class of pure extensions contains, e.g.,

(i) extensions which admit a k-module splitting,

(i) extensions A » R - S with S flat over k.

In fact, one among the several possible characterizations of purity says that
an extension is pure if and only if the underlying extension of k-modules is an
inductive limit of split extensions (see Theorem A.4 of Appendix A below).
Everywhere in this paper the word “excision” used in the context of cyclic
homology will mean “excision with respect to the class of pure extensions.”

The second purpose of the present paper is to give a complete characteriza-
tion of the class of algebras possessing the excision property in cyclic homology.
Before stating the corresponding result we need the following definition. Let us
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consider the chain complex (B,(A), b’) given by
@ B(A) =A% (q21), b(a,@--- ®a,)

q—1 )
=Y (-1)""a,® - ®aa,,,®--- ®a,.
i=1

(A denotes an arbitrary non-unital algebra.) If A has a unit, B,(A) is up to a
shift in dimension, its standard Bar resolution. The existence of a unit in A
equips (2) and, more generally, B,(A) ® V, where V is an arbitrary k-module,
with an explicit contracting homotopy. If A lacks a unit the complexes
B4(A) ® V may have a non-zero homology. In view of this, we propose to call a
non-unital algebra A homologically unital (shortly, H-unital) if, for every
k-module V, the complex B,(A) ® V is acyclic. It is easy to see that, if A is flat
over k, the latter condition is equivalent to the acyclicity of (2) alone (in the flat
case the homology of B,(A) ® V is equal to Torf(k,V), * > 0, where A
denotes the algebra with unit obtained by adjoining the unit to A, and k and V
are viewed as A-modules via the augmentation map A — k).
Having this definition we are ready to state the following result:

a k-algebra A has the excision

A is H-unital.
property in cyclic homology < A s H-unita

(3)

For algebras over a field of characteristic zero, (3) has been proved in [54].
The case of a general ground ring of coefficients requires, however, a completely
different proof.

It seems to be rather self-evident that (3) admits extensions to the categories
of differential, simplicial or super-algebras. We leave the corresponding modifi-
cations of the arguments used to prove (3) (see §3 below) to the interested
reader.

By combining (1) and (3) we obtain the following necessary condition for
excision in rational algebraic K-theory

(4) a ring &/ has the the Q-algebra o/ ® Q
=
excision property in K,( ) ® Q is H-unital.

What is known so far about the excision in algebraic K-theory (even this,
mostly concerning K, and K,) gives support to the suspicion that the necessary
condition in (4) is also a sufficient one (cf. Remarks 1.3(1)~(3) below).

The above results are contained in Sections 1-3 of the present paper. The
H-unitality of a number of interesting algebras is then established, using various
techniques, in the subsequent Sections 4 to 8. An impression arises that the
H-unitality (and, hence, the excision in cyclic homology) tends to occur where it
is needed most, viz. for algebras which are, roughly speaking, the subject of
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Alain Connes’ “noncommutative differential geometry,” [7]. We prove thus that
to the class of H-unital algebras belong: every C*-algebra and, more generally,
every Banach algebra with bounded approximate unit (e.g. LY(G) of an arbitrary
locally compact group G), the algebra C®(X, Z) of C*-functions on a smooth
manifold X which are “flat” along a closed subset Z C X (in particular, L.
Schwartz’ algebras % and 2), the corresponding algebra 2(X, Z) of C*
differential operators “flat” along Z, L. Schwartz’ algebra % of C*-functions on
R? which vanish at infinity with all derivatives, every left (or right) ideal in the
algebra 9¥¢(V') of algebraic differential operators on a regular affine variety
(independently of characteristic) et cetera. A noteworthy feature of these exam-
ples is that all, except the last one, are H-unital both as abstract and as
topological algebras (with respect to their natural locally convex topologies and
related completions of the corresponding chain complexes). We decided to
consider the excision in continuous cyclic homology separately in [53], this will
include an extension of (3) to that situation. In the present paper we are
concerned exclusively with the excision in “discrete” homology.

The algebras which one encounters in “noncommutative differential geome-
try” have a tendency to enter into interesting extensions (many of them being
fairly profound, e.g. the extension of pseudodifferential operators, cf. [52]). We
exploit this, using (3) and the results of Sections 4-8, to derive a number of new
long exact sequences in cyclic homology. This allowed us to determine the
(continuous) cyclic homology of algebras like the algebra of Toeplitz operators
with continuous symbols [54] and the algebra of pseudodifferential operators [52]
which previously seemed to be rather intractable.

The remaining sections possess a more general character.

In Section 9 we introduce a useful class of modules over H-unital algebras
which we propose to call the homologically unitary ( H-unitary) modules. We
prove then that an algebra B which contains a “pure” H-unital subalgebra A
such that the quotient B/A is H-unitary as a left or right A-module is
necessarily H-unital (Theorem 9.5). This has several applications. The most
noteworthy seems to be the following one (Corollary 9.6).

Let C be an algebra with unit whose structural map k > k-1 C C is a
“pure” monomorphism. Then, for every H-unital algebra A, the tensor product
A ® Cis H-unital.

As a corollary we obtain the Morita invariance of the cyclic homology of
H-unital algebras. The Morita invariance is evidently false for general algebras
without unit.

In Section 10 we prove, relying on the material of previous sections, that the
cone and the suspension functors known from algebraic K-theory (cf. e.g. [22],
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[48]) retain their respective properties in cyclic homology. One immediate gain is
the ability to replace the relative cyclic homology groups associated with an
arbitrary algebra homomorphism A — B by the absolute ones (cf. Remark
10.2.4).

The last section is devoted to the algebras of triangular matrices. With no
restrictions on the ground ring k, we prove that the natural projection “onto the
diagonal matrices” induces an isomorphism in cyclic homology (Theorem 11.1).
The same was previously proved in algebraic K-theory (D. G. Quillen, R. K.
Dennis—S.C. Geller [9], A. ]J. Berrick—-M. E. Keating [2]).

The original version of this article, written in December 1987, consisted of
Sections 1-8. The last three sections were added in March 1988.

Throughout the paper we hold to the following convention: Z , = {1,2,... }
and N = {0,1,2,...}. For a chain complex (K,, d) (in particular, for a Z-graded
module), K,[f] is defined as (K,[j]), = K,_;and (d[j]), = (- 179, Simi-
larly, for a double complex (L 44, 3’, 3”) we deﬁne L.«li, j] as (L**[z ]])

L, ;. ;and (34, f]),, = (= 1) ap iq—j and (37[i, jD),, = (= D7 a;", .

I would like to thank Yuri Ivanovich Manin for his dlstant yet much felt
support.

1. A necessary condition for excision in rational algebraic K-theory

i f
Let <7 be a ring without unit. For every ring extension &> # -» % with
kernel .+, one defines in algebraic K-theory the relative K-groups K.(2, %) so
that they fit into the natural long exact sequence

(5) - — K () 5K (R, ) 5 K(2) 5K (7))

The group K.(./, o), where /=7 X o/ is the ring obtained from &/ by
adjoining the unit, is usually denoted K,(.7). If &7 has a unit itself this agrees
with the usual definition of K,(.%).

In view of the naturality of (5), there is a canonical map K,(%/) —
K, (2%, o), for every ring # containing =/ as a two-sided ideal. The ring & is
said to possess the excision property (or to be an excision ring) if this map is an
isomorphism for every %#. One can define a similar excision property in rational
algebraic K-theory by requiring, instead, that K,(/) ® Q —» K(%, «) ® Q
be an isomorphism.

1.1. THEOREM. Assume that a ring &/ has the excision property in rational
algebraw K-theory. Then the supplemented Q-algebra 7 ® Q is acyclic, i.e.
Tor,7*(Q, Q) = 0 for n > 0.

Proof. Set #= #X F where £ is a nilpotent ring without unit; i.e.
F* = 0 for some k > 0. We are interested in the extension /> @ » % where
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& 5 Z is the supplemented ring # having # as its augmentation ideal. The
following commutative diagram of extensions

I=—=F
[
I r—> R —>F

| L]

oA >—> o —>» Z
induces the related commutative diagram with exact rows and columns in

algebraic K-theory:

KR, ) 2> Ko(F)

! !

(6) KR, )r— K () —> K(&)

#} i :

Ko() > K() —> Ku(Z)

and the similar diagram for the corresponding Q-algebras, in cyclic homology

HCA(R & Q, 58 Q) 25 HC,(S® Q)

[ [

(M HCy(2® Q, #®Q))»— HC(2©Q) —» HC(F®Q)

e i l

HC(#®Q) »— HC(H#®Q) —» HCWQ).

If o/ is an excision ring for rational K-theory, the map YK ® Q is an
isomorphism. On the other hand, from (6) we get Ker(¢ ® Q) = Ker( ok ® Q);
by a theorem of T. G. Goodwillie [16, Main Theorem, p. 348] we have
Ker(¢X ® Q) = Ker(¢°); and from (7) it follows that Ker(@HC) = Ker(¢4°).
Hence, Ker (45 ® Q) = Ker(¢¥¢)).

In the case #2 = 0 the kernel of the corresponding map in cyclic homology
has been completely described in [54] (cf. also §3 of the present paper). In
particular, one has, for every n > 0, the following inclusion (cf. [54, Proof of
Cor. 2] or (22) below):

(8) Ker xpgc o Vn,l ® Vn—1,2 & - e‘,1,:r1 )
where V; ; = Tor;7®%Q, (£ ® Q%)) = Tor”®¢(Q, Q) ® (F® Q)®.
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If ¢ is an isomorphism, it follows from (8) that all the groups
Tor;®YQ, Q), i > 0, must vanish. O

We proved in [54] (cf. also §3 of the present paper) that the condition
Tor£(Q, Q) = 0, * > 0, characterizes Q-algebras A satisfying excision in cyclic
homology. We obtain, therefore, the following:

1.2. CoroLLARy (cf. [54, Remark 2]). If a ring without unit o/ satisfies
excision in rational algebraic K-theory, the Q-algebra o/ ® Q satisfies excision
in cyclic homology. a

1.3. Remarks. (1) The vanishing of Tor,”*%Q,Q), for n > 0, very well
may be a necessary and sufficient condition for excision in K,( ) ® Q. It is a
necessary and sufficient condition on the class of split extensions &7 > # » & of
the form # = o/ X # where £ is a nilpotent ideal. When we consider excision
in cyclic homology, extensions of this type are proved to be a kind of “touch-
stone” —if the excision holds for them, it holds for all the other extensions (cf.
[54, Proof of Cor. 2] and the proof of Theorem 3.1 below). If anything like this
can also be established in algebraic K-theory, this will immediately solve the
excision problem for K,( ) ® Q.

(2) When dealing with particular problems one is often confronted with the
question of whether the excision holds in a specific dimension. In this respect
Theorem 1.1 can be stated more precisely as

& is an excision ring
forK,()®Q

(cf. Theorem 3.5 below). If K, ( ) ® Q is replaced by HC, _,( ) this implication
is; actually, an equivalence if the condition on the right-hand side is slightly
sharpened by adding an extra condition involving Tor,;*®%Q, Q) (Theorem 3.5
below; vanishing of either Tor;¥*%(Q, Q) or HC, (/' ® Q) would suffice any-
way). Considering cyclic homology we also have the following implications
(n>2):

= Tor°¢(Q,Q) =0, forLl<g<n-— 1.

A is an excision A is an excision
(E,) =
algebra for HC, |( )  algebra for HC, _,( ).

In rational algebraic K-theory the corresponding implications hold for K, and
K, (cf. Remark 3 below) and nothing seems to be known about the situation in
higher dimensions.

