Line Integrals

October 23, 2003

These notes should be studied in conjunction with lectures.¹

I Path integrals Let $\gamma: [a, b] \to \mathbb{R}^m$ be a path contained in a subset $D \subseteq \mathbb{R}^m$ and let

$$\boldsymbol{\varphi} \colon \mathsf{D} \times \mathbb{R}^{\mathfrak{m}} \to \mathbb{R} \tag{1}$$

be a function of two variables: a point $\mathbf{x} \in D$ and a column-vector $\mathbf{v} \in \mathbb{R}^m$.

We shall define the integral $\int_{\gamma} \phi$ as the limit

$$\int_{\boldsymbol{\gamma}} \boldsymbol{\varphi} := \lim_{|\mathscr{P}| \to 0} \sum_{j=1}^{k} \boldsymbol{\varphi}(\boldsymbol{\gamma}(\mathbf{t}_{j}^{*}); \boldsymbol{\gamma}(\mathbf{t}_{j}) - \boldsymbol{\gamma}(\mathbf{t}_{j-1}))$$
(2)

where the limit is taken over all *tagged* partitions \mathcal{P} of interval [a, b]:

$$a = t_0 < t_1 < \dots < t_k = b$$
 $(t_j^* \in [t_{j-1}, t_j])$ (3)

while the *mesh* of the partition

$$|\mathscr{P}| := \max(|\mathbf{t}_1 - \mathbf{t}_0|, \dots, |\mathbf{t}_k - \mathbf{t}_{k-1}|)$$
 (4)

tends to zero. Limit (2), when exists, is called the integral of φ along path γ .

2 An alternative approach For functions whose arguments are vectors *anchored* at points of D,

$$\phi \colon \left\{ \overrightarrow{\mathbf{ab}} \mid \mathbf{a} \in \mathsf{D} \right\} \to \mathbb{R} \,, \tag{5}$$

the definition of integral $\int_{\gamma} \phi$ is more natural:

¹Abbreviation DCVF stands for Differential Calculus of Vector Functions.

쉽

$$\int_{\gamma} \phi := \lim_{|\mathscr{P}| \to 0} \sum_{j=1}^{k} \phi(\overrightarrow{\mathbf{a_{j-1}a_j}})$$
(6)

where the limit in (6) is taken over all (not tagged) partitions of interval [a, b]:

$$\mathbf{a} = \mathbf{t}_0 < \mathbf{t}_1 < \dots < \mathbf{t}_k = \mathbf{b} \,, \tag{7}$$

and $\mathbf{a}_j := \gamma(\mathbf{t}_j)$. Isn't definition (6) also simpler than (2)?

Figure 1: Polygonal approximation of a path γ : $[a, b] \rightarrow \mathbb{R}^m$ associated with a partition, (7), of parameter interval [a, b].

The link between these two definitions reflects, as usual, the connection between *anchored* vectors and *column-vectors*. Recall from Section 9 of Prelim that the set of vectors anchored at points $a \in D$,

$$\left\{ \overrightarrow{\mathbf{ab}} \mid \mathbf{a} \in \mathbf{D} \right\},\tag{8}$$

is naturally identified with the set of ordered pairs

$$\mathsf{D} \times \mathbb{R}^{\mathfrak{m}} = \left\{ (\mathbf{a}, \mathbf{v}) \mid \mathbf{a} \in \mathsf{D} \text{ and } \mathbf{v} \in \mathbb{R}^{\mathfrak{m}} \right\}$$
(9)

via correspondnce (23) in Prelim. This observation allows us to treat functions (5) as functions $D \times \mathbb{R}^m \to \mathbb{R}$:

$$(\mathbf{a}, \mathbf{v}) \mapsto \phi(\overrightarrow{\mathbf{ab}}) \quad \text{where} \quad \mathbf{b} := \mathbf{a} + \mathbf{v},$$
 (10)

and *vice-versa*, we are allowed to treat functions (\mathbf{I}) as functions of the type (5):

$$\vec{\mathbf{ab}} \mapsto \boldsymbol{\varphi}(\mathbf{a}; \mathbf{b} - \mathbf{a}).$$
 (11)

Having these identifications in mind, one now sees that definition of path integral (6) corresponds to definition (2), if one tags each partition \mathscr{P} at the *left ends* of subintervals $[t_{j-1}, t_j]$:

$$\mathbf{t}_{\mathbf{j}}^* := \mathbf{t}_{\mathbf{j}-1} \tag{12}$$

for all $0 \leq j \leq k$.

3 Basic properties Two fundamental properties of path integral follow directly from its definition:

additivity with respect to integrand

$$\int_{\gamma} (\phi + \psi) = \int_{\gamma} \phi + \int_{\gamma} \psi \tag{13}$$

and

additivity with respect to path

$$\int_{\gamma_1 \sqcup \gamma_2} \phi = \int_{\gamma_1} \phi + \int_{\gamma_2} \phi \,. \tag{14}$$

Here γ_1 is a path $[a, b] \to \mathbb{R}^m$, γ_2 is a path $[b, c] \to \mathbb{R}^m$ and the endpoint of γ_1 is supposed to coincide with the beginning of γ_2 :

$$\boldsymbol{\gamma_1}(\boldsymbol{b}) = \boldsymbol{\gamma_2}(\boldsymbol{b}) \,. \tag{15}$$

Such paths can be concatenated to form the single path $\gamma = \gamma_1 \sqcup \gamma_2$,

$$(\boldsymbol{\gamma_1} \sqcup \boldsymbol{\gamma_2}) (t) := \begin{cases} \boldsymbol{\gamma_1}(t) & \text{if } t \in [a, b] \\ \boldsymbol{\gamma_2}(t) & \text{if } t \in [b, c] \end{cases} ,$$
 (16)

as illustrated by the following picture:

$$\lambda(\mathbf{a}; \mathbf{v}) := \|\mathbf{v}\| \qquad (\text{the norm of } \mathbf{v}) \tag{18}$$

corresponds to the function associating with a vector \overrightarrow{ab} its length $||\mathbf{b} - \mathbf{a}||$. In particular, (18) does not depend on a point \mathbf{a} ; it depends only on \mathbf{v} . For any path γ , the integral

$$Length(\boldsymbol{\gamma}) := \int_{\boldsymbol{\gamma}} \lambda \tag{19}$$

exists in the sense that it is either finite:

 $\text{Length}(\boldsymbol{\gamma}) < ,$

in this case we say that γ is a rectifiable path, or

$$\text{Length}(\boldsymbol{\gamma}) = ,$$

in which case we say that path γ is nonrectifiable.

This follows from the fact that $\int_{\gamma} \lambda$ is the limit of lengths

$$\sum_{j=1}^{k} \left\| \overline{\mathbf{a}_{j-1}} \mathbf{a}_{j} \right\| \tag{20}$$

of polygonal approximations to path γ , see Figure 1, and quantity (20) can only increase when we pass to a finer approximation.

