Differential Calculus of Vector Functions

October 9, 2003

These notes should be studied in conjunction with lectures.[1](#page-0-0)

1 Continuity of a function at a point Consider a function $f: D \to \mathbb{R}^n$ which is defined on some subset D of \mathbb{R}^m . Let a be a point of D. We shall say that f is **continuous** at a if ϵ_{min}

 $f(x)$ *tends to* $f(a)$ whenever x *tends to* a. (1)

If function f is continuous at *every* point of its domain, then we simply say that f is **continuous**.

Exercise 1 *Any linear transformation is continuous. Show this using inequality* ([34](#page-9-0)) *in Prelim.*

2 Differentiability of a function at a point Now, let a be an *interior* point of D. [2](#page-0-1) We r_{*Interpropersionall say that f is differentiable at a if there exists a linear transformation L: R^m → Rⁿ}* such that

$$
f(x) - f(a) = L(x - a) + u(x)
$$
 (2)

where $u(x)$ is negligible, compared to dist(x, a), when $x \to a$. "Negligible" means that $\|\mathbf{u}(\mathbf{x})\|$ approaches 0 faster than dist(**x**, **a**) does, i.e., that

$$
\lim_{\mathbf{x}\to\mathbf{a}}\frac{\|\mathbf{u}(\mathbf{x})\|}{\text{dist}(\mathbf{x},\mathbf{a})} = \lim_{\mathbf{x}\to\mathbf{a}}\frac{\|\mathbf{u}(\mathbf{x})\|}{\|\mathbf{x}-\mathbf{a}\|} = 0.
$$
\n(3)

If such a linear transformation L exists then L is unique. It will be denoted $f'(a)$ and called the **derivative** of f at a and thus ([2](#page-0-2)) can be rewritten as

$$
f(x) = f(a) + (f'(a))(x - a) + u(x)
$$
 (4)

¹Abbreviations **Prelim** and **Problembook** stand for *Preliminaries* and *Problembook*, respectively.

²A point a is an *interior* point of a set D if D containes some ball with center at a.

where $u(x)$ is negligible when x approaches a.

In the interest of keeping notation as transparent as possible, we shall be denoting $f'(a)$ also f'_a . For example, in this alternate notation $(f'(a))(v)$ becomes $f'_a(v)$ (which uses one instaed of three pairs of parentheses).

3 If f is differentiable at a point a, then it is also continuous at a. This follows from the following estimate for the distance between $f(x)$ and $f(a)$:

$$
||\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})|| = ||(\mathbf{f}'(\mathbf{a}))(\mathbf{x} - \mathbf{a}) + \mathbf{u}(\mathbf{x})||
$$

\$\leq\$ $||(\mathbf{f}'(\mathbf{a}))(\mathbf{x} - \mathbf{a})|| + ||\mathbf{u}(\mathbf{x})||$ (Triangle Inequality, cf. Sect. 6 of Prelim)
\$\leq\$ $||\mathbf{f}'(\mathbf{a})|| ||\mathbf{x} - \mathbf{a}|| + ||\mathbf{u}(\mathbf{x})||$ (inequality (34) in Prelim). (5)

4 Basic properties of the derivative The following properties follow directly from the definition given in Section [2](#page-0-3):

a) if $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are differentiable at a point a then so is their sum $f + g$ and

$$
(\mathbf{f} + \mathbf{g})'(\mathbf{a}) = \mathbf{f}'(\mathbf{a}) + \mathbf{g}'(\mathbf{a}) ; \tag{6}
$$

b) for any scalar $c \in \mathbb{R}$, one has $(cf)(a) = cf'(a)$;

c) if f is a linear transformation then $f'(a) = f$ for all a.

5 Partial derivatives Consider a scalar-valued function f: $D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^m$, and a point a ∈ D. Let j be any integer between 1 and m. The **partial derivative**

$$
\frac{\partial f}{\partial x_j}(\mathbf{a})\tag{7}
$$

is defined as the ordinary derivative

$$
\left. \frac{d\phi_j}{dt} \right|_{t=a_j} \tag{8}
$$

of the function of single real variable

$$
\varphi_j(t) := f\left(\left(\begin{array}{c} a_1 \\ \vdots \\ t \\ \vdots \\ a_m \end{array}\right)\right)
$$
 j-th coordinate (9)

obtained by freezing all but the j-th coordinate of a variable point $x \in D$.