(3) The necessary condition stated in Theorem 1.1 is also a sufficient one at
least in dimensions 1 and 2 (on the level of K, excision holds universally). More
precisely, from the results of L. N. Vaserstein [45] and W. van der Kallen [21] it
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follows that

(9) TorJ‘;@Q(Q Q) -0 & is an excision
' ’ ring for K,( ) ® Q

and

(10) Torf °%Q.Q) =0 - & is an excision

(¢=1,2) ring for Ky( ) ® Q

(compare this with the previous remark; Tor;”®%Q,Q) = /%2 ® Q and
Tor;” ®Y(Q, Q) identifies with the kernel of the multiplication map &/ ®,, &7 — &
tensored with Q). It is noteworthy that both (9) and (10) hold not just for
rational K-groups. Indeed, (9) and (10) continue to be true if one replaces
K,()® Q by K, () and Tor,”*%Q,Q), g =1 or 2, by the “Bar homology
groups” HB (%) (to be introduced in the next section; if %/ as an abelian group
has no torsion, HB(%/) = Tor;A(Z,Z), q > 0). This and a theorem of L. N.
Vaserstein (that excision holds in K,( ) for rings having left or right “local”
units, [45, Thm. 17.1]) provided the primary motivation to extend the theorem
on excision in cyclic homology over a field of characteristic zero [54, Thm. 3] to
the case of a general ground ring. This will be done in the next few sections.

2. The standard chain complexes

Let A be an algebra (without unit) over a commutative ring k. One can
associate with A the following two chain complexes: (C4(A, A), b), where
C[(A, A) = ABC+0),

b(ap® ---®a,)= Y. (-1)a,® -~ ®a,a,,;® ®a,

+(-1)%a,a,®0a,® - ®a, |
and (B4(A), b’) where
B(A) =A% (g>1),

q

b(a,® - ®a,) = Z(—l)'l - ®aa,, ® - ®a,.
The homology of Cy(A, A) wﬂl be denoted S ,(A, A) and the homology of

B,(A) (called hereafter the Bar homology of A) by HB,(A). If V is a k-module
we shall denote by HB,(A; V) the homology of the complex B,(A) ® V. For
algebras with unit, the complex B,(A) is, up to a shift in dimension, the
standard (augmented) Bar resolution of A, and it comes equipped with the
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contracting homotopy @, ® --- ®a, > 1®a, ® --- ®a, which is a (k, A)-
bimodule map. In particular, HB,(A;V) = 0 if A has a unit.
In terms of the complexes C,(A, A) and B,(A) the Hochschild homology
H,(A, A) and the cyclic homology HC,(A) are deﬁned as the homology groups
of the double complexes H(A) = (C,(A, A) =% By(A)[— 1])) and, respec-
tively,

€(A) = (Cu(A, A) &= By(A)[— 1] - Cu(A, A) & 1)

(t(a; ® --- ®a,.;) =(—D%a,., ®a,; ® --- ®a,) and N, =1+ ¢,
+ oo+t 75 cof. [27, §4]). N

For A flat over k, one has HB,(A; V) = Tora(k,V) and H,(A, A) =
Torf: ®A(A, A) where A = k X A denotes the k-algebra obtained by adjoining a

unit to A and Tor, denotes the corresponding reduced Tor-groups:

Torf(k,V) = Tork(k,V) & Tor*(k V)
and
Torf®4(A, A) = Tork®(k, k) ® Tori®4(A, A).

With no restrictions on A, one can still identify HB,(A; V) with the
corresponding reduced relative Tor-group:

HBL(A;V) = Tord P(k, V).

Recall that the latter is defined using resolutions consisting of A-modules which
are projective relative to the class of k-split epimorphisms (for more details cf.
e.g. [18], [28, IX.8] or, within the general framework of relative homological
algebra, [5] and [11]).

3. Excision in cyclic homology

An extension of (not necessarily unital) k-algebras A » R 4 S will be
called pure if the underlying short exact sequence of k-modules is pure (see
Appendix A). Of particular importance are the following two classes of pure
extensions:

(I) extensions admitting a k-module splitting, and

(I) extensions A » R —» S with S flat over k.

For a given extension the relative cyclic groups HC4(R, A) (denoted also
HC.(R — S)) are deﬁned as the homology groups of the double complex
¢(R — S) = Ker(¢(R) EA %(S)). Precisely in the same manner one can define
the relative Hochschild, Bar and s#Zgroups.

We will say that an algebra A satisfies excision in cyclic homology if for
every pure extension the natural inclusion i: ¥(A) & €(R — S) is a quasi-iso-
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morphism (i.e. induces an isomorphism in homology; notice that for extensions
other than pure, the map i: ¥(A) — ¥(R — S) need not be injective). Similarly
defined are the corresponding excision properties for Hochschild, Bar and
Hhomology. ‘ s

It follows directly from the definition that any pure extension A >R >S
whose kernel satisfies excision in one of the above homology theories F, =
HC,, H,, 5, or HB, (the latter will be called shortly the F ,-excision property)
induces the natural long exact sequence

(1) - D FLS) > F(A) =5 E(R) S E(S) — -
Almost as obvious is that every Cartesian square of (not necessarily unital)
k-algebras
PR
(12) e s
Q—S
where f: R — S is a pure epimorphism (see Appendix A) and the ideal Ker f

possesses the F,-excision property, induces the corresponding Mayer-Vietoris
long exact sequence

(13) -+ — F,,(S) =5 £(P) —F,(Q) ® F(R) —F,(S) — --- .

Indeed, if we denote Ker f by A and Ker g by A’, then (12) is equivalent to
the following morphism of extensions

A—SR-LDs
[ A
A-Lp50

and under the above assumptions on A we have, in view of (11), the following
commutative diagram with exact rows

. —F,.(S) 5 F(A) = F(R) L E(S) — -+
(14) Js o E [o
oo —F, (Q) -5 F(A) - F(P) =5 F(Q) — -

where the natural maps ¢ ,: F,(A’) = F,(A) are isomorphisms. Treating (14) as
a double complex we may simplify it in the standard way without changing its
homology (which is here, of course, zero) by removing columns containing
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isomorphisms ¢ ,,. We arrive at the following acyclic double complex

F(R) L F(8) — -

T¢ Tw
je(dia) ted
R

F,,(R) - F, (8) F(P) -5 F(Q)

v K
- —F, (P) = F, (Q)

whose total complex is the Mayer-Vietoris long exact sequence (13).

Another formal feature of pure extensions with kernels satisfying excision in
cyclic and in Hochschild homology is the existence of the following lattice with
exact rows and columns

(15)

R N
. «—HC,,(R) < H,, (R, R) <& HC(R) < - HC, 4R) — ---

I lr l I
+ «—HC, ((S) < H,,(8,8) «<*~ HC(S) <= HC, yS) — ---
2
la a ‘8 18
- «—HC(A) < H(A,A) <& HC, (A) < HC,, (A)«— -
li i ,i lt’

+ «—HC(R) <~ H/R,R) <" HC, (R) <~ HC,,(R) — ---

. . . .
. . . .
.

in which all squares commute except those containing B and 9 which anti-com-
mute. The columns in (15) are the long exact sequences (11) while the rows are
the corresponding Connes’ long exact sequences (cf. [27, Thm. 1.6)).

H-unitality. A k-algebra A is said to be homologically unital ( H-unital) if
its Bar homology with coefficients in an arbitrary k-module V vanishes,
HB,(A; V) = 0. For A flat over k, the spectral sequence of “universal coeffi-
cients” E? = Tori(HB(A),V) = HB,, (A;V) implies that in that case H-

unitality is equivalent to requiring that HB,(A) = T_or,‘:(nk, k) = 0 (this was
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precisely the definition of H-unitality given in [54] in the case of the ground ring
being a field of characteristic zero).

In the theorem stated below the word excision is shorthand for “excision
with respect to pure extensions A » R - S of non-unital algebras.”

Restricting oneself only to extensions of unital algebras does not make any
difference if one considers the excision problem in Hochschild or in cyclic
homology. In H, or HC, the excision holds for a given extension A » R -» §
precisely when it holds for the extension A » R — S; this follows from the
identities H,(R, R) = H(R, R) ® H,(k, k) and HC.(R) = HC,(R) ®
HC,(k); cf. [27, §4].

3.1. TueoreM. For any algebra A over an arbitrary commutative ground
ring k the following conditions are equivalent:

(a) A satisfies excision in cyclic homology,

(b) A satisfies excision in Hochschild homology,

(c) A satisfies excision in H#homology,

(d) A satisfies excision in Bar homology,

(e) A is H-unital.

The proof of Theorem 3.1 is divided into several parts.

(d) & (e). Let A be an arbitrary k-algebra, V an arbitrary k-module and
A>» R —» S a pure extension with kernel A. Then the complex L, =
Ker (By(R; V) — By(S; V)) comes equipped with the natural filtration

(16) F,L,,, = linspan{r, ® --- ®r,, ® vlatleast q r,’s belong to A}

(lin span is an abbreviation for “linear span”).

The associated spectral sequence (s.s.) ES o = H,, (Ly) is located in the
region (p > 0, g > 1). In order to describe its E°term, we need the following
construction.

Let | be a positive integer and A4 = (n,,...,n;,,) ENXZ X ---
XZ,X N (i.e. nj,n;.; >20and n, >0, for 1 <i <+ 1). We introduce the
notation [A#| ==n; + --- +n,,, and [(A) := l. For a given ./, let Y, (A; V)
denote the total complex of the following (I + 1)-tuple complex

Bu(A)[n,] ® - ®By(A)[n)] ® S*1® V[ |#] + nyy,]
where S®¥1 ® V[— |.#| + n,,,] is treated as a trivial complex concentrated in
dimension — |#| + n,, .
3.2. LEmma. For every p > 0, there is a canonical isomorphism

(17) (ES4.d%) = @ Y. (V).
M| M =p
W M)=>1
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Proof. Let us introduce the abbreviated notation
Stny = Snyt tm 41 ® O, s (s, €9)

and

Ay = Apys o1k, +1® - B g (a, € A).
Then the identification in (17) is given by

Sin) ® Aoy @ 7 B8,y B A, ® s, )
DGy ® A, B8, @ B, . o

If A is H-unital, all the complexes Y, (.#; V) are acyclic and, in view of
Lemma 3.2, HB,(A; V) = H(L,) = 0. In particular, A satisfies excision in Bar
homology.

In order to prove the opposite implication, we take S=V, V2= 0,
and R=A & V (with V acting trivially on A). In this situation the s.s.
E%. = HB,(R — S) obviously stops at E'. Since EL, = HB,(A), the excision
property of A forces all E,l, + P > 0, to vanish. It remains to notice that, in view
of Lemma 3.2, E;, D HB,(A; V®7).

(c) = (e). Let A be again an arbitrary algebra and A » R -» S a pure
extension. The complex M, = Ker (C,(R, R) - C,(S, S)) carries the natural
filtration

(18) F,M,,, =linspan{r, ® --- ®r,, latleast g + 1 r;’s belong to A }.

The associated s.s. D;‘q = H_, (M,)isas.s. of the first quadrant. It is clear
that (Dgy, d°) coincides with (C4(A, A), b) (cf. Lemma A.6 of the Appendix).
For p > 0, the complex (Dg + d°) decomposes, as is easily seen, into the direct
sum of two subcomplexes

D)y =5°"® By(A)[- 1] @ D) (p>0)
where, after D, has been identified with (A @ $)®!*#*9, D° is given by
5£q=h'nspan{p0® e ®p,,, €D 30<j<i<p+gq
such that p, € S and p; € A}.
Let 5;* denote the homology of (D2, d°), p > 0; then
(19) D, =HB, . (A;S®") @ D!, (q=0).
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In order to compute Dj ,, we introduce on (D? 4, d°) yet another filtration
,Fuﬁg()),u+o = Iinspan{p0® e ®p L ddpto<i<ptuto
such that p, € S}.

The associated s.s. 'D(p) = Dy , ., is a s.s. of the first quadrant. Its E%term is
described by the following:

3.3. LEMMA. For every p > 0 and u > 0, there is a canonical isomorphism
(20) (D04(p)."d°) = D  Yu(#) e A% [-1]

M | M|=p
UMY=]1, npy 21

where A®*[— 1] is treated as a trivial complex concentrated in dimension —1
and Y (M) = Y (M; k).