Figure 2: A simple example of a nonrectifiable path: the path in question is the limit of rectangular paths whose lengths are 2d, 4d, 8d, 16d, ..., 2^n d, ..., where d is the distance between the endpoints.

We shall say that a path

$$\boldsymbol{\gamma} = \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_m \end{pmatrix} : [a, b] \to \mathbb{R}^m$$

is nondecreasing if all of its component functions $\gamma_j \colon [a, b] \to \mathbb{R}$ are nondecreasing.

5 Theorem Any nondecreasing path is rectifiable.

Indeed, for such a path, one has an obvious inequality

Length(
$$\gamma$$
) $\leq \sum_{i=1}^{m} (\gamma_i(b) - \gamma_i(a)) < .$ (21)

Exercise I Explain how to get inequality (21).

Exercise 2 Show that:

(a) $Length(\gamma_1 + \gamma_2) \leq Length(\gamma_1) + Length(\gamma_2)$,

(b) $Length(c\gamma) = |c| Length(\gamma)$.

It follows from the above exercise that a linear combination of rectifiable paths is rectifiable. In particular, the difference of two *nondecreasing* paths

$$\gamma = \gamma_1 - \gamma_2 \tag{22}$$

is rectifiable.² That the reverse is true is a remarkable theorem discovered by French mathematician Marie Ennemond Camille Jordan (1838–1922).

6 Jordan's Theorem³ A path γ is rectifiable *if and only if* it can be represented as difference (22) of two nondecreasing paths.

7 Even everywhere differentiable paths need not be rectifiable, but general continuous paths can be truly astounding. A theorem due to Polish mathematician Stefan Mazurkiewicz (1888–1945) and Austrian Hans Hahn (1879–1934) says that

Any subset $S \subseteq \mathbb{R}^m$ which is connected, locally connected⁴, closed,⁵ and bounded,⁶ is necessarily a continuous image of interval [0, 1].

 $^{^2\}text{We}$ define $\gamma_1-\gamma_2$ by $(\gamma_1-\gamma_2)(t):=\gamma_1(t)-\gamma_1(t)$.

³Course d'analyse de l'École Polytechnique, 3 vols, Paris, 1882.

⁴A set is locally connected if every point in it has an arbitrarily small connected neighborhood.

⁵A set is **closed** if it contains all its accumulation points.

⁶A set is **bounded** if it it is contained in some ball.

The first example of such a path is the famous **Peano curve**,⁷ i.e. a continuous function from [0,1] *onto* the unit square in the plane. You can learn more about it by visiting the following web sites:

```
go to: http://www.math.ohio-state.edu/~fiedorow/math655/Peano.html
go to: http://www.cut-the-knot.com/do_you_know/hilbert.shtml
go to: http://mmc.et.tudelft.nl/~frits/peanogrow.html
go to: http://www.csua.berkeley.edu/~raytrace/java/peano/peano.html
go to: http://www-math.uni-paderborn.de/~fazekas/course/peano.html
go to: http://www.geom.umn.edu/~dpvc/CVM/1998/01/vsfcf/article/sect8/peano.html
```

8 If $f: D \to \mathbb{R}$ is a function on D then the integral of f along path γ is defined as the integral

$$\int_{\gamma} f\lambda \tag{23}$$

where $(f\lambda)(\mathbf{x}; \mathbf{v}) = f(\mathbf{x}) \|\mathbf{v}\|$. In Section 24 we shall find a method to calculate such integrals.

9 Differential forms Among all functions (1) those which are *linear* with respect to the column-vector variable:

$$\boldsymbol{\varphi}(\mathbf{x}; a\mathbf{v} + b\mathbf{w}) = a\boldsymbol{\varphi}(\mathbf{x}; \mathbf{v}) + b\boldsymbol{\varphi}(\mathbf{x}; \mathbf{w}) \qquad (a, b \in \mathbb{R}; \mathbf{v}, \mathbf{w} \in \mathbb{R}^{m})$$
(24)

play a particularly important role. They are called differential forms⁸ on set $D \subseteq \mathbb{R}^m$.

Exercise 3 Let $f: D \to \mathbb{R}$ be a function and $\varphi: D \times \mathbb{R}^m \to \mathbb{R}$ a differential form. Verify that $f\varphi$ is a differential form.

For any differentiable function $f: D \to \mathbb{R}$, its differential:

$$df: D \times \mathbb{R}^m \to \mathbb{R}, \qquad df(\mathbf{x}; \mathbf{v}) := (f'(\mathbf{x}))(\mathbf{v}) \tag{25}$$

(cf. DCVF, p. 17) is a differential form on D.

⁷Discovered in 1890 by Italian mathematician Giuseppe Peano (1858–1932).

⁸Or, more precisely, differential 1-forms, since we are going to encounter later also 0-forms, see Section 34, 2-forms and 3-forms.

It is customary to denote by dx_i the differential of the *i*-th coordinate function $\pi_i \colon \mathbb{R}^m \to \mathbb{R}$:

$$\pi_{i}\left(\left(\begin{array}{c}\nu_{1}\\\vdots\\\nu_{m}\end{array}\right)\right) := \nu_{i} \tag{26}$$

Forms dx_1, \ldots, dx_m are often called **basic** differential forms. One reason why are they final important is the following fact.

10 Proposition Every differential form φ on $D \subseteq \mathbb{R}^m$ can be expressed as

$$\boldsymbol{\varphi} = f_1 dx_1 + \dots + f_m dx_m \tag{27}$$

for unique functions f_1, \ldots, f_m on D.

Indeed, for any vector $\mathbf{v} \in \mathbb{R}^{m}$, one has

$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} = v_1 \mathbf{e_1} + \dots + v_m \mathbf{e_m}$$

and hence

$$\begin{split} \boldsymbol{\phi}(\mathbf{x};\mathbf{v}) &= \boldsymbol{\phi}(\mathbf{x};\mathbf{e_1})\boldsymbol{v}_1 + \dots + \boldsymbol{\phi}(\mathbf{x};\mathbf{e_m})\boldsymbol{v}_m \\ &= \boldsymbol{\phi}(\mathbf{x};\mathbf{e_1})\,d\mathbf{x}_1(\mathbf{x};\mathbf{v}) + \dots + \boldsymbol{\phi}(\mathbf{x};\mathbf{e_m})\,d\mathbf{x}_m(\mathbf{x};\mathbf{v})\,. \end{split}$$
(28)

Thus, if we introduce the functions

$$f_i(\mathbf{x}) := \boldsymbol{\varphi}(\mathbf{x}; \mathbf{e}_i), \qquad (29)$$

then identity (28) reads

$$\boldsymbol{\phi} = f_1 d\boldsymbol{x}_1 + \dots + f_m d\boldsymbol{x}_m$$

as desired. To show the uniqueness of representation (27), note that

$$d\mathbf{x}_{j}(\mathbf{x}; \mathbf{e}_{i}) = \begin{cases} 1 & if \ j = i \\ 0 & if \ j \neq i \end{cases}$$
(30)

Hence,

$$(f_1 dx_1 + \dots + f_m dx_m)(\mathbf{x}; \mathbf{e_i}) = f_i(\mathbf{x})$$

which shows that the coefficient functions f_i must be given by formula (29).

