Some surfaces

February 27, 2003

Many remarkable surfaces in \mathbb{R}^{3} arise as zero sets, i.e. as the level sets

$$
\left\{\mathbf{x} \in \mathbb{R}^{3} \mid f(\mathbf{x})=0\right\}
$$

for suitable functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Here are some examples. ${ }^{1}$

1. The Clebsch diagonal surface is a smooth cubic surface admitting the symmetry of the tetrahedron. The Clebsch ${ }^{2}$ surface contains exactly 27 straight lines. They fall into 9 triplets; each triplet results from intersecting the Clebsch surface with one of 9 special planes.

[^0]

It is the zero set of the function:

$$
\begin{equation*}
f_{1}(x, y, z)=p^{3}+q^{3}+r^{3}-s^{3}-(p+q+r-s)^{3} \tag{1}
\end{equation*}
$$

where

$$
p=1-z-\sqrt{2} x, \quad q=1-z+\sqrt{2} x, \quad r=1+z+\sqrt{2} x, \quad s=1+z-\sqrt{2} x .
$$

2. The Steiner Roman surface is an immersion of the projective plane $\mathbb{P}^{2}(\mathbb{R})$ into \mathbb{R}^{3}. The zero set of the function:

$$
\begin{equation*}
f_{2}(x, y, z)=x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}-17 x y z \tag{2}
\end{equation*}
$$

is the union of the Steiner ${ }^{3}$ surface and three orthogonal lines.
3. The cyclide is a quartic surface with singular conic.

[^1]It is the zero set of the function:

$$
\begin{equation*}
f_{3}(x, y, z)=\left(x^{2}+y^{2}-1\right)^{2}+\left(3 x^{2}+y^{2}+z^{2}-2\right) z^{2} . \tag{3}
\end{equation*}
$$

4. A quintic surface can have at most 31 double points (such a surface is called a Togliatti surface).

An example is provided by the zero set of the following function:

$$
\begin{align*}
f_{4}(x, y, z)= & -\frac{8}{5}\left(1+\frac{1}{\sqrt{5}}\right) \sqrt{5-\sqrt{5}}(x-z) p_{2} p_{4} p_{6} p_{8} \\
& +\left(1-\frac{\sqrt{5-\sqrt{5}}}{2} z\right)\left(x^{2}+y^{2}-1+\frac{1+3 \sqrt{5}}{4} z^{2}\right)^{2} \tag{4}
\end{align*}
$$

where

$$
p_{n}:=\cos \frac{n \pi x}{5}-\sin \frac{n \pi y}{5}-z
$$

5. The Barth sextic is a surface of degree 6 with 65 double points and symmetry of the dodecahedron.

It is the zero set of the function:

$$
\begin{equation*}
f_{5}(x, y, z)=4 g(x, y) g(y, z) g(z, x)-(2+\sqrt{5})\left(x^{2}+y^{2}+z^{2}-1\right)^{2} \tag{5}
\end{equation*}
$$

where

$$
g(s, t):=\frac{3+\sqrt{5}}{2} s^{2}-t^{2}
$$

6. The Barth decimic is a surface of degree 10 with 345 double points.

It is the zero set of the function:

$$
\begin{align*}
f_{6}(x, y, z)= & 8 h(x, y) h(y, z) h(z, x)\left(x^{4}+y^{4}+z^{4}-2 x^{2} y^{2}-2 y^{2} z^{2}-2 z^{2} x^{2}\right) \\
& +\frac{11+5 \sqrt{5}}{2}\left(x^{2}+y^{2}+z^{2}-1\right)^{2}\left(x^{2}+y^{2}+z^{2}-\frac{3-\sqrt{5}}{2}\right)^{2} \tag{6}
\end{align*}
$$

where

$$
h(s, t):=s^{2}-\frac{7+3 \sqrt{5}}{2} t^{2}
$$

[^0]: ${ }^{1}$ We shall use the notation $\mathbf{x}=(x, y, z)$.
 ${ }^{2}$ Rudolf Friedrich Alfred Clebsch (1833-1872)

[^1]: ${ }^{3}$ Jakob Steiner (1796-1863)