Proof. The identification in (20) is given by
Sinyy) B Ay @ 0 Oy ® Ay @ Sy ) @ Ay
2 ag) @ @l B S @ B8, ) @ a,

where a,,, = g b skr1® 7 A 4 gt o

If A is H-unital all the complexes on the right-hand side of (20) are acyclic.
Hence ‘D, ,(p) =0, for u >0 and p > 0, and D,, = HB,(A; S®7)[— 1] &
D}, =0, for p > 0. Therefore 5#’4(A, A) = Dy, — H(M,) is an isomorphism
for an arbitrary pure extension.

To prove the opposite implication, take again S=V, V2=0, and R =
A ® V. The corresponding s.s. DX, stops at the “E'-term” and the excision
property means in this case that D;,,, has to vanish for p > 0. The comparison
with (19) shows that A is H-unital.

(a) = (e). As in the case of Bar and s#homology it will be sufficient to
examine the excision property for R = A ® V, V2 = 0 (with V acting trivially
on A). The double complex #(A @ V) decomposes into the direct sum of its
subcomplexes

(21) ¢(AoV)=%(A)o %(V)e Eﬁ E(N)

where the summands (.4") are labelled by orbits of Z/IZ, 1 =1,2,3,...,
acting by cyclic permutations on Z X -+ XZ_ (I times; in [54] such orbits
were called patterns of length 1). The subcomplexes €(.A") are defined as
follows. Let (n,,...,n;) be any representative of A"; for every m > | + |47},
where [A#'|=n,+ -+ +n, let W(n,,...,n;m) C (A & V)®™ denote the
submodule

) Vi@ A ® - @V ® Ak
kiyoons k;>1
ki+ - +k=m—|A|
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On (A ® V)®™ the group Z/mZ acts by cyclic permutations. Denote by
W(A"; m) the smallest Z /mZ-invariant submodule of (A & V)®™ which con-
tains W(n,, ..., n; m) (it clearly does not depend on the choice of a representa-
tive (ny,..., n;) € A"). Then the subcomplex €(A") is defined by putting

GN Y pe=W(N359+1)  (p,q=0),

If (A") =1,ie. #/'=(n)forsome n € Z_, the Z/mZ-module W(A"; m)

is free
W((n);m) =k[Z/mZ] @ (A>™ ™ e Ve) (m>n+l).
k

In particular, the natural augmentation from the extreme left column of €((n))
to By(A)[n — 1] ® V®" induces a quasi-isomorphism B,(A)[n — 1] ® V&" «
Tot €((n)). Therefore, by taking into account in (21) only patterns of length
one, we arrive at

(22) HC(A ® V) > HC(A) ® HC(V) ® HB(A;V)
®HB, (A;V®?) e --- @HB,(A;V®9)

(g = 1). Since A is assumed to satisfy excision in cyclic homology, all the
summands on the right-hand side of (22), except HC,(A) and HC(V), must
vanish. Hence A is H-unital.

The remaining implications (c) & (d) => (b) = (a) follow easily and purely
formally from the corresponding relative versions of the obvious long exact
sequences linking cyclic with Hochschild and Hochschild with Bar and 52
homology groups

H, and H,
/N AN
Hy <~ HBy4 HC, < HC,.
The proof of Theorem 3.1 is complete.

Remark. The assumption of purity of the corresponding extensions was
used repeatedly in the above proof in conjunction with Lemma A.6 of Appendix
A to ensure “proper” E’terms of the spectral sequences associated with
filtrations (16) and (18).

3.4. CoroLLARY. If A is H-unital and A » R —» S is a pure extension,
then
R is H-unital < S is H-unital.

In other words, the category of H-unital algebras is closed under pure extensions
and under passing to pure quotients. O
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This is a corollary of the implication (e) = (c) of Theorem 3.1.

From our proof of Theorem 3.1 it is not difficult to extract also the necessary
and sufficient conditions under which excision holds in a specific dimension. For
brevity, we shall state the corresponding result only for cyclic homology and
under the additional assumption that the algebra A is flat over k.

3.5. TueoreM. Fix n > 0, and let A be a flat k-algebra.
(I) The following two conditions are equivalent:
(a) For every pure extension A > R - S, the natural map

HC,(A) > HC,(R; A),

where HC(R; A) = HC(R — S) is the corresponding relative cyclic group, is
surjective;
(b) the groups HB,(A) vanish for 1 < g <n.
(I) Assume that A satisfies any one of the equivalent conditions above.
Then there exists a functorial exact sequence

(23) HB,. (A;S) — HC,(A) % HC,(R; A) —0.

In particular, if HB(A) vanishes for 1 < q<n+ 1, the excision map Y,
HC,(A) — HC/(R; A) is an isomorphism for an arbitrary pure extension with
kernel A. a

Description of the map HB, . (A;S) —» HC(A). Let EX, be the ss.
associated with the following filtration on the double complex & = Ker(¢(R) —
%(9)):

F,9, = linspan{r, ® --- ®njatleast | —p + 1 1,’s belong toA}.

One has (Ep*, d®) = Tot Gr! 9; in particular, (Egy, d*) = Tot %(A). The
double complex Grf 2 coincides \mth the complex €(A")[0, ], for /7= (1)
and V=8, from the proof of the implication (a) = (e) in Theorem 3.1 It
has therefore an augmentation to the (single) complex By(A) ® S[— 1] which
induces a quasi-isomorphism (E?,,d°) = TotGr{ 9 — B4(A) ® S[— 1]. The
mappmg HB, . 1(A S) - HC,(A) of (23) is then defined as the composite map

B,,(A; S) «— E} , %> Ei , = HC(A).

Knopfmacher formulae. In the case when the ground ring k is a field, the
Bar homology groups HB,(A), which by Theorem 3.1 are the only obstructions
to the excision in Hochschild and in cyclic homology, admit an interest-
ing description due to J. Knopfmacher [23]. Assume that A is represented
as a quotient of a free associative algebra without unit % by an ideal of re-
lations I. Let us consider the following four decreasing filtrations by ideals
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A=F’DF'D> -+, (v=1,...,4):
Fp =17, Fp =AIP 1y, FP=9%AI? and FEP =1

which are linked by the obvious inclusions

Fp Fp+t
N n
Fp FP and F? Fp
S 2 NN
F} Fp+t

(we take F} = A?).
3.6. THEOREM (J. Knopfmacher [23]). There are canonical isomorphisms

FP N Fp FPNF}p
= ——ng TRy and HB,, ,(A) = __F1p+1 TR

(p 2 0). O

HB,,(A)

These beautiful formulae follow easily from the existence of the following
A-free resolution of k (Gruenberg resolution):

0k« A/F} « F)/F} « FI/F} « F/F} « F}/F} <« F}/F} < -+ .
We obtain therefore the followihg:

3.7. CoroLLARY. An algebra A over a field is H-unital if and only if for
some (and therefore for any) free presentation I > N > A, the ideal of
relations I satisfies the identities

IP O ATP~19 = ATP + IPA and P + AIP~19 = AIP~1 [P~ 1Yy
(p > 1). O

If A is commutative, HB,(A) admits yet another description in terms of
André-Quillen deformation homology groups. We will formulate this under
assumptions slightly more restrictive than necessary, supposing that k is a field
of characteristic zero. In this case HB4( A) has a natural structure of a commuta-
tive graded Hopf algebra (cf. [1]) and its Lie coalgebra of indecomposables
Q(HB,(A)) identifies with the André-Quillen homology group D, (k/A) (cf. [34,
Thm. 7.3]). Since the canonical map HB,(A) — D,(k/A) extends to an isomor-
phism of k-algebras HB,(A) = S,(Dy(k/A)), where S, denotes the functor of
symmetric k-algebra (in the graded sense), we arrive at the following:

3.8. OBSERVATION. A commutative algebra over a field Zc of characteristic
zero is H-unital if and only if Dy(k/A) = 0 (note that Dy(k/A) = 0). a
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For the generalization of 3.8 to the case of an arbitrary ground ring of
characteristic zero, see [34, Thm. 7.8].

We will end this section with one more observation concerning commuta-
tive H-unital algebras. Let # be a finitely generated ideal in a commutative
unital ring # which satisfies #= #2. Then, in view of one of the variants of
Nakayama’s Lemma (cf. e.g. [12, Ex. 3.30(b).1 or Lemma 12.1}) there exists an
idempotent e € # such that # = Pe. In particular, # possesses a unit. This
leads to the following:

3.9. OBSERVATION. A commutative H-unital algebra A is either infinitely
generated (as a module over itself) or there exists a unit in A. O

Notice that there are examples of noncommutative finite k-algebras which
are H-unital but do not possess even a one-sided unit. Probably the simplest
example of this kind is provided by the algebra A = k®* with the multiplication
given by

(a,b,c,d)-(a',b,c’,d’) = (aa’, ab’, cc’, dc’),
which is realized as the direct sum of the subalgebras of row- and, respectively,

column-vectors in My(k):
A=(k k)@(k 0).

0 0 kK 0

Its H-unitality follows from Corollaries 4.5 and 3.4. More general H-unital matrix
algebras will be considered in Section 11.

4. H-unitality criterion

The following proposition may serve as a useful tool in establishing H-unital-
ity of several algebras.

4.1. ProposITION. Assume that a k-algebra A can be represented in the
form A = U, _ ,A, where:

(1) All A;’s are right (respectively, left) A-submodules of A;

(2) Each A, C A is pure as a k-submodule;

(3) For every i € £, there exists an A-linear map ¢;: A, > A ® A making
the following diagram

A2 A

AN

A

multiplication

> — Q

commutative;
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(4) Every finite subset P C A is contained in some A,.
Then A is H-unital.

Proof. First a word of explanation about the A-inearity condition for ¢,.
The module A ® A has the right A-action via (¢’ ® a”) - a = a’ ® a”’a and the
left A-action via a - (¢’ ® a”) = aa’ ® a”. Then ¢,’s are assumed to be maps of
either right A-modules, if all A,’s are right A-modules, or of left A-modules, if
A/’s are left A-modules.

Let V be a k-module and a € B(A; V) be a Bar g-chain with coefficients
in V. Assume that A is a union of right A-submodules satisfying conditions (2),
(3) and (4). Then a € A; ® A%~V ® V, for some i €.#, and we have the
following diagram

B, (A;V) 2 B(A;V)

¢i,ll ¢i,q-1
N ! N

A,®A% VY L, A @A DoV

where ¢, , = ¢; ® id gew-vgy and ¢, ,_; = ¢; ® id sew-2gy. One easily verifies,
using conditions (1) and (3), that « = b"0 ¢, (@) + ¢, ,_; ° b'(a).

Assume now that a is a cycle, i.e. b'(a) = 0 in B, (A; V). Then, in view
of condition (2), b'(a) = Oalsoin A; ® A®“"? ® V; hence a = b’o ¢, (a), i.e.
a is a boundary and the complex By(A; V) is acyclic.

If A, instead, is a union of left A-submodules satisfying conditions (2)-(4),
we set
¢=(—1) " Vidjewn ® ¢, ®idy and ¢, ,_; = (—1)7idew-» ® ¢; ® idy.

a

4.2. Remark. Condition (2) of Proposition 4.1 is in fact too strong. All we
need is that the mapping ¢, ,_;: A, ® A®“~? ® V — B (A; V) vanish on

Ker{ j, ® id ou-2ey: A; ® A2 @ V> B, (A;V)},

where j; denotes the natural inclusion A; < A, or, in other words, that ¢
pass to the image of A, ® A®°“"® ® V in B, _|(A; V).

This is so, for example, if each ¢ A, > A ® A admits an extension to a
k-module map A - A ® A (we do not require that this extension continue to
satisfy the conditions imposed on ¢,).

i,q—1

4.3. CoroLLARY. Let A be a left or right ideal in a unital algebra B which
is contained in no proper two-sided ideal. Then A is H-unital.