II A differential form is said to be constant if its coefficient functions f_1, \ldots, f_m are constant.

12 Identity (27) can be rewritten in abbreviated form as

$$\boldsymbol{\varphi} = \mathbf{F} \cdot \mathbf{d} \mathbf{x} \tag{31}$$

where $\mathbf{F}: D \to \mathbb{R}^m$ is a function⁹ whose components are functions f_1, \ldots, f_m :

$$\mathbf{F} := \left(\begin{array}{c} f_1 \\ \vdots \\ f_m \end{array} \right)$$

and dx: $\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ is the vector valued form:

$$d\mathbf{x} := \begin{pmatrix} d\mathbf{x}_1 \\ \vdots \\ d\mathbf{x}_m \end{pmatrix}. \tag{32}$$

Exercise 4 What is dx(x; v) equal to?

Exercise 5 What is F equal to when $\varphi = df$ is the differential of a function $f: D \to \mathbb{R}$?

13 When College Multivariable Calculus textbooks¹⁰ talk about *integrating a vector field* **F** along a path γ what is meant by that is the integral

$$\int_{\boldsymbol{\gamma}} \mathbf{F} \cdot d\mathbf{x} = \int_{\boldsymbol{\gamma}} (f_1 dx_1 + \dots + f_m dx_m) \, .$$

14 Riemann Integral as a special case of path integral You should have recognized by now that the definite integral

$$\int_a^b f(t) \, dt$$

⁹In College textbooks of Multivariable calculus such a function is often called a *vector field* on set $D\subseteq \mathbb{R}^m$.

¹⁰Or, oldfashioned textbooks of Physics.

from Freshman Calculus is the integral of fdt, considered as a differential form on interval D = [a, b], along the path in \mathbb{R} which traverses interval [a, b] with constant velocity 1. We shall denote this path by ι :¹¹

$$\iota: [\mathfrak{a}, \mathfrak{b}] \to \mathbb{R}, \qquad \iota(\mathfrak{t}) = \mathfrak{t}. \tag{33}$$

15 Tangent map Suppose that a differentiable function $f: D \to \mathbb{R}^n$ is given. We can use f to "transport" any pair $(x; v) \in D \times \mathbb{R}^m$ to a pair in $f(D) \times \mathbb{R}^n$:

$$(\mathbf{x};\mathbf{v}) \mapsto \mathsf{T}\mathbf{f}(\mathbf{x};\mathbf{v}) := (\mathbf{f}(\mathbf{x});\mathbf{f}'_{\mathbf{x}}(\mathbf{v}))$$
 . (34)

Correspondence (34) is very important. It is often denoted Tf and called the tangent map of f.

Figure 3: Tangent map Tf sends vector v anchored at point $x \in D$ to vector $f'_x(v)$ anchored at point $f(x) \in E$ where E = f(D) denotes the image of D under f.

¹¹Greek letter *iota*.

16 Pullback Denote by E = f(D) the subset of \mathbb{R}^n which is the image of f. Given a function $\varphi \colon E \times \mathbb{R}^n \to \mathbb{R}$, we can define a new function¹² $\chi \colon D \times \mathbb{R}^m \to \mathbb{R}$ by the formula

$$\chi(\mathbf{x};\mathbf{v}) := (\boldsymbol{\varphi} \circ \mathsf{T}\mathbf{f})(\mathbf{x};\mathbf{v}) = \boldsymbol{\varphi}(\mathbf{f}(\mathbf{x});\mathbf{f}'_{\mathbf{x}}(\mathbf{v})) \qquad (35)$$

Exercise 6 Verify that χ is a differential form if φ is one.

Function χ is denoted $f^*\varphi$ and called the pullback of φ by function f.

Exercise 7 Verify the following properties of pullback:

- (a) $\mathbf{f}^*(\mathbf{\phi}_1 + \mathbf{\phi}_2) = \mathbf{f}^*\mathbf{\phi}_1 + \mathbf{f}^*\mathbf{\phi}_2$ and $\mathbf{f}^*(\mathbf{\phi}_1\mathbf{\phi}_2) = (\mathbf{f}^*\mathbf{\phi}_1)(\mathbf{f}^*\mathbf{\phi}_2);$
- (b) $\mathbf{f}^* \boldsymbol{\phi} = \boldsymbol{\phi} \circ \mathbf{f}$ if $\boldsymbol{\phi}$ does not depend on the column-vector variable (i.e., if $\boldsymbol{\phi}$ is simply a function $E \to \mathbb{R}$);
- (c) $(\mathbf{f} \circ \mathbf{g})^* \boldsymbol{\varphi} = \mathbf{g}^* (\mathbf{f}^* \boldsymbol{\varphi})$. (Hint: Use the Chain Rule.)

17 Calculating pullbacks 1) On \mathbb{R} we have constant differential form dt. If $f: D \to \mathbb{R}$ is a differentiable function then the calculation

$$(f^*(dt))(\mathbf{x};\mathbf{v}) = dt(f(\mathbf{x});f'_{\mathbf{x}}(\mathbf{v})) = f'_{\mathbf{x}}(\mathbf{v}) = df(\mathbf{x};\mathbf{v})$$

demonstrates that

$$f^*(dt) = df, \qquad (36)$$

i.e., the differential of f is the pullback, by f, of the standard differential form dt on \mathbb{R} .

2) For a function $g: E \to \mathbb{R}$ and a vector-function $f: D \to \mathbb{R}^n$ whose image is contained in set E, one has

$$(\mathbf{f}^*d\mathbf{g})(\mathbf{x};\mathbf{v}) = d\mathbf{g}(\mathbf{f}(\mathbf{x})); \mathbf{f}'_{\mathbf{x}}(\mathbf{v})) = \mathbf{g}'_{\mathbf{f}(\mathbf{x})}(\mathbf{f}'_{\mathbf{x}}(\mathbf{v})) = (\mathbf{g}'_{\mathbf{f}(\mathbf{x})} \circ \mathbf{f}'_{\mathbf{x}})(\mathbf{v})$$

which, by the Chain Rule, equals

 $(g \circ f)'_{\mathbf{x}}(\mathbf{v}) = d(g \circ f)(\mathbf{x}; \mathbf{v}).$

¹²Greek letter *khi*.

In other words,

$$\mathbf{f}^* \mathbf{dg} = \mathbf{d}(\mathbf{g} \circ \mathbf{f}) \,. \tag{37}$$

Since $f_i = \pi_i \circ f$ and $dx_i = d\pi_i$, formula (37) yields the identity

$$\mathbf{f}^* \mathbf{d} \mathbf{x}_{\mathbf{i}} = \mathbf{f}^* \mathbf{d} \pi_{\mathbf{i}} = (\pi_{\mathbf{i}} \circ \mathbf{f})^* \mathbf{d} \mathbf{t} = \mathbf{d} \mathbf{f}_{\mathbf{i}} \,. \tag{38}$$

3) Let $\varphi = f_1 dx_1 + \cdots + f_m dx_m$ be a differential form on $D \subseteq \mathbb{R}^m$, and $\gamma \colon [a, b] \to \mathbb{R}^m$ be a path contained in D. In view of formula (38) we have

$$\begin{aligned} \boldsymbol{\gamma}^{*}(f_{1}dx_{1} + \dots + f_{m}dx_{m}) &= (f_{1} \circ \boldsymbol{\gamma}) \left(\boldsymbol{\gamma}^{*}dx_{1}\right) + \dots + (f_{m} \circ \boldsymbol{\gamma}) \left(\boldsymbol{\gamma}^{*}dx_{m}\right) \\ &= (f_{1} \circ \boldsymbol{\gamma}) d\boldsymbol{\gamma}_{1} + \dots + (f_{m} \circ \boldsymbol{\gamma}) d\boldsymbol{\gamma}_{m} \\ &= \sum_{i=1}^{m} (f_{i} \circ \boldsymbol{\gamma}) \frac{d\boldsymbol{\gamma}_{i}}{dt} dt = \left((\mathbf{F} \circ \boldsymbol{\gamma}) \cdot \frac{d\boldsymbol{\gamma}}{dt}\right) dt \end{aligned} (39)$$

4) Let x_1, \ldots, x_m be coordinates in \mathbb{R}^m and y_1, \ldots, y_n be coordinates in \mathbb{R}^n . For a general vector-function $f: D \to \mathbb{R}^n$, one has

$$\begin{aligned} \mathbf{f}^*(g_1 dy_1 + \dots + g_n dy_n) &= (g_1 \circ \mathbf{f}) \, \mathbf{f}^* dy_1 + \dots + (g_n \circ \mathbf{f}) \, \mathbf{f}^* dy_n \\ &= (g_1 \circ \mathbf{f}) \, df_1 + \dots + (g_n \circ \mathbf{f}) \, df_n = (\mathbf{G} \circ \mathbf{f}) \cdot d\mathbf{f} \end{aligned} \tag{40}$$

where

$$\mathbf{G} := \left(\begin{array}{c} g_1 \\ \vdots \\ g_n \end{array} \right)$$

and

$$d\mathbf{f} := \begin{pmatrix} df_1 \\ \vdots \\ df_m \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} dx_1 + \dots + \frac{\partial f_1}{\partial x_m} dx_m \\ \dots \\ \frac{\partial f_m}{\partial x_1} dx_1 + \dots + \frac{\partial f_n}{\partial x_m} dx_m \end{pmatrix} = \mathbf{J}_{\mathbf{f}} d\mathbf{x} .$$
(41)

Formula (40) can be rewritten as follows:

$$\begin{aligned} \mathbf{f}^*(g_1 dy_1 + \dots + g_n dy_n) &= \sum_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}} (g_i \circ \mathbf{f}) \frac{\partial f_i}{\partial x_j} dx_j \\ &= (g_1 \circ \mathbf{f} \ \dots \ g_n \circ \mathbf{f}) J_{\mathbf{f}} \begin{pmatrix} dx_1 \\ \vdots \\ dx_m \end{pmatrix}. \end{aligned}$$
(42)

18 Example: Polar Coordinates Polar coordinates of a point $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \in \mathbb{R}^2$ are a pair of numbers (\mathbf{r}, θ) such that

$$a_1 = r \cos \theta$$
 and $a_2 = r \sin \theta$. (43)

From equalities (43) it follows that $|\mathbf{r}| = ||\mathbf{a}||$. Such a pair *is not* unique: if (\mathbf{r}, θ) are polar coordinates of a then also $((-1)^n \mathbf{r}, \theta + n\pi)$ are polar coordinates of a for any integer n. For $\mathbf{a} \neq \mathbf{0}$, there is a unique choice of polar coordinates such that $\mathbf{r} > 0$ and $0 \leq \theta < 2\pi$. In practice, it is convenient to allow other choices of polar coordinates.

Some plane curves have simple equations in polar coordinates while their equations in Cartesian coordinates are much more complicated, e.g., the *cardioid*, see Figure ?? in **Pro-blembook**.

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the function that describes the change from polar to Cartesian coordinates:

$$\mathbf{f}\left(\left(\begin{array}{c}\mathbf{r}\\\theta\end{array}\right)\right) = \left(\begin{array}{c}\mathbf{r}\cos\theta\\\mathbf{r}\sin\theta\end{array}\right) \ . \tag{44}$$

Note that the components of a variable column-vector belonging to the domain of f are *denoted* r and θ , while the components of a column-vector belonging to the target of f will be denoted x and y. This is a natural thing to do, since function f expresses Cartesian coordinates of a point in \mathbb{R}^2 in terms of polar coordinates of the same point.

According to formula (38), we have

$$\mathbf{f}^* \mathbf{dx} = \mathbf{d}(\mathbf{r}\cos\theta) = \cos\theta \, \mathbf{dr} - \mathbf{r}\sin\theta \, \mathbf{d\theta} \tag{45}$$

and

$$\mathbf{f}^* \mathbf{dy} = \mathbf{d}(\mathbf{r}\sin\theta) = \sin\theta \, \mathbf{dr} + \mathbf{r}\cos\theta \, \mathbf{d\theta} \,. \tag{46}$$

19 Change of Variables Formula For a differentiable function $f: D \to \mathbb{R}^n$, a path γ contained in D, and a differential form φ on a set $E \subseteq \mathbb{R}^n$ containing path $f \circ \gamma$, the following integrals are equal:

Figure 4: A path in \mathbb{R}^m mapped into \mathbb{R}^n by a function **f**.