EXCISION IN CYCLIC HOMOLOGY 609

Proof. Let A be, say, a left ideal. The condition on A means that A - B = B,
ie. that 1 = X7_,a’b” for certain n €N, " € A and b’ €B; v=1,...,n.
Define the right A-module map ¢: A > A ® A by setting a = X ,a” ® b’a. It
remains to apply Proposition 4.1. O

4.4. CoroLLARY. Every left and every right ideal in a simple algebra with
unit is H-unital.

This follows immediately from the previous corollary.

4.5. CorROLLARY. Assume that in an algebra A every finite subset has a
common left (respectively, right) unit. Then A is H-unital.

Proof. let # be the set of finite subsets of A, and for each i =
{a',...,a"} € S, let A, =a’A + --- +a"A be the corresponding right A-sub-
module If e, is the corresponding left unit, we set ¢, = qb,[ 4, Where
é: A > A ® A is defined as a — ¢, ® a. In general, A, C A neednotbepure
The conclusion of Proposition 4.1 still applies, however (cf. Remark 4.2).

4.6. CoroLLaRY. The Z-algebra Cg,, (X) of C*-functions with compact
support on a C®-manifold X is H-unital. O
The algebra C3,, (X) satisfies the hypothesis of the previous corollary.

4.7. Examples. (1) Let 2¥%(X) denote the algebra of differential operators
on a regular affine algebraic variety X over a field K. It is a simple ring (the fact
well-known in characteristic zero and proved in positive characteristic by S. P.
Smith, cf. [42, Prop. 3.4]; we take an algebraic variety to be irreducible by
definition). Therefore, according to Corollary 4.4, every one-sided ideal in
2% 8(X), treated as a k-algebra over an arbitrary subring k C K, is H-unital.

(2) Let S be a semigroup satisfying the following two conditions:

(a) For every s € S the left (respectively, right) multiplication by s
defines an injective mapping S — S;

(b) Every finite subset = C S is contained in a certain cychc right
ideal sS (respectively, cyclic left ideal Ss).
Then the semigroup ring A = Z[S] satisfies the assumption of Proposition 4.1
(with k= Z); it is free over Z, the ¢: so — s ® ¢ define the required
mappings ¢: sA > A ® A and every finite subset # C A is contained in
some sA.

An interesting example of a semigroup satisfying conditions (a) and (b)
above appeared recently in connection with conformal field theory. Graeme
Segal introduced in [39] the so called “semigroup of annuli” & whose elements
are triples (X, f, f;) where X is a Riemann surface with oriented boundary
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dX = —Y, U Y,, which is homeomorphic to S* X [0,1], and f: S! > Y, i =
1,2, are real-analytic parametrizations of the connected components of 9X. Two
triples (X, f,, f;) and (X', f{, ;') are identified if there exists a holomorphic
homeomorphism ¢: X — X’ such that £’ = @o f, i = 1,2 (cf. [39]); the semi-
group & is some sort of complexification of the group Diff , (S') of orientation
preserving diffeomorphisms of S'. In particular, & is H-unital; i.e. its semigroup
algebra Z[&] is H-unital.

There is a variant of the above with parametrizations of the boundary
components only of a certain class of smoothness. The resulting semigroup in
general, does not satisfy condition (b). Its semigroup algebra, however, is a direct
sum of (right) ideals satisfying the assumptions of Proposition 4 and, therefore, is
H-unital too.

In Segal’s theory & is the “identity” component of the semigroup of
morphisms between “simple” strings. Also this bigger semigroup, as well as the
“string” semi-category ¥ containing it (cf. [39]), are H-unital (in the latter case
this means, of course, that the corresponding algebra Z[ %] which generalizes the
semigroup algebra, is H-unital).

(3) Here is another example related to semigroups. Let us fix an integer
I > 2 and let I denote the augmentation ideal of the algebra

k[, 677, ] = G k[t
n=0

(k is an arbitrary commutative ring). In I one recognizes easily the semigroup
algebra of the additive semigroup Z_ [l"']. The latter clearly satisfies the
conditions (a) and (b) mentioned in the previous example, hence I is H-unital.

Let J C I be the principal ideal ¢I. The quotient algebra A = I/J can
be thought of as the ‘“semigroup algebra of the semigroup with zero”
Z.17'/(Z. 17 0 {z> 1)) :

We will prove that A is H-unital, by refining the argument that was used to
prove Proposition 4.1.

Let a € B(A; V) be a Bar g-cycle over A with coefficients in a k-module
V. It can be represented as a finite sum

Yetm/l® - @t™/" @ v
C; v

of monomials with common n € N where ¢ € k, v € V and my,...,m, €
{1,2,...,1"}. Then also

my 1
Fo 1

Rt/ ... @t™/" @ v

Bi= Yt
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is a well-defined Bar ¢-chain and one clearly has
a=b(tV"" @ B) +tV"" @ b(B).
The boundary of B belongs to the k-submodule 2°C B, (A; V) spanned

by monomials

21 1

l—ﬂ - ln+l

£

@t/ @ . @trp/ ® v

(Proeeor Py € (L,2,...,1")), and (V"' @1 ® -+ @1)H(B) = b'(ax) = 0.
Since the multiplication by ¢/ ® 1® --- ®1 defines an injective map
Z — B,_,(A; V), we obtain thus that b'(8) = 0 and a is a boundary

a=b(t""" & B).

This proves that A is H-unital.

The above example demonstrates that the algebraic properties of H-unital
algebras may be very different from those of unital ones. Every element in A
is nilpotent (in particular, the only idempotent in A is 0) and Ann(A) =
{a € AlaA = Aa = 0} is not zero:'

Ann(A) =k - ¢.

In the case when k is a field, A is a maximal ideal in the local ring A and
the latter is a union of artinian rings.

(4) Let g be a Lie k-algebra. The augmentation ideal £ g of its enveloping
algebra Ug is H-unital precisely in the case when g is acyclic; i.e. Hy(g; k) = 0,
for * > 0.

Example. g = gl (A,) where A_ is the Weyl algebra in infinitely many

variables k(py, py,...; q1, Gy, ... ), [P p;] = [a:, q;1 = 0, [p;, q;] = §;;, over a
field of characteristic zero [14].

Similarly, the augmentation ideal I of the group algebra k[G] is H-unital
precisely in the case when the group G is k-acyclic; i.e. Ho(G; k) = 0, for
* > (.

5. Locally convex algebras

Let o be a locally convex k-algebra (k=R or C), i.e. a locally convex
vector space (not necessarily complete), such that the multiplication &/ X &/ —> &/
is separately continuous. Let us consider the following multiple factorization

""This answers a question by Christian Kassel.
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property:

(F) Foreveryn=1,2,... and every (a,...,a") € & °®" there exist such
z € and (x%,...,x") EL®" that

z-(x',...,2") = (d,...,a") and
(x%...,x") € - (a',..., a").

(the horizontal bar denotes the topological closure in %/ ®"). The corresponding
property of right factorization will be denoted (F°).

5.1. PropositioN. Let o/ be a locally convex algebra and B be an arbitrary
unital k-algebra (k = R or C). Assume that o/ satisfies condition (F) or (F°)
above. Then the algebra </ ®, B is H-unital (as an abstract k-algebra).

Proof. Let us equip B with the strongest locally convex topology, i.e. the

topology of the inductive limit lim B, taken over all finite-dimensional linear
B,cB

subspaces B, C B. With respect to this inductive topology every linear map into

a locally convex vector space is automatically continuous. In particular, B
becomes a locally convex algebra.

We shall consider the algebraic tensor products (& ® B)®9, g = 1,2,...,
with their strongest locally convex and “compatible-with-the-structure-of-tensor-
product” (in the sense of Grothendieck [17, 1.3.3]) topologies. With respect to
them the boundary maps b’: (&/® B)®? - (&/® B)®@~D become continuous.

Let a =X7_(a] ® b)) ® --- ®(a} ® b)) be a g-chain. Assume that =/
has the property of left factorization (F). There exist, thus, such z, x!,..., x" € &

that a] = zx” (v = 1,...,n) and
B=2 (x®b})®(ay®b;)® --- ®(a’® b)) €/ ain(¥® B)®.

v=1
In particular, by the continuity and «/-linearity of the boundary map, b’(8) = 0
if a is a cycle. Since in general, as one verifies easily, a = b'((z ® 1) ® B) +
(z® 13) ® b'(B), we obtain a representation of every g-cycle as an explicit
boundary.

If o/, instead, satisfies (F°) we use a presentation of a as b'(y ® (y ® 1))

+ b'(y) ® (y ® 1;) where

y=(-1D)""Y(ateb)® - &(a;_®h_ ) ® (v &b

r=1

and a}, = wy(r=1,...,n). O

5.2. Remark. The gain in generality in Proposition 5.1 over the special case
B =k is only apparent. If «/,,..., o/ are locally convex algebras, their

m
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algebraic tensor product &7, ®, - - ® 2/, equipped with the projective tensor
product topology is again locally convex with separately continuous multiplica-
tion. If all the ;’s possess the property (F) (respectively, property (F°)), then
also &, ®, --- ® &, possesses the property (F) (respectively, property (F°)).

6. Ideals of flat C*-functions

Given a closed subset Y in a smooth manifold X we shall denote by
C*®(X,Y) the algebra of C*-functions flat (i.e. vanishing with all derivatives)
on Y. Elements of the quotient-algebra CP(X) = C(X)/C*=(X,Y) will
then be called Whitney C*-functions on Y. As the correspondence U —
C(U)/CU, Y N U) defines a (soft) sheaf, the notion of “Whitney C*-func-
tion” is local. By using local coordinates and Whitney’s extension theorem (cf.
[29, Thm. I.3.2 and Prop. 1.5.3]), we can view elements of CP(X) locally as
classical “C®-functions on Y in the sense of Whitney” (cf. [29, 1.2.3 and L5]).

Finally, if Z C Y is a closed subset we shall introduce also the algebra
CH(X, Z) = Ker(CP(X) - CP(X)) of “Whitney C*-functions on Y~ which
are flat on Z.

Examples. For Y = IntY, CH(X) = C*(Y) where C*(Y) has the usual
sense (C*-functions on Int Y admitting a C*-extension in a neighborhood of Y).
For Y = {x,} a point, C{(X) = £ (the algebra of co-jets at x,).

6.1. Tueorem. The algebra CY(X, Z) is H-unital and its “discrete” cyclic
homology fits into the following two long exact sequences
(24) +++ = HC,,|(C5(X)) - HC(CF(X, Z)) - HC,(C3(X))
- HC(CF(X)) > - - ‘
and
e5) - HCq+1(C§,°(X, Z)) - HCq(C°°(X, Y)) » HC,(C™(X, Z))
- HCq(Ci‘?(X, Z) > ...

There are also similar exact sequences in Hochschild homology.

6.2. CoroLLARY. Let Z, and Z, be two closed subsets of X which are
either disjoint or satisfy the so called Condition (A) (cf. [29, Thm. 1.5.5], also
called Yojasiewicz’s Condition). Then there is the following Mayer-Vietoris long
exact sequence in cyclic homology

(26) co+ = HC,, |(CZ 4(X)) > HC,(CF,,(X))
— HC,(C$(X)) ® HC,(CH(X)) - - -

and a similar exact sequence in Hochschild homology.
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Proof. Given a pair of closed subsets Z,, Z, € X with Z, N Z, # &, the
square

CZuz(X) — CZ(X)
(27) l |
CH(X) — € 2(X)

is Cartesian if and only if the subsets Z, and Z, satisfy the condition (A) (S.
Y.ojasiewicz, cf. [29, Thm. 1.5.5]). O

6.3. CoroLLARY. The algebra S (RY) of C*®-functions of fast decay is
H-unital and its “discrete” cyclic homology is included into the long exact
sequence

(28) - - HCqH(k[[ul,...,ud]]) - HC,(#(R%)) - HC,(C=(5%))
— HC,(k[[u,...,u]]) - ---.