20 Change of Variables Formula has several fundamental applications. For example, a path $\gamma: [a, b] \to \mathbb{R}^m$ can be represented as composition $\gamma \circ \iota$ where $\iota: [a, b] \to \mathbb{R}$ is the path introduced in (33). Thus, for any differential form φ on a set $D \subseteq \mathbb{R}^m$ containing path γ , we have

$$\int_{\gamma} \varphi = \int_{\gamma \circ \iota} \varphi = \int_{\iota} \gamma^* \varphi = \int_{\iota} \varphi \left(\gamma(t); \frac{d\gamma}{dt} \right) dt = \int_{a}^{b} \varphi \left(\gamma(t); \frac{d\gamma}{dt} \right) dt \,. \tag{48}$$

since, as we noted in Section 14, $\int_{t} f dt$ coincides with familiar Riemann¹³ integral $\int_{a}^{b} f(t) dt$. With help of formula (39), we can rewrite this also as follows:

$$\int_{\gamma} (f_1 dx_1 + \dots + f_m dx_m) = \int_a^b \left(\sum_{i=1}^m f_i \left(\gamma(t) \right) \frac{d\gamma_i}{dt} \right) dt = \int_a^b \left((\mathbf{F} \circ \gamma) \cdot \frac{d\gamma}{dt} \right) dt$$
(49)

The above formula is valid when functions $f_i \circ \gamma$ and $\frac{d\gamma_i}{dt}$ are Riemann integrable on interval [a, b].

Formula (49) reduces calculation of path integrals to Riemann integrals of Freshman Calculus. At the moment, it is your practically only tool for calculation of path integrals.

21 Example Let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ be two points in \mathbb{R}^2 and γ be the natural, constant-speed, parametrization of the straight-line-segment connecting \mathbf{b} to \mathbf{a} :

$$\boldsymbol{\gamma}(t) = (1-t)\mathbf{a} + t\mathbf{b} \,. \tag{50}$$

Integral of the differential form $\varphi = xdy$ along path γ is calculated with help of formula (49) as follows:

$$\int_{\gamma} x \, dy = \int_{0}^{1} ((1-t)a_{1} + tb_{1}) \frac{d((1-t)a_{2} + tb_{2})}{dt} \, dt = \int_{0}^{1} ((1-t)a_{1} + tb_{1})(b_{2} - a_{2}) \, dt$$
$$= \left(\frac{t^{2}}{2}(b_{1} - a_{1}) + ta_{1}\right)(b_{2} - a_{2}) \Big|_{0}^{1} = \frac{(b_{1} + a_{1})(b_{2} - a_{2})}{2}.$$
(51)

22 Fundamental Theorem of Calculus for path integrals The Fundamental Theorem of Calculus for Riemann Integral simply says that

$$\int_{t} df = \int_{a}^{b} f'(t)dt = f(b) - f(a) .$$
(52)

¹³Georg Friedrich Bernhard Riemann (1826–1866)

Combined with (48) and identity (37), it yields a much more general theorem for path integrals

$$\int_{\gamma} df = \int_{\iota} \gamma^* df = \int_{\iota} d(f \circ \gamma) = f(\gamma(b)) - f(\gamma(a)) \qquad (53)$$

23 Path Length Formula If we define $||d\mathbf{x}|| : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ by:

$$\|d\mathbf{x}\|(\mathbf{x};\mathbf{v}) := \sqrt{(dx_1(\mathbf{x};\mathbf{v}))^2 + \dots + (dx_m(\mathbf{x};\mathbf{v}))^2} = \sqrt{\nu_1^2 + \dots + \nu_m^2} = \|\mathbf{v}\|, \quad (54)$$

then we see that $||d\mathbf{x}||$ coincides with function λ introduced in (18). Function $||d\mathbf{x}||$ is often called the line element.

In many College textbooks of Multivariable Calculus (e.g., in Stewart) the line element, ||dx||, is denoted by |ds|. Such a notation may suggest that there exists some function s such that ||dx|| = |ds|. This is not so except when n = 1.

Ĩ

Exercise 8 The line element, ||dx||, is not a differential form. Explain why?

Let us calculate the pullback of $||d\mathbf{x}||$ by a path γ :

$$\begin{split} \mathbf{\gamma}^* \| d\mathbf{x} \| &= \sqrt{(d\gamma_1)^2 + \dots + (d\gamma_m)^2} \\ &= \sqrt{\left(\frac{d\gamma_1}{dt}dt\right)^2 + \dots + \left(\frac{d\gamma_m}{dt}dt\right)^2} \\ &= \sqrt{\left(\frac{d\gamma_1}{dt}\right)^2 + \dots + \left(\frac{d\gamma_m}{dt}\right)^2} | dt | \\ &= \left\| \frac{d\gamma}{dt} \right\| | dt | . \end{split}$$
(55)

Even though $||d\mathbf{x}||$ is not a differential form, yet, armed with formula (55), one can show in the same manner as (47) that

$$\text{Length}(\boldsymbol{\gamma}) = \int_{\boldsymbol{\gamma}} \|d\mathbf{x}\| = \int_{\boldsymbol{\iota}} \boldsymbol{\gamma}^* \|d\mathbf{x}\| = \int_{\boldsymbol{a}}^{\boldsymbol{b}} \left\| \frac{d\boldsymbol{\gamma}}{dt} \right\| \, |\, dt \, |= \int_{\boldsymbol{a}}^{\boldsymbol{b}} \left\| \frac{d\boldsymbol{\gamma}}{dt} \right\| \, dt \qquad . \tag{56}$$

24 If $f: D \to \mathbb{R}$ is a function and D contains path γ then we also obtain a similar formula for line integral (23):

$$\int_{\gamma} f \|d\mathbf{x}\| = \int_{a}^{b} (f \circ \gamma) \left\| \frac{d\gamma}{dt} \right\| dt \qquad .$$
 (57)

25 Example A segment of a plane curve given by polar equation $r = f(\theta)$ has a natural parametrization $\gamma: [\alpha, \beta] \to \mathbb{R}^2$, $\gamma(\theta) = \begin{pmatrix} f(\theta) \cos \theta \\ f(\theta) \sin \theta \end{pmatrix}$. The length of γ can be calculated by recourse to formula (56)

Length(
$$\gamma$$
) = $\int_{\alpha}^{\beta} \sqrt{((f(\theta)\cos\theta)')^2 + ((f(\theta)\sin\theta)')^2} d\theta$
= $\int_{\alpha}^{\beta} \sqrt{(f'(\theta)\cos\theta - f(\theta)\sin\theta)^2 + (f'(\theta)\sin\theta + f(\theta)\cos\theta))^2} d\theta$
= $\int_{\alpha}^{\beta} \sqrt{(f(\theta)^2 + f'(\theta)^2} d\theta$ (58)

26 Path reparametrization We would like to examine what happens to path integral $\int_{\gamma} \varphi$ when one *reparametrizes* path $\gamma: [a, b] \to \mathbb{R}^m$, or, more precisely, when one replaces γ by the path

$$\gamma \circ h \colon [c,d] \to \mathbb{R}^m$$

where h: $[c, d] \rightarrow [a, b]$ is a **diffeomorphism** of interval [c, d] onto interval [a, b]. This means that function h is everywhere differentiable, *one-to-one*, *onto*, and has *no critical*

points. The latter means that $dh/dt \neq 0$ everywhere on [c, d]. This can happen only when either dh/dt > 0 everywhere on [c, d], or dh/dt < 0 everywhere on [c, d].