There is a similar exact sequence in Hochschild homology (k=R or C;

u', ..., u? denote local parameters at 0 € S = R% U {0)). o

Proof of Theorem 6.1. Let us first consider the commutative diagram

(l) 0
0 —>C°°(X,Y)—>C°°(3<,Z) ------ > CH(X,Z) 0
(29) C™X) = C(X)

0 —CP(X,Z) — CHX) — CPX) — 0

~ v

0 0

The exactness of columns implies that CP(X) — CZ(X) is surjective (hence
the lowest row is exact too). As a result the composite homomorphism C*(X, Z)
— CP(X) identifies C{(X, Z) with the quotient algebra C*(X, Z)/C=(X,Y).
In view of Corollary 3.4, the question reduces then to proving that C*(X, Z) is
H-unital for an arbitrary closed subset Z C X.

Let %= {%,}, (i=1,...,m; a €F), be a locally finite family of open
pre-compact domains of local coordinates %;, — R? such that U, , %,, > X\ Z
and %,, N %z = &, for every i and a # B. We may consider only %, s with
U, NX\Z+* 2.
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For such a family, every compact set K € X has a non-empty intersection
with not more than finitely many %,’s. Finally, we choose an arbitrary partition
of unity { ¢,,},,onU;, %,, satisfying W, := supp ¢,, C %,,,.

Let y =X0_,f ® --- ®f) € B(C*(X, Z)) be an arbitrary Bar g-chain
over C*(X, Z). By using local coordinates we may view W, N X\ Z as a
compact subset of R? and ¢, f as an element of C*(R?, £, ) where 2,
R\ [(Int W, N (X\ Z))]

If 2 R? is an arbitrary closed subset with a pre-compact complement, it
follows from a theorem of J. Voigt [46, Thm. 3.4] that the algebra C*(R%, 2) has
the factorization property (F). There exist, therefore, such h,, and g’ €
C>(R?, Z,,) that ¢, f’ = h,,g}, and supp g, = supp(¢,.f;’)- Both h,, and g,
may be viewed as elements of C*(X, Z) with supports in W, N X \ Z. Notice
that, in view of the properties of %, each ¢, =X¥,c ,9;, is a well-defined
element of C*(U, , %, ,), each hy =%, c zh,, and g{;, = ¥, c , 8}, is a well-
defined element of C*(X, Z) and one has

e = heglys (i=1,....m;v=1,...,n).

If we put Yoy = X 1<p(,)f1 ®f, ® --- ®f and

b = Z gn®fK® - 8f,
we shall have ¢ = Yoy + ‘*":l’(m) and Yoy = b (h(,) ® ¢y + h(,) ® b'(¢)-
It remains to prove that b (¢(,)) , i =1,..., m, whenever ¢ is a cycle.

Let us view each h,, ® 1 ® --- ®1 and b’(Z:}:lg;’a ®fy ® - ®f)asa
C>®function on X X -+ XX (g — 1 times). Their product, being equal to
(9, ® 1 ® --- ®1) - b'({), vanishes. On the other hand

n
supp(h,, ® 1 ® - ®1) Dsupp b’| Y. g, ® fy ® - -~ f)
v=1
hence b'(X)_,gi,®fy ® -~ ®f/)=0 and ¢ is equal to the boundary
b,(zzr':lh(i) ® ¢(i))~ O

7. Ideals of flat differential operators

Let 2(X) denote the algebra of C* differential operators on X. For a
closed set Y € X we define “ Whitney differential operators” on Y as 9,(X) =
CH(X) Bpw(xy D(X); similarly defined are Whitney differential operators flat
on a closed subset Z C Y, 9(X, Z) = CY(X, Z) @iy D(X). It is clear that
Whitney differential operators can be composed as usual.
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Notice that tensoring by 2(X) the corresponding rows of (29) (2(X) is
projective as a left C*(X)-module) yields the following two short exact se-
quences:

(30) 0-92,(X,Z) > 24(X) > 2,X) >0 and
(31) 0-92(X,Y)->2(X,Z) > 2,X,Z) > 0.
In particular, 2,(X, Z) is an ideal in 9,(X).

7.1. TueoreM. The algebra 2,(X, Z) is H-unital and its “discrete” cyclic
homology is included in the following two long exact sequences

(32) +++ > HC,,((9,(X)) > HC,(2,(X, Z)) - HC,(2,(X))
— HC(2,(X)) - --- and
(33) .-+ > HC,,(2,(X,Z)) > HC,(2(X,Y)) - HC(2(X, Z))

— HC(2y(X,Z)) — -
There are similar long exact sequences in Hochschild homology.

7.2. CoroLLARY. Let Z, and Z, be a pair of closed subsets of X which are
either disjoint or satisfy the Condition (A) (cf. §6). Then there is the following
Mayer-Vietoris exact sequence in “discrete” cyclic homology

(34) e HCq+1(gzanZ(X)) - HCq(c@zluzz(X))
- HC,(2,(X)) ® HC(2,(X)) - -
and a similar long exact sequence in Hochschild homology.

This follows from Theorem 7.1 and the observation that the square
Qz,uzz(x) - QZZ(X)

l l

@zl(x) - gzlnzz(x)

is Cartesian precisely when (27) is Cartesian.

Before proving Theorem 7.1 we will need the following variant of Theorem
6.1. Let m: V > X be a vector bundle on X and O(V; Z) = &7 ,0(V; Z)(p)
be the corresponding graded algebra of C*-functions on V which are polynomial
of finite order along fibres of # and are flat on 77 Y(Z).

7.3. ProprosiTiON. The algebra O(V; Z) is H-unital.

Proof. Embed V as a direct summand into a trivial bundle W = X x R¥
(by using partitions of unity similar to those used in the proof of Theorem 6.1,
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this can be achieved with N < m - rkV'). The existence of the natural mappings
V > W and W — V implies then that HB,(O(V; Z)) is a direct summand in
HB(C*(X,Z) ® k[&,,...,&x]). The proof that C*(X, Z) ® k[§,,..., &y] is
H-unital parallels the proof of Theorem 6.1. O

Proof of Theorem 7.1. In view of (31) and of Corollary 3.4, the question
reduces to proving H-unitality of 2(X, Z) for an arbitrary closed subset Z C X.
Let E,’;q = HB,, (2(X, Z)) be the spectral sequence associated with the
filtration by the order of operator. Its E'-term is equal to HB.(O(T*X; Z))
which vanishes in view of Proposition 7.3.

Long exact sequences (32) and (33) are associated with extensions (30) and

(31) respectively. O

7.4. Remark. Similarities between ideals of flat functions and of flat
differential operators which are suggested by Theorems 6.1 and 7.1 respectively
are, in fact, limited only to the case of the flatness of infinite order. Let
Cony(X, Z) denote the ideal of C*-functions vanishing up to orderm (1 < m < o)
on a “thin” closed subset Z C X (a subset Z is called thin if, for every z € Z,
there are a neighborhood V 3 z and a function f € C*(V) vanishingon ZN V
whose co-jet at z is not zero). The algebra Cf, (X, Z) is then manifestly
non-H-unital: (C(X, Z))* € C3,.(X, Z) & C%(X, Z). On the other hand the
least two-sided ideal in £2(X) which contains the corresponding (left) ideal
Dmy X, Z) of differential operators whose coefficients are m-flat on a (compact)
thin Z C X is 9(X) itself. This implies, in view of Corollary 4.3, that &, (X, Z)
is H-unital.

8. Locally multiplicatively-convex algebras with approximate units

Recall that a locally convex algebra 7 is said to be locally multiplica-
tively-convex (locally m-convex or, simply, m-convex) if &/ has a basis of
absolutely convex open neighborhoods of the origin { %} with the property that
U, U, C U, ie. o is topologized by a system of semi-norms { p,} satisfying

Pla,a5) < pla;)pla,),

for all a, a, € & and all a (cf. [30]). It is almost immediate from this definition
that a complete locally m-convex algebra is a projective limit of Banach algebras,
and vice versa [30, Thm. 5.1]. A locally m-convex algebra whose topology is
Fréchet will be called a Fréchet m-convex algebra.

A net {e, . ,} in & (indexed by elements of some directed set A) is called
a uniformly bounded left approximate unit (u.bla.w) if, for every a € &,
exa — a and sup, , p(e,) < co. The right approximate unit is similarly defined.
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8.1. THEOREM. Every Fréchet m-convex algebra with left or right ub.a.u. is
H-unital as an abstract k-algebra (k = R or C).

Proof. Every Fréchet m-convex algebra with left (respectively, right) u.b.a.u.
has the property (F) (respectively, property (F°)). This follows immediately from
the extension of the Cohen-Hewitt factorization theorem (established originally
for Banach algebras and Banach modules) to Fréchet m-convex algebras; cf. [31],
[8], [44, Thm. 2.1], [47, Cor. 5]. It remains then to apply Proposition 5.1. O

8.2. CoroLLARY (cf. [54, Prop. 5]). Every Banach algebra with left or right
b.a.u. is H-unital as an abstract k-algebra (k = R or C). O

Since every C*-algebra has a two-sided b.a.u. ([40, Lemma 1.1]) we obtain
also:

8.3. CoroLLARY (cf. [54, Cor. 5]). Every C*-algebra is H-unital as an
abstract k-algebra (k = R or C). O

8.4. Examples. (1) Let G be a locally compact group. The group algebra
LY(G), which is also a Banach #*-algebra, has a unit only if G is a discrete group.
However, it has always a two-sided bounded approximate unit { e, } , . , Where A
is the directed set of compact neighborhoods of the group identity and e,
denotes the characteristic function of A € A normalized by dividing it by the
volume of A. Therefore LY G) is, in view of Corollary 8.2, H-unital.

Let H C G be a closed normal subgroup. Integration along fibres of the
projection G - G/H is then a surjective homomorphism of Banach algebras
T,: LXG) - LY(G/H). Its kernel is usually denoted #XG, H). According to
[36, p. 883] the ideal #£Y(G, H) has a right b.a.u. if H is amenable (i.e. there
exists a left-invariant mean on L*(H)). Therefore, as a corollary of Theorem 3.1
and Corollary 8.2, we arrive at the following conclusion:

For every locally compact group G and its closed normal amenable sub-
group H integration along fibres of the projection G — G/H induces the long
exact sequence in “discrete” cyclic homology

(85) .-+ —HC,,\(L{H)) —HC,(#XG, H)) — HC,(LYG))
i B, (L(H) — -
and a similar long exact sequence in Hochschild homology.

For H= G, #YG,G) is the augmentation ideal corresponding to the
augmentation [;: LYG) — C. It has a right b.a.u. if and only if G is amenable
(cf. [36, p. 883)).



EXCISION IN CYCLIC HOMOLOGY 619

On an equal footing with LYG) in harmonic analysis occur the group
algebras with weights L' (G), alias Beurling algebras (introduced by A. Beurling
[3, §2] in the special case G = R"). The Beurling algebra L!(G) consists of
functions such that fiv € LY G) where w is a weight function satisfying the
following three conditions:

(I) w is a real-valued measurable and locally bounded function on G;
(II) For every g,, g, € G, one has w(g,8,) < w(g,)w(8g,);

) w > L

Equipped with the norm ||f||, ,, = [|f(g)|w(g) dg the convolution algebra
L!(G) is a Banach algebra with a b.a.u. (cf. [35, Ch. 3, §7.1-2]) and hence is
H-unital.

If w, <w, < --- is an increasing sequence of weight functions which is
uniformly bounded on some neighborhood of the group identity, the limit
LYG;{w,}) = N 1Lfv"(G) is then an example of a Fréchet m-convex algebra
with a wb.a.u. (cf. [31]). In particular, LY G; {w,}) is then H-unital.