The proof of this fact is remarkably simple. Suppose, to the contrary that

$$\frac{dh}{dt}(\alpha) > 0 \quad \textit{and} \quad \frac{dh}{dt}(\beta) < 0$$

for some points $\alpha < \beta$ belonging to interval [c, d]. Function h being everywhere differentiable is continuous on $[\alpha, \beta]$ and therefore attains its maximum value at some point $\tau \in [\alpha, \beta]$. Now, h is strictly increasing at the left end, since $\frac{dh}{dt}(\alpha) > 0$, and is strictly decreasing at the right end, since $\frac{dh}{dt}(\beta) < 0$. Thus, none of the two endpoints of interval $[\alpha, \beta]$ is even a local maximum of h on $[\alpha, \beta]$. It follows that τ is not an endpoint. Thus, $\tau \in (\alpha, \beta)$ and then $\frac{dh}{dt}(\tau) = 0$ by the oft quoted Fermat's Theorem. This contradiction proves our assertion (the case when $\frac{dh}{dt}(\alpha) < 0$ and $\frac{dh}{dt}(\beta) > 0$ is treated similarly by considering a point τ' where h attains its minimum on $[\alpha, \beta]$).

If everywhere dh/dt > 0, then we say that h is an orientation *preserving* diffeomorphism. If everywhere dh/dt < 0, then we say that h is an orientation *reversing* diffeomorphism.

27 Behavior of path integral with respect to reparametrization We shall now examine what happens to $\int_{\gamma} (f_1 dx_1 + \cdots + f_m dx_m)$ when we replace path $\gamma : [a, b] \to \mathbb{R}^m$ by the reparametrized path $\gamma \circ h$: $[c, d] \to \mathbb{R}^m$ where h: $[c, d] \to [a, b]$ is a diffeomorphism. In view of formula (49), we have

$$\int_{\gamma \circ h} f_{i} dx_{i} = \int_{c}^{d} f_{i}(\gamma(h(t))) \frac{d(\gamma_{i} \circ h)}{dt} dt$$
$$= \int_{c}^{d} (f_{i} \circ \gamma)(h(t))) \frac{d\gamma_{i}}{du} \Big|_{u=h(t)} \frac{dh}{dt} dt.$$
(59)

Recall now the Change of Variable Formula in Riemann Integral from Freshman Calculus:¹⁴

$$\int_{c}^{d} g(h(t)) \frac{dh}{dt} dt = \begin{cases} \int_{a}^{b} g(u) du & \text{if } h(c) = a \text{ and } h(d) = b \\ \int_{b}^{a} g(u) du & \text{if } h(c) = b \text{ and } h(d) = c \end{cases}$$
(60)

When h is a diffeomorphism, the first case occurs if everywhere dh/dt > 0 and the second if everywhere dh/dt < 0.

¹⁴ See, e.g., boxed formula (6) on p. 414 in Stewart, and recall the convention about Riemann integral: $\int_{b}^{a} f(t)dt = -\int_{a}^{b} f(t)dt$ Looking at Riemann integrals from the more general standpoint of line integrals allows you to see why such a convention makes sense. By applying formula (60) to the function

$$g(\mathbf{u}) := (f_{i} \circ \boldsymbol{\gamma})(\mathbf{u})) \frac{d\gamma_{i}}{d\mathbf{u}}$$

we infer that the last integral in (59) equals

$$\int_{a}^{b} (f_{i} \circ \gamma)(u)) \frac{d\gamma_{i}}{du} du = \int_{\gamma} f_{i} dx_{i}$$
(61)

if h is orientation preserving, and equals

$$-\int_{a}^{b}(f_{i}\circ\gamma)(u))\frac{d\gamma_{i}}{du}du = -\int_{\gamma}f_{i}dx_{i}$$
(62)

if h is orientation reversing. Hence, for any differential form $\varphi = f_1 dx_1 + \cdots + f_m dx_m$, we have the following identity

$$\int_{\gamma \circ h} \varphi = \pm \int_{\gamma} \varphi$$
(63)

with:

plus sign: when
$$dh/dt > 0$$
 everywhere on $[c, d]$, (63⁺)

minus sign: when dh/dt < 0 everywhere on [c, d]. (63⁻)

28 Reverse path For any path $\gamma: [a, b] \to \mathbb{R}^m$, we define the reverse path

$$\gamma^{-}: [a,b] \to \mathbb{R}^{m}, \qquad \gamma^{-}(t) := \gamma(a+b-t).$$
 (64)

Note that $\gamma^{-}(a) = \gamma(b)$, $\gamma^{-}(b) = \gamma(a)$ and $\gamma^{-} = \gamma \circ h$ where h: $[a, b] \rightarrow [a, b]$ is given by h(t) = a + b - t, and the velocity vector of γ^{-} equals the *minus* velocity vector of γ :

$$\frac{d\gamma^{-}}{dt}(t) = -\frac{d\gamma}{du}(a+b-t)$$

since dh/dt = -1.

Thus, the second case of identity (63) applies here and we obtain:

$$\int_{\gamma^{-}} \varphi = -\int_{\gamma} \varphi \,. \tag{66}$$

29 Equivalent parametrizations We shall say that two parametrizations γ_1 : $[c, d] \to \mathbb{R}^m$ and γ_2 : $[a, b] \to \mathbb{R}^m$ of a curve C are equivalent if

$$\gamma_2 = \gamma_1 \circ h$$

for a suitable *orientation preserving diffeomorphism* h: $[c, d] \rightarrow [a, b]$, cf. condition (63⁺). From (63) we know that

$$\int_{\gamma_1} = \int_{\gamma_2} \tag{67}$$

for equivalent parametrizations.

30 Regular arcs Recall from Section 24 in DCVF, that a path $\gamma: [a, b] \to \mathbb{R}^m$ is regular if function γ has no critical points. This is equivalent to saying that the velocity-vector function $\frac{d\gamma}{dt}$ nowhere vanishes, see Section 26, Case m = 1, in DCVF.

A curve C is a regular arc if it admits a one-to-one and onto parametrization by a regular path. One can then demonstrate that, for any two such parametrizations $\gamma_1: [a, b] \to \mathbb{R}^m$ and $\gamma_2: [c, d] \to \mathbb{R}^m$, either

the starting points of γ_1 and γ_2 coincide and γ_2 is equivalent to γ_1 (68)

or

the starting point of γ_2 is the endpoint of γ_2 and γ_2 is equivalent to the reverse path, γ_1^- . (69)

Thus, a regular arc C has, up to equivalence, only two kinds of good parametrizations and the choice between the two strictly corresponds to the choice of orienta-tion of C.