(2) Harmonic analysis on locally compact groups provides also interesting
examples of non-H-unital algebras. There is an important class of Banach
algebras, realized as dense (left) G-invariant ideals in LYG), called Segal
algebras (cf. [35, V1.2], [37], [4], [15], [49]). Here belong, e.g.

(a) Wiener algebra W(G) defined, for a non-discrete locally compact
abelian group G with a co-compact discrete subgroup I', as the convolution
algebra of continuous functions on G satistying

Ifllw = sup Y. sup|flgxy)| < oo
g€CG yer €K

(K c G is a compact subset such that KI" = G; [35, VI.2.1]). In the special case
of G = R and T" = Z this algebra was introduced by N. Wiener in his work on
Tauberian theorems (this is his class M, of [50, §3; pp. 21-22] and [51, §10,
p- 73));

(b) Algebra LYG) N LP(G), 1 < p < oo, introduced by K. Iwasawa
in the early 1940’s [19] in his work on representation theory.

Proper, i.e. distinct from LYG), Segal algebras are generally believed to
have the property .7+ .22 (this is actually proved in a number of cases,
including Wiener algebra and LY(G) N L?(G), for G compact or locally com-
pact abelian, cf. [49, 8.10] and [13]). In particular, they cannot be H-unital. An
interesting circumstance is that all Segal algebras possess (left) approximate
units, of course, unbounded (cf. [37, §8]).

Closely related examples of convolution Banach algebras with the property
&+ /2 (and therefore not H-unital) include C*(S'), 1 < k < oo, the algebra
BV(S') of continuous functions with bounded total variation, the algebra
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Lip,(§8'), 0 < & < 1, of Lipschitz functions [49, 8.12] and the convolution Hardy
algebra HY(S!) = { f& LY(SY)|fin) = 0, n < 0} (cf. [49, 8.16] and [13, 2.8]).
(3) Quite challenging seems to be the question of H-unitality of the algebra
of compact operators #(E) on an arbitrary Banach space E. If E has the
bounded approximation property (BAP, cf. [24, 43.8]), X#(E) has, almost by
definition, a left b.a.u. If the strong dual E’ has a basis, #(E) has even a
two-sided b.a.u. [20]. In particular, »#(E) is H-unital for Banach spaces with
BAP. Does X'(E), for an arbitrary E, possess the factorization property (F) or
(F°) above? Is J'(E), for an arbitrary E, H-unital? We have to leave these
questions open.
(4) Let Qr?k(Rd) 0 < k < o0, denote the closure of ngmp(Rd) in the space
BHR?) of k-differentiable functions on R¢ which are bounded with all deriva-

tives. It is easy to see that
Z#*R) = {fe CHR")|Vp < o <9 °f vanishes at oo}

and the system of norms P{f) = Loc o<1/l sup,[3°f| makes %’k(R") a
Banach algebra, for k < oo, and a Fréchet m-convex algebra, for m = o0. The
space #*R?) and its dual, denoted 2/(R) and called the space of “integrable”
distributions, were introduced by L. Schwartz (cf. [38, VL8)).

The sequence e(x) = e W/ j=1,2,..., is easily seen to be a wb.a.u.
in each %’k(Rd) 0 < k < oo (cf. e.g. [46, Prop. 1 6]). In particular, Theorem 8.1
implies that all Z%R?), 0 < k < 0, are H-unital.

8.5. Remarks. (1) It is worth noting that the algebras discussed in Sections
6-8 constitute two essentially disjoint classes of algebras to which Proposition
5.1 applies. All the algebras of Sections 6 and 7 are nuclear, and any quasi-com-
plete (i.e. every bounded Cauchy net converges) nuclear space E is semi-
reflexive (i.e. the canonical inclusion E < E” is bijective); cf. [32, Prop. 4.4.11].
However, a locally convex and semi-reflexive algebra &/ which has no (left) unit
cannot have a bounded approximate one (not even mentioning uniformly
bounded). By the standard criterion of semi-reflexivity, cf. [24, 23.3(1)], every
bounded net {e,}, <, in a semi-reflexive &/ has a sub-net weakly converging to
a certain e € &5 if {e,},, is a (left) b.a.u, e must be then a genuine (left)
unit. The above argument which I quote in a slightly stronger form after [46,
p- 335] shows that the use of bounded approximate units is limited necessarily to
non-semi-reflexive algebras.

(2) In [53] (cf. also [54]) we will establish the relevant “continuous”
versions of Theorems 6.1, 7.1 and 8.1 and derive continuous analogs of the
corresponding long exact sequences (see (24)—(26), (28), (32)—(34) and (35)
above).
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9. H-unitary modules

Let A be an algebra over an arbitrary commutative ring k. We will say that
a left A-module M is homologically unitary ( H-unitary) if

(a) A is H-unital;

(b) For every k-module V, the complex (B4(A; M ® V), b’) which is
defined as follows

B; =0 and B(;=A®(q'1)®M® V, g=>1,

and
b(a,® --- ®a, ; ®@m® v)
q-2
=Y (-1)""¢,® - ®aa,,® - ®a_®m®v
i=1
+(-1)""a,® - ®a, ,®a, m®v,
is acyclic.

In general, the homology of Bi(A; M ® V) will be denoted HBi(A;
M ® V). If M is a unitary module over an algebra with unit, the complex
BL(A,M) is, up to a shift in dimension, the standard (augmented) Bar resolution
of M and has a canonical contracting homotopy (cf. §2).

For A flat over k, one has HB/(A; M ® V) = Torf_ (k,M® V), g =0,
while the equality HB(A; M ® V) = Torf,‘f’lk)(k, M ® V), g > 0, holds quite
generally, with no restrictions on A (cf. §2, the last paragraph). If both A and M
are kflat, the condition (b) above reduces to the single requirement that
Tori(k, M) = 0.

Since HB4(A; A ® V) = HB,(A; V), an H-unital algebra A is H-unitary
as a left module over itself.

The definition of H-unitarity for right A-modules is similar. In that case
condition (b) is replaced by the requirement of acyclicity of the suitably modified
complexes (B, b’):

B;=0 and B;=Ve®M®A® Y, g>1,
and
bV(o®@m®a, ® - ®a,_,)
=0v@®ma; ®a,® - Ba,_,
q—2 )
- Y (-1)"'vem®a, ® - ®aa,, ,® - ®a

i
i=1

for all k-modules V.
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9.1. LEmMA. Let M be an A-bimodule which is either left or right H-unitary.
Then the semi-direct product A X M is H-unital.

Proof. We will write elements of the Bar complex By(A X M; V), where V
denotes an arbitrary k-module, as the sums of monomials r, ® - - - ®r, ® v with
r,€ Aor M(j=1,..., q). Then the number of M-entries defines the decompo-
sition of B4(A X M; V) into the direct sum of subcomplexes

By(AX M;V) = é B,(1)

where
B(l) = linspan{r, ® --- ®r, ® v|precisely [ r,’s belongto M }.
Assuming M to be H-unitary as a left A-module we will filter each
subcomplex B,(I), I > 0, by

(36) Fpo+q(l)=linspan{rl®--~®rp+q®v€B (l)lrjeA

forqu—l}.

p+aq

The associated s.s. E,’;q = H , (By(l)) is located in the region (p > 0,

ptq
g = 1). Its E%term is given by:
9.2. LemMa. For every p > 0 and | > 0, there is a canonical isomorphism
(37) (Eps(1),d°) = By(As M) @ B, (1 - D[I - 1]

where the complex Bi(A; M) is formed with respect to the left A-module
structure on M and B, ,_ (Il — 1)[I — 1] is viewed as a trivial complex concen-
trated in dimension | — 1. a

The complex on the right-hand side of (37) is acyclic, since M is assumed to
be left H-unitary. Hence all B,(1), [ > 0, are acyclic. Finally, B,(0) = B,(A;V)
is acyclic because A is H-unital.

If M happens to be H-unitary as a right A-module, one can use the filtration
opposite to (36)

E°B,. (1) = h'nspan{v ®rn®: - ®r,, € Bp+q(l)'rj €Aforj>p+1+ 1}
or one can reduce that case formally to the previous one by treating M as an
A°-bimodule (A° denotes the opposite algebra). O

9.3. ProrosiTION. Let I > R - A be a pure extension of an H-unital
algebra A by an ideal I with I* = 0. If I is H-unitary with respect to either left
or right A-module structures, the algebra R is H-unital.
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Proof. The number of I-entries defines the filtration on B,(R; V):

E,B,. (R;V) =linspan{r, ® --- ®r,, ® v|atleast ¢ r,’sbelongto I}

p-ptq j

(cf. (16)). The associated s.s. Eﬁq = H,, (R;V) is a ss. of the first quadrant
and its E'-term clearly equals B,(A X I; V). Hence, according to Lemma 9.1,
EZ, = 0 and the assertion follows. a

9.4. Assume that for a given k-algebra S

(a) there exists an H-unital subalgebra A C S,

(b) the associated extension of k-modules 0 - A - S - S/A — 0 is pure
(see Appendix A).

The latter condition is reminiscent of the situation encountered in Section 3.

9.5. THEOREM. For A and S as above, S is H-unital provided S/A is
H-unitary as a left or as a right A-module.

Proof. For a given k-module V, we will filter B,(S; V) by

G,B

L 1q(S;V) = linspan{s, ® - - ®s, ., ® v]atleast g sj’sbelongtoA}.

The associated graded complex naturally identifies (Lemma A.6 in Ap-
pendix A) with the Bar complex of the semi-direct product A X M,

(38) Gry Bu(S; V) = B{(AX M; V),

where M = S/A and M? = 0. In view of Lemma 9.1 and the hypothesis, the
right-hand side of (38) is acyclic. O

9.6. CoroLLARY. Let B be a k-algebra with unit such that the structural
homomorphism k — B is injective and k - 1 C B is a pure k-submodule. Then,
for every H-unital k-algebra A, the algebra A ® B is H-unital.

Proof. Apply Theorem9.5to S=A ® Band A=A ® k- L m]

9.7. CoroLLARY. In the case of the ground ring k being a field, tensor
product defines a bifunctor

® : { H-unital k-algebras} X { unital k-algebras} — { H-unital k-algebras }. O
9.8. CoroLLARY (Morita invariance of Hochschild and cyclic homology on

the category of H-unital algebras). Let A be an H-unital algebra. Then, for
every n=1,2,..., the matrix algebra M (A) is H-unital and the natural
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inclusion
A->M(A), a~

induces isomorphisms
(39) H.(A, A) - H*(Mn(A)’ M,(A)) and HC,(A) > HC*(Mn(A))'

Proof. The H-unitality of M,(A) follows from Corollary 9.6. In order to
prove (39), let us consider the obvious morphism of split extensions

A > A — &

[oror

M, (A)>— M, (A)—> M, (k)

(A denotes, as usual, the result of adjoining the unit to A).
Since M,(A) is H-unital, (40) induces the following commutative diagram
with exact rows (cf. Theorem 3.1):

0— H, (A, A) — H. (A, A) — H,(k, k) -—0

J L J
0—> Hy(M,(A), M,(A)) — Hy(M(A), M (A)) — Hy(M,(k), M,(k))—0
whose middle and right vertical arrows are isomorphisms by the classical Morita

invariance of the Hochschild homology for algebras with unit (cf. [10, Part A,
Thm. 3.4]). O

Neither Hochschild nor cyclic homology remain Morita invariant for general
algebras without unit; e.g. Hy(A, A) # Hy(M,(A), M (A)), n> 2, if A # A%

9.9. Assume that an algebra A is embedded into an algebra with unit R.
Let

§(R,A)={(rn.n) ERXR|AnCA,bACA and nrp=1).
The set &(R, A) has an obvious monoid structure
(r, 1) - (51, 85) = (1181, $o15)
with (1,1) as its neutral element and it acts naturally on the algebra A via
(41) ¢\ %) a > nar, ((r, 1) € &(R, A)).