The latter corresponds to choosing which "end" of C is the starting point and which is the end point. If that choice is made, then one is dealing with an **oriented regular arc** C. For such an arc we set

$$\int_{C} \boldsymbol{\varphi} := \int_{\boldsymbol{\gamma}} \boldsymbol{\varphi} \tag{71}$$

and

$$\int_{-C} \phi := \int_{\gamma^{-}} \phi \tag{72}$$

where γ is *any*, one-to-one and onto, regular parametrization of oriented arc C. The main point is that this definition does not depend on the choice of regular parametrization γ .

31 Oriented chains The proper setting for line integrals now reveals itself: we

integrate differential forms over "objects" Γ which can be *decomposed* into a finite number (73) of regular oriented arcs C_1, \ldots, C_k .

Such objects are called **oriented chains**. Thanks to additivity of path integral, cf. (14), the quantity

$$\int_{\Gamma} \varphi := \int_{C_1} \varphi + \dots + \int_{C_k} \varphi \tag{74}$$

depends only on Γ and not on how Γ is decomposed into oriented arcs C_1, \ldots, C_k .

32 Boundary of an oriented chain For any chain Γ , we shall define ts boundary, $\partial\Gamma$, as a set-with-multiplicities, i.e., as a set whose elements are "tagged" by integers. As a set, $\partial\Gamma$ consists of all the "ends" of constituent arcs C_1, \ldots, C_k . Every such point is counted as many times as it occurs among the ends of arcs C_1, \ldots, C_k : each time it occurs as the *end* point we *add* 1, each time it is the *starting* point we *substract* 1. This is how we determine its **multiplicity**. The following two examples illustrate this definition:

Then, the Fundamental Theorem of Calculus for path integrals, see Section 22, combined with additivity of path integral, gives us our final result here

33 Fundamental Theorem of Calculus for line integrals For any oriented chain Γ contained in the domain of a function $f: D \to \mathbb{R}$, one has

$$\int_{\Gamma} \mathrm{df} = \sum_{\mathbf{a} \in \partial \Gamma} mult(\mathbf{a}) f(\mathbf{a})$$
(77)

where *mult*(a) denotes the *multiplicity* of a point $a \in D$ with which it is counted in $\partial \Gamma$.

34 Formula (77) suggests that we should treat ordinary functions $f: D \to \mathbb{R}$ as **0-forms**. Such forms are *naturally* integrated over finite *sets-with-multiplicities*:

$$\int_{S} f := \sum_{\mathbf{a} \in S} mult(\mathbf{a}) f(\mathbf{a}).$$
(78)

Then, the Fundamental Theorem of Calculus for line integrals acquires the following beautiful and compact form:

 $\int_{\Gamma} df = \int_{\partial \Gamma} f \qquad . \tag{79}$

This is the one-dimensional case of **Stokes' Theorem**. Soon, we shall also encounter the two- and three-dimensional cases of this theorem.

슬

35 Cycles An oriented chain Γ is called a cycle if its boundary $\partial\Gamma$ is empty. The Fundamental Theorem of Calculus *for cycles* becomes:

$$\int_{\Gamma} \mathbf{df} = 0 \qquad . \tag{80}$$

We say that a differential form φ on D is exact if $\varphi = df$ for a certain function $f: D \to \mathbb{R}$. In this case, function f is called the **primitive** of φ .¹⁵ It follows from (80) that

$$\int_{\Gamma} \boldsymbol{\varphi} = 0 \quad \text{for any cycle } \Gamma \text{ and any exact form } \boldsymbol{\varphi} \quad . \tag{81}$$

From Freshman Calculus we know that any *continuous* differential form φ on an interval of real line is exact. Indeed, $\varphi = gdt$ for a suitable continuous function g and, therefore, $\varphi = df$ for the following *antiderivative* of g:

$$f(x) := \int_{a}^{x} g(t) dt.$$
(82)

The situation is very different, however, in higher dimensions.

36 Loop integrals and existence of the primitive A path $\gamma: [a, b] \to \mathbb{R}^m$ that ends where it starts:

$$\boldsymbol{\gamma}(a) = \boldsymbol{\gamma}(b) \tag{83}$$

is called a loop. It follows from the Fundamental Theorem of Calculus for Path Integrals, (53), that

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a)) = 0$$
(84)

for *any* loop γ , contained in the domain of function f, along which differential form df is integrable.

¹⁵In traditional Physics courses, a function $\mathbf{F}: D \to \mathbb{R}^3$, on a subset of \mathbb{R}^3 , is said to be a conservative **vector field** on D if differential form $\mathbf{F} \cdot d\mathbf{x}$ is *exact*. A function $f: D \to \mathbb{R}$ such that $df = \mathbf{F} \cdot d\mathbf{x}$ (i.e., such that $\nabla f = \mathbf{F}$) is then called a **potential** for \mathbf{F} .

f

Now, let $\varphi = f_1 dx_1 + \cdots + f_m dx_m$ be any differential form on a set $D \subseteq \mathbb{R}^m$ whose coefficient functions f_1, \ldots, f_m are continuous. Such a form is integrable along any rectifiable path in D. Suppose that

$$\int_{\gamma} \boldsymbol{\varphi} = 0 \qquad \text{for any rectifiable loop } \boldsymbol{\gamma} \text{ in } \mathsf{D}. \tag{85}$$

Pick a point $a \in D$. Then for any two paths γ_0 and γ_1 contained in D, which connect a point $x \in D$ with a, the integrals of φ coincide:

$$\int_{\gamma_0} \varphi = \int_{\gamma_1} \varphi . \tag{86}$$

Indeed, without loss of generality we can assume that path γ_0 is parametrized by interval [0, 1] while γ_1 is parametrized by interval [1, 2] (we can choose equivalent parametrizations without changing the values of corresponding integrals, see Section 29). Then

$$\int_{\gamma_0} \varphi - \int_{\gamma_1} \varphi = \int_{\gamma_0} \varphi + \int_{\gamma_1^-} \varphi = \int_{\gamma_0 \sqcup \gamma_1^-} \varphi = 0.$$
 (87)

Here $\gamma_0 \sqcup \gamma_1^-: [0, 2] \to D$ is the loop starting and ending at a which traverses path γ_0 for $0 \le t \le 1$ and traverses path γ_1 *in reverse* for $1 \le t \le 2$.

Thus, for differential forms satisfying condition (85), integral $\int_{\gamma} \varphi$ dependends only on the path endpoints. This allows us to introduce the notation

$$\int_{\mathbf{a}}^{\mathbf{x}} \boldsymbol{\varphi} := \int_{\boldsymbol{\gamma}} \boldsymbol{\varphi} \tag{88}$$

실

where γ denotes *any* rectifiable path with starting point **a** and endpoint **x**. (Beware, however, notation (88) makes sense *only* for forms satisfying condition (85).)