9.10. CoroLLARY (cf. [7, Prop. I1.5.1]). Let A be an H-unital algebra and R
an arbitrary algebra with unit containing A. The induced actions of the monoid
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&(R, A) on H,(A, A) and on HC,(A) are trivial; i.e. each ${™ acts as the
identity map.

Proof. The two natural embeddings of &(R, A) into &(M,(R), M,(A))
r, 0} (n, O 1 0y /1 O
N e

are conjugated. Under the first embedding, &(R, A) acts on (8 g) C My(A) as
in (41), under the second one as id,. It follows from Corollary 9.8 that the
induced actions on H,(A, A) (respectively, on HC,(A)) are conjugated. O

10. The cone and the suspension functors

The following construction is a slight modification of the original construc-
tion due to J.B. Wagoner [48].

For an algebra A (with or without unit), let TA denote the algebra of
matrices (aij), 1 < i, j < oo, with entries from A, such that

(D) the set {a;51 <14, j < 0} C A is finite,

(II) the number of non-zero entries in each row and each column is finite.
The algebra I'A will be referred to as the cone of A. It contains M_(A) =
IE‘_,M .(A) as a two-sided ideal; hence the functorial extension

(42) M_(A) »TA » ZA

where the quotient algebra XA = T'A /M, (A) will be referred to as the suspen-
sion of A.
Since (42) is the inductive limit of k-split short exact sequences

M(A) —TA —> TA/M (A)

| II l

M,.(A) —TA —TA/M,, (A)

it is pure (in the sense of §3).

10.1. THEOREM. Let A be an H-unital algebra over an arbitrary commuta-
tive ring k. Then

(a) The algebras TA and = A are H-unital.

(b) H(TA, TA) = HC,(TA) = 0.

(¢) There are canonical isomorphisms

(43) H,(SA,SA) = H,(A,A)[1] and HC,(ZA) = HC,(A) [1].
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None of the above remains valid for general algebras without unit; e.g.
H\(TA,TA) # 0if A # A%

Proof. (a) We will view A as a subalgebra of T'A via the diagonal embed-
ding a » (* ¢ . . ). Then T'A decomposes as an A-bimodule into the direct
sum I'A = A ® I\;A where [)A = {(a;;) € TAla,; = 0}. It is clear that T,A is
an inductive limit of free A-bimodules of finite type. In particular, if A is
H-unital, TjA is H-unitary (in the sense of §9) both as a left and as a right
A-module. Theorem 9.5 implies then that T'A is H-unital. By combining this with
Corollaries 9.8 and 3.4, we obtain the H-unitality of S A.

(b) Let us consider the following three maps TA — I'?A = I(TA),

)

o:a 0 (e €TA).

p:a— a , Yra—

and

. . (p1, p2)
The second one, ¥, can be written as a composite map TA 2P TA @

I'2A < T?A, such that ip, = o and ip, = ¢ where i: TA ® T'?A < T'2A denotes
the bloc-diagonal embedding

Since A is H-unital, it follows from Corollary 3.4 and Part (a) of the theorem that
HC,(TA ® T?A) = HC,(TA) ® HC,(T'?A) and hence

(44) Yy = 0y + Q.

Let us embed T'?A into the algebra I‘(f_z_ﬂ:) where TA denotes the result of
adjoining the unit to I'A. The monoid &(T(T'A), [?A) acts on I'*A via (41) and
one clearly has ¢ = ¢"v %% where (r,, ,) € &T(TA), I'?A) is given by

0
0 1 1 0
r = o 1 and 1, = 1
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Corollary 9.10 implies then that ¢, = ¥,. By combining this with (44) we
obtain:

(45) 04: HC,(TA) > HC,(T?A) is a zero map.

After a bijection Z, X Z, < Z, has been fixed one can view I'?A as being
embedded in M,(I'A) in such a way that

o

0

2 a 0
0 . € I'"A goesto (O 0

) € M,(TA),

i.e. that the composition with 6: TA — T'?A is the canonical stabilization map
TA - My(TA). According to Corollary 9.8, the latter induces an isomorphism
HC,(TA) > HC,(M,TA)). However, in view of (45) the same map is a zero
map. We conclude that HC,(I'A) =0

(c) Extension (42) is pure and M, (A) is H-unital (cf. Corollary 9.8). Thus
(42) induces, in view of Theorem 3.1, the long exact sequence

(46) .-+ = HC(TA) - HC,(ZA) 3 HC,_ (M_(A))
- HC, (TA) -

and a similar sequence in Hochschild homology. By combining (46) with the
already proven Part (b) of the theorem and with Corollary 9.8, we obtain the
canonical isomorphisms HC(SA) —5 HC, (M (A)) = HC,_(A), g € Z,

cf. (43), and the similar isomorphisms in Hochschlld homology. O

10.2. Remarks. (1) In Wagoner’s original definition of the cone functor [48]
the matrices (a;;) were not required to have entries belonging to a finite subset
of A (see Condltlon (I) above). Denote this “bigger” algebra by I'"A and let
SWA = TWA/M_(A). The extension

(47) M _(A)»TYA » 3VA

is still pure and Theorem 10.1 is valid for (47) (with the same proof) if A has a
unit. However, for general H-unital algebras, there is a potential trouble with the
H-unitality of TWA. This difficulty can be removed by considering instead the
pair of functors T?A := A ® Tk and A := A ® Wk = T*A/M_(A) (this
variant of Wagoner’s construction was considered e.g. by J.-L. Loday [26, 1.4.4]).
The H-unitality of TYA follows then from Corollary 9.6; the proof of the
remaining assertions of Theorem 10.1 is unchanged.

Another possibility is to reduce the H-unital case to the unital one by
considering (I'A) == T'YA and (SYA) = TYA/M_(A).
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(2) An alternative construction of the cone and the suspension functors was
proposed earlier by M. Karoubi (cf. e.g. [22, p. 269]). His cone algebra T'*A
consists of matrices satisfying Condition (I) above and the following stronger
version of Condition (II):

(II") The number of non-zero entries in every row and every column is
bounded.

This definition of T'*A, quoted by A. Connes in [7, p. 103], is equivalent to
the original definition of Karoubi.

Theorem 10.1 holds for T*A and =¥A := T*A /M_( A) with the same proof
(in the case: k = C and A has a unit, the acyclicity of I'*A was proved by A.
Connes [7, Cor. 11.6]).

(3) Let #(H) denote the algebra of finite rank operators on an infinite-
dimensional Hilbert space H and #(H) be the corresponding algebra of all
bounded linear operators. The latter contains #(H) as a two-sided ideal. For an
arbitrary H-unital C-algebra A,

(a) the algebra A ® #(H) is H-unital;

(b) the embedding A =+ A ® #(H), a = a ® p,, where p, is the
orthogonal projector onto the first basis vector ¢, € H, induces isomorphisms in
Hochschild and in cyclic homology;

(¢) A ® #X(H) is H-unital and acyclic.

Assertions (a) and (b) follow from the representation of #(H) as the
inductive limit _lﬂ EndV, with V running over all finite-dimensional linear

VcH
subspaces of H, and from Corollary 9.8. The H-unitality of A ® Z(H) follows
from Corollary 9.6. In order to prove that A ® £(H) is acyclic, one may
consider the short exact sequence

(48) 0 > H,(A®¥(H), A®%(H)) > H,(A®Z%(H), A ®%(H))
- H(Z(H), £(H)) - 0

associated with the split extension A ® Z(H) » A ® #(H) » #(H). The
middle and the right terms in (48) vanish in view of Proposition 5 of [55] and
Kimnneth’s formula in Hochschild homology.

Letting T#A == A ® #(H) and ZHA = A ® #(H)/%(H), one thus ob-
tains an alternative construction of the cone and the suspension functors, for
algebras over k = C, which possesses all the desired properties.

(4) Any of the above constructions of the cone and suspension functors T
and, respectively, = allows us to replace the relative Hochschild and cyclic
homology groups associated with an arbitrary algebra homomorphism f: A - B
by the corresponding absolute homology groups of the algebra with unit R’f
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defined by the Cartesian square
R'f—TB

Ll

~ 2f _
ZA—2B

(here f{a) = f(a) and f(1) = 1). If both A and B are H-unital, one can use
instead the H-unital algebra Rf defined by the Cartesian square

Rf— TB

L, b

=f
2A— 2B

11. Triangular matrix algebras

With an arbitrary (A — B)-bimodule M one can associate the correspond-
ing triangular matrix algebra

(49) T=(‘8 1‘;)={(g ’g)|aeA,meMandbeB}

with obvious addition and multiplication.

11.1. TueoreM. (a) Let us assume that M is H-unitary as a left A-module
or that it is H-unitary as a right B-module. Then the canonical (split) epimor-
phism T » A & B induces isomorphisms

H(T,T) > H,(A,A) ® H(B,B) and HC,(T)— HC,(A) & HC,(B).
(b) If, moreover, both A and B are H-unital, T is H-unital.

Proof. Without loss of generality, we can assume that M is H-unitary as a
left A-module. Let us consider the (split) projection T — B, (j 7)) = b. Its
kernel is the ideal of row vectors R = (‘8 1:)‘ ). As a k-algebra, R can be identified
with A X M, where M is viewed as an A-bimodule with the identically zero
right A-module structure (so that M is not a unitary A-bimodule even if A has a
unit). By Lemma 9.1 the ideal of row vectors is H-unital. Thus, in view of
Theorem 3.1, we have the (split) short exact sequence

0 > H(R,R) > H(T,T) > H,(B, B) - 0.

In order to prove Part (a) of the assertion, it suffices to show that the map
H,(A,A) - H,(R, R) induced by the natural inclusion A = R is an isomor-
phism.
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The standard Hochschild complex C,(R, R) splits into the direct sum
(50) C«(R,R)=C,(A,A) ® IG_BI C.(l)

where

C,(1) = linspan{r, ® - - - ®r,|precisely r,’s belong to M }.
We will equip each C,(!) with a filtration resembling (36)
EC,. (1) = linspan{r0®~-- ®r,,, € p+q(l)|r EA, ]<q—l}

The associated s.s. E" o) = H,, (Cy(1)) is located in the region (p > 0,
g >1—1)andits E° term is given by the following:

11.2. LEmma. For every p > 0 and 1 > 1, there is a canonical isomorphism
(51) (Epa(D), d°) = By(A; M) ® T(p, 1 - 1)[1 - 2]

where T(i, j) C (A & M)®C*1) denotes the homogeneous component of bi-
degree (i, j) (i is the number of A-entries, j the number of M-entries). O

Since M is supposed to be left H-unitary, the right-hand side of (51) has
no homology and, accordingly, all the complexes Cy(l), > 1, are acyclic. In
view of this, the embedding C,(A, A) = C.(R, R), cf. (50), is a quasi-iso-
morphism. Recall that both A and R are H-unital, and for H-unital algebras the
Hochschild homology is the homology of the standard complex C, (cf. §2).
Thus H,(A, A) = H,(R, R) is an isomorphism.

Part (b) of Theorem 10.1 follows from Corollary 3.4, applied to the
extension R » T - B, and from Lemma 9.1. O

For a given set » = (n,,..., n,) of d positive integers, let us consider the
corresponding bloc-triangular matrix algebra T,(A) consisting of n X n matrices
(n=n;+ --- +n,) of the format:

with entries in A (the unshaded region contains zeros).

11.3. CoroLLarY. Forevery v = (n,,..., n,), the triangular algebra T(A)
over an H-unital algebra A is H-unital itself and its homology is given by

(52) H,(T,(A),T,(A)) = Hy(A, A)®? and HC,(T(A)) = HC,(A)®9.
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Proof. The assertion follows immediately from Theorem 11.1 and Corollary
9.8 provided one demonstrates that, for every m > 0 and n > 0, the set of
(m X n)-matrices M,, (A) is H-unitary both as a left M, (A)- and a right
M, (A)-module.