Suppose, for a moment, that every point $x \in D$ can be connected by a (rectifiable) path with point a (we say, in this case, that set D is **path-connected**). Then, integral (88) defines a function of point $x \in D$ whose differential equals φ (we omit verification of this fact).

We have established the following important theorem *characterizing* exact differential forms:

A differential form φ on a set D is *exact if and only if* it satisfies condition (85). Its primitive is then given by

$$f(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{x}} \boldsymbol{\varphi} \tag{89}$$

where \mathbf{a} is a fixed point of D and \mathbf{x} is any point of D that can be connected with \mathbf{a} .

If set $D \subseteq \mathbb{R}^m$ is the disjoint union of path-connected components D_1, D_2, \ldots , then we pick a 'reference' point $a_i \in D_i$ in each path-connected component D_i . This provides a primitive for φ which is defined *everywhere* on D:

$$f(\mathbf{x}) = \int_{\mathbf{a}_{\mathbf{i}}}^{\mathbf{x}} \boldsymbol{\phi} \qquad (\text{for } \mathbf{x} \in \mathsf{D}_{\mathbf{i}}) \,. \tag{90}$$

37 Example Consider the form

$$\varphi = \frac{x dy - y dx}{x^2 + y^2} \tag{91}$$

on the "punctured" plane, i.e., on the Euclidean plane with the origin removed:

$$\mathsf{D} := \left\{ \mathbf{x} \in \mathbb{R}^2 \mid \mathbf{x} \neq \mathbf{0} \right\}.$$
(92)

Let C_r be the counterclockwise oriented circle of radius r with center at the origin:

$$C_{\mathbf{r}} := \left\{ \mathbf{x} \in \mathbb{R}^2 \mid \|\mathbf{x}\| = \mathbf{r} \right\}.$$
(93)

Circle C_r can be decomposed into any number of arcs, each naturally parametrized by angle θ :

$$\gamma(\theta) := \begin{pmatrix} r\cos\theta\\ r\sin\theta \end{pmatrix}$$
(94)

By using formula (49), we thus obtain:

$$\int_{C_r} \frac{x dy - y dx}{x^2 + y^2} = \int_0^{2\pi} \frac{r \cos \theta (r \cos \theta) - r \sin \theta (-r \sin \theta)}{r^2} d\theta = \int_0^{2\pi} d\theta = 2\pi$$
(95)

Note that the result does not depend on radius r: it has the same value 2π for circles arbitrary small or arbitrary large. In particular, form (91) is not exact.

38 Appendix: Proof of Formula (49) It is enough to show that, for any function $f: D \rightarrow \mathbb{R}$ and integer $1 \leq i \leq n$, one has

$$\int_{\gamma} f dx_{i} = \int_{a}^{b} f(\gamma(t)) \frac{d\gamma_{i}}{dt} dt.$$
(96)

Integral $\int_{\gamma} f dx_i$ is the limit, when that limit exists, of finite sums

$$\sum_{j=1}^{k} (fdx_{i})(\gamma(t_{j}^{*}); \gamma(t_{j}) - \gamma(t_{j-1})) = \sum_{j=1}^{k} f(\gamma(t_{j}^{*}))(\gamma_{i}(t_{j}) - \gamma_{i}(t_{j-1}))$$
(97)

that we associate with *tagged* partitions \mathscr{P} of interval [a, b], see (3). This means that numbers (97) approach $\int_{\mathcal{T}} f dx_i$ when the *mesh* of \mathscr{P} , see (4), tends to zero.

Let us make a crucial assumption:

we assume that functions
$$\gamma_i \colon [a,b] \to \mathbb{R}$$
 are differentiable . (98)

Then, by Mean-Value Theorem of Freshman Calculus,¹⁶

$$\gamma_{i}(t_{j}) - \gamma_{i}(t_{j-1}) = \frac{d\gamma_{i}}{dt}(t_{j}^{*})(t_{j} - t_{j-1})$$
(99)

for some point $t_i^* \in [t_{j-1}, t_j]$. Let us use these points t_i^* to *tag* a given partition

$$a = t_0 < t_1 < \dots < t_k = b \,. \tag{100}$$

Then

$$\sum_{j=1}^{k} f(\gamma(t_{j}^{*}))\left(\gamma_{i}(t_{j}) - \gamma_{i}(t_{j-1})\right) \; = \; \sum_{j=1}^{k} f(\gamma(t_{j}^{*})) \, \frac{d\gamma_{i}}{dt}(t_{j}^{*}) \left(t_{j} - t_{j-1}\right). \tag{IOI}$$

The sums on the right-hand-side of (101) converge to the Riemann integral

$$\int_{a}^{b} f(\boldsymbol{\gamma}(t)) \, \frac{d\gamma_{i}}{dt} \, dt \tag{102}$$

if they converge at all. But they do, because sums (97) have a limit, namely $\int_{\gamma} f dx_i$. Thus, we succeeded establishing two things. First, Riemann integral $\int_{a}^{b} f(\gamma(t)) \frac{d\gamma_i}{dt} dt$ exists if

¹⁶Cf. e.g., Stewart, Section 4.2.

path integral $\int_{\gamma} f dx_i$ exists and if, of course, function γ_i is differentiable on interval [a, b]. Second, these two integrals are equal.

Remarkably, the general Change of Variables Formula, (47), follows easily from (49) with help of pullback formula (42). Indeed, on one hand,

$$\begin{split} \int_{\gamma} \mathbf{g}^{*}(\mathbf{f} d\mathbf{x}_{i}) &= \int_{\gamma} (\mathbf{f} \circ \mathbf{g}) \, d\mathbf{g}_{j} = \int_{\gamma} (\mathbf{f} \circ \mathbf{g}) \, \sum_{j=1}^{m} \frac{\partial g_{i}}{\partial \mathbf{x}_{j}} d\mathbf{x}_{j} \\ &= \int_{a}^{b} \mathbf{f}(\mathbf{g}(\gamma(t))) \, \sum_{j=1}^{m} \frac{\partial g_{i}}{\partial \mathbf{x}_{j}} (\gamma(t)) \, \frac{d\gamma_{j}}{dt}(t) \, dt \qquad by \, (49) \\ &= \int_{a}^{b} \mathbf{f}(\mathbf{g}(\gamma(t))) \Big(\nabla g_{i}(\gamma(t)) \cdot \frac{d\gamma}{dt}(t) \Big) dt \qquad (103) \end{split}$$

which, in view of the Chain Rule, see (23) in DCVF, equals

$$\int_{a}^{b} f(g(\gamma(t))) \frac{d((g \circ \gamma)_{i})}{dt}(t) dt = \int_{a}^{b} f((g \circ \gamma)(t)) \frac{d((g \circ \gamma)_{i})}{dt}(t) dt.$$
 (104)

This last integral equals $\int_{g \circ \gamma} f dx_i$ by formula (96), as desired.

Note that we established the Change of Variables Formula under assumption that path γ is differentiable.