Fix an arbitrary k-module V. One clearly has

By(M,(A); M,, (A) ® V) = B4(M,(A); M,, (A) ® V)°"

and By(M,(A); M,, (A) ® V) is a direct summand in B,(M,(A); V), hence
it is acyclic, according to Corollary 9.8. The case of the right M, (A)-module
structure can be treated similarly. The maps in (52) are induced by the canonical
projection

T(A) » M, (A)e® --- &M, (A). O

11.4. Remarks. (1) Theorem 11.1 and Corollary 11.3 constitute precise
additive analogues of the results known to hold in algebraic K-theory for
rings with unit. By a theorem of D. G. Quillen [33, Thm. 2'] the canonical map
K (T )) = K (&) & K, (&) is an isomorphism for an arbitrary ring with
unit 7. This result was extended to general triangular matrix rings like (49) by
R. K. Dennis and S. C. Geller (for K;, i < 2, [9]) and by A. J. Berrick and M. E.
Keating (for all K,’s, [2]).

(2) It is noteworthy that even if one is primarily interested in the case when
algebras have units and bimodules are unitary, the proof of Theorem 11.1 bears
on the ideas related to H-unitality. If, however, in addition to that one has
k O Q, Theorem 11.1 becomes almost trivial. Here is the relevant argument.

The Hochschild complex C,(T,T) decomposes into a direct sum of its
subcomplexes

C(T,T) = é Co(T, T)(1)

such that the adjoint action of the unit 1 € A on Cu(T,T)() is just the
multiplication by l. Here

each t; belongs to A, M or B

G (T.1T)(1) = hnspan{to ® Bt and precisely [ t;’s belongto M |

q

A suitable analog of the Cartan identity which holds in the Hochschild
complex (see Appendix B) implies then that the multiplication by [ on
Cy(T, T)(1) is null-homotopic. As k D Q, all C(T, T)(1) with [ > 0 are con-
tractible. It remains to notice that C(T,T)(0) = C4x(A & B, A & B) and that
the latter complex is quasi-isomorphic to C4(A, A) @ C.(B, B).
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Appendices

A. The hyper-cube lemma

For the better part of this appendix, k is an arbitrary (not necessarily
commutative) ring. Assume that there is given a collection of (left) k-modules
T(iy,....4) (i,=0,1or2; »=1,...,1; | is a certain fixed positive integer)
together with short exact sequences

(53) T(il,...,iu_l,O,i"H,...,i,);)_T(il,...,iu_l,l,iwl,...,i,)?

Ci T(i i

Bty 152 By)s

one for every (ij,..., by yss e o5 Bp) and p € {1,...,1}.

We will assume that the hyper-cube with 2! edges, formed by the short
exact sequences (53), is commutative. This is equivalent to the commutativity of
all the squares:

i v 7 v 1 v
T(ij...,0,...,0,...,i)>>T(ip,...,0,...,1,...,4) » T(ip...,0,...,2,...., i)

TG ooy Loy 0y )= T(ig e, Lo 1o d) » Ty, 1,2 dy)

T(ipee 32y 0y i) T, 2 1 d) » T, 2,2y i)

(w,v=1,...,0).
For a = (i},...,4)), B=(ji..., f;) and i € {0,1,2} we set
|laf; = #{»]i, = i}
and
a<Bei <ij, forallv =1,...,1.

The iterations of the monic arrows occurring in the sequences (53) define
the canonical monomorphisms

(54) T(e/) » T(a")
where o’ < a” and ||, = |a”|, (we shall often identify T(«’) with its image in

T(«')). Similarly, the iterations of the epic arrows occurring in the sequences
(53) define the canonical epimorphisms

(55) T(p’) » 1T(B")

where 8’ < 8 and ||, = |B” |,
There is a filtration on T(1,...,1)

{0)=F_,cF,c --- cF=T(1,...,1)
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which is defined by
F,= Y. T(a).

la;=p
lalg=0

The following lemma describes Grf T(1,...,1).

A.l. LEmMa (“Hyper-cube lemma™). For every p > 0, there is a canonical
isomorphism
(56) ®:F/F,_, > [ ]GéoT(y).
itls=p
Proof. The map ®, in (56) is uniquely defined by the requirement of
commutativity of the following diagram

o @ T(B
T(1,...,1) — (B,=0 (B)
[Ble=p

(57) ]

e, D 71(v)

F ........... > ['}’]1=0
lYle=p

where @ is induced by the epimorphisms (55) with B’ =(1,...,1) and
[B”]o = 0 and |B”|, = p, and the right vertical arrow is the direct sum of the
canonical monomorphisms T(y) » T(B), cf. (54), where

(58) y<pB and [Blo=1[y[;,=0 and |Bl;=|vlz=p

(notice that the relation y ~ B defined by (58) is one-to-one).
It is clear from (53) and the definition of the filtration F that the maps ®,
are surjective and that F, ; C Ker ®,. We will prove by induction with respect

to [ that F,_, = Ker @,
Let us set
(59) F (i} = Y 1(a) c T(1,...,1,i)

-1
where i € {0,1,2} and the sum in (59) extends over all a = («’,i) =
(i ..., 14,_y, 1) satisfying |a’|; = p, |a’[, = 0. Similarly, let

G,= @ T(y)

lvly=0
[Yle=p

and

(60) G,{i} = @ T(y)
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where the direct sum in (60) extends over all y = (v/,4) = (i,...,4,_;, 1)
satisfying [y’|, = 0 and |y’|, = p. One has clearly

(61) Fp = Fp{O} + Fp_l{l}
and
(62) G,=G,{0} ® G, {2}

Finally, let @ {i}: F,{i} — G{i} be the corresponding map @, cf. (57),
where the last coordinate i, = i is “frozen”. By the hypothesis of induction the

following sequences are supposed to be exact:

(63) F_{i}——E (i) 2 (i),  (i=0,1).

By combining (61) and (62) with (63) we obtain then the commutative
diagram

o,
Fp—l{o} + Fp—2{1} _)Fp{o} + Fp—l{l} - Gp{o} ® Gp—l{2}
f | faa.e)
®,{0}8d, {1}

(64) Fp—l{o} & Fp—z{l}HFp{O} & Fp—l{]‘} - Gp{o} ® Gp—l{]‘}

1 os

F, ({0} NF, {1} —E{0} NF,_{1} ———  G,_{0}

whose middle row and all columns are exact (¢ and ¢ in the extreme right
column denote the arrows (53) corresponding to p = 1).
Note the obvious inclusions

F, {0} C F,{0} NF,_,{1} < Ker ®,{0).

Besides, according to the induction hypothesis, F, {0} = Ker ®,{0}. Thus,
F,_{0} = E,{0} N F,_,{1} and, similarly, F,_,{0} = F,_,{0} N F,_,{1}, and
the bottom row of (64) identifies with

®,-1{0}

F,_,{0} - F, {0} — G,-,{0} .
The latter is exact according to the same induction hypothesis. The exactness of

the upper row follows. a

A.2. Remark. In the case when T(a)’s are topological vector spaces (k = R
or C) and all the short sequences (53) are topologically exact (i.e. the corre-
sponding maps ¢ and ¢ are open) the above proof yields that the subspaces
F, c T(1,...,1) are closed and ®,: F,/F, |, - G, are homeomorphisms.

A.3 Pure exact sequences. Recall that a short exact sequence M, » M, -»
M, of left modules over a ring k is said to be pure (in the sense of P. M. Cohn
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[6, p. 383]) if for every right k-module N the sequence N ® M, >» N ® M, -»
N ® M, is exact.

A monomorphism i: M’ > M and an epimorphism f: M » M” are said to
be pure if the corresponding short exact sequences M’ » M —» Cokeri and
Ker f > M -» M” are pure.

Every split and every exact sequence with M, flat are pure. An inductive
limit of pure sequences is again pure.

A.4. THEOREM (cf. [6, Thm. 2.4], [43, Prop. 9.1], [25, Thm. 2.3]). The
following conditions are equivalent to the purity of an exact sequence M,, > M 1
—f» M,:

(a) For every commutative diagram

MO—i_)Ml

\“ ¢

L,—1,

where L, and L, are free k-modules of finite type, there exists a k-module map
& L, > M, such that x = £o0j.

(b) For every finitely presented k-module P the canonical mapping
f*: Hom(P, M) - Homy (P, M,) is surjective.

(c) The sequence of right k-modules Mg »> M}* » Mg is split exact
(M* = Hom 4 M, Q/Z)).

(d) The exact sequence M, » M, » M, is an inductive limit of split exact
sequences

M, > M, ® P, » P,

where { P} is an inductive system of finitely presented k-modules. O

Additional information on various aspects of “purity” can be found in [43]
and [41].

A.5. Let us consider a pure exact sequence M, » M, » M, of modules
over a commutative ring k. For an arbitrary k-module V one has the natural
filtration on M 1® '@ V, 1 €N,

Fp(M{el@) V) = linspan{m, ® --- ®m,; ®v|atleast | — p m;’s belong to M,}.

A.6. LEMMA. For every L€ N and p =0,...,1, there is a canonical iso-
morphism of graded k-modules

(65) GriM e V) 5 (M, @ M,)%l o V.
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Proof. This is a particular case of Lemma A.1 with
T(iy,-.-4) =M, ® --- ®M, ® V. O

The isomorphism (65) is functorial with respect to morphisms of pure exact
sequences.

B. The Cartan identity in the Hochschild complex

Let M be a bimodule over a not necessarily unital k-algebra A. The Lie
algebra A, = (A;[, ]) acts on the Hochschild complex C,(A, M) via the Lie
derivative:

(66) L(m®a, ® --- ®a,)=[a,m]®a, ® - ®a,
j

q
+ Zm®a1®---®[a,a.] ® - Qa

] q

j=1

(a € A). For every a € A, one can also define the suitable exterior product

ea(m®al® -~®aq)
=—m®a®a,® - Ba

q X .
+Y(-1)"mea,® - ®a,0'a ®a,,® - ®a,

i=1

q

As in the case of the Chevalley complex for Lie algebras, one has the
familiar looking analogue of the Cartan identity:

B.1. L, = e,b + be, where b denotes the Hochschild boundary map (cf.
§2 where the case M = A is considered).

Proof. A straightforward computation shows that ¢,b(m ® a, ® - - ®a,)
is the sum of four terms:

it i i+1
(I) Z (—l)tﬂm@”-®ct1®'--®aj]aj+l®...@aq’
l<i<j<q-1
(Ir) Y () ame---®a®- ®a,
l<i<gq
(111) Y (-1 me---®a, '].H ® - ®'a ®- ®a,,
l<j<i-l<gq
i i—1
(Iv) Y (-1)"'ma,®---®a ®a,® - ®a,.

2<i<q+1
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Similarly, be,(m ® a; ® --- ®a,) is the sum of the following seven terms:
\%) y (—1)”"m®~--®aja'j+l®---®i&1®ai®---®aq,
l<j<i-1l<gq
i i-1
(VD) Y (-1)7P"me---®a,_a®a®- - ®a,
l<i<g+1
(VII) > (-)T Y me - ®a® - ®a, |,
l<i<gq
c s i j+1
(VIII) Y (-D"Yme---9a® - ®a].]a+j+l ® - ®a,,
l<i<j<q-1
(IX) Y (-1)*"me- - ®aq, ® - ®a,,
l<i<gq
(X) am®a,®---®a,
; i-1
(X1) Y (-1)'ma;®---® a ®a,;® - ®a,.
2<i<qg+1
Terms (VI), (IX) and (X) give the right-hand side of (66), while (I) cancels
with (VIII), (II) with (VII), (IIT) with (V) and (IV) with (XI). a

Since the homology of C.(A, M) is equal to the Hochschild homology
H,(A, M) in the case when A has a unit, and to Hy(A, M) in the general case,
we obtain:

B.2. CorOLLARY. Let A be a not necessarily unital algebra. Then the
adjoint action of Ap;, on H, (A, M), where M is an arbitrary A-bimodule, is
trivial.

In particular, Ay, acts trivially on 5, (A, A), HB4(A; V) and Hy(A, A)
(cf. §2 above). a
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