Note that function ϕ_j is the composite $f \circ \gamma_j$ of f and the parametric curve $\gamma_j \colon \mathbb{R} \to \mathbb{R}^m$,

$$
\gamma_j(t) := \begin{pmatrix} a_1 \\ \vdots \\ t \\ \vdots \\ a_m \end{pmatrix} = a + (t - a_j)e_j .
$$
 (10)

6 Theorem *The* n × m *matrix corresponding to the linear transformation*

$$
f'(a): \mathbb{R}^m \to \mathbb{R}^n
$$

is formed by partial derivatives of components of f :

$$
\begin{pmatrix}\n\frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \dots & \frac{\partial f_1}{\partial x_m}(\mathbf{a}) \\
\vdots & & \vdots \\
\frac{\partial f_n}{\partial x_1}(\mathbf{a}) & \dots & \frac{\partial f_n}{\partial x_m}(\mathbf{a})\n\end{pmatrix}.
$$
\n(11)

Here $f(x) =$ $\sqrt{ }$ \mathcal{L} $f_1(\mathbf{x})$. . . $f_n(x)$ \setminus ; each component f_i of f is a scalar-valued function $D \to \mathbb{R}$.

Matrix (TI) is called the **Jacobi**^{[3](#page-2-2)} matrix of f at a and will be denoted $J_f(a)$.

³[Carl Gustav Jacob Jacobi](http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Jacobi.html) (1804-1851). He was equally good at each of the three greatest subjects of all: *Greek, Latin* and *Mathematics.* In May 1832 he was promoted to full professor after being subjected to a four hour disputation in Latin.

⁴We shall prove Theorem [6](#page-2-0) in Section $\frac{13}{13}$ $\frac{13}{13}$ $\frac{13}{13}$ below.

Exercise 2 *Rewrite* ([4](#page-0-4)) *in terms of Jacobi's matrix* (11 11 11 *)*. *Hint: Use formula* ([26](#page-7-1)) *of Prelim.*

7 Functions of class C^1 A subset $D \subseteq \mathbb{R}^m$ is said to be **open** if every point $a \in D$ is an \mathbb{R} interior point of D.

We say, in this case, that a function $f: D \to \mathbb{R}^n$ is of class C^1 if partial derivatives

$$
\frac{\partial f_i}{\partial x_j}({\bf a}) \qquad (1\leqslant i\leqslant n\,,1\leqslant m)
$$

exist at all points $a \in D$ and are *continuous* as functions of a.

8 Theorem *A function of class* C ¹ *on* D *is differentiable at every point of* D*.*

As a corollary, we obtain the following useful criterion.

9 Criterion of differentiability A function $f: D \to \mathbb{R}^n$ is differentiable at a point a if it is of class C ¹ *on some neighborhood* of a, i.e., on some *open* ball

$$
\mathbf{B}_{r}(\mathbf{a}) := \{ \mathbf{x} \in \mathbb{R}^{m} \mid \text{dist}(\mathbf{x}, \mathbf{a}) < r \} \tag{12}
$$

10 The case of a parametric curve $\gamma(t)$ in \mathbb{R}^n Any continuous function $\gamma: I \to \mathbb{R}^n$, where I is a subset of real line R, will be called a parametric curve in Rⁿ. By abuse of language, we shall say that a curve γ is *contained* in a subset $Z \subseteq \mathbb{R}^n$ if $\gamma(t) \in Z$ for all $t \in I$.

A particularly important case occurs when I is an *interval* of the real line. A curve parametrized by an interval will be called a **path**.

For a parametric curve γ , derivative $\gamma'(\mathfrak{a})$ is a linear transformation $\mathbb{R} \to \mathbb{R}^n$.

Any linear transformation $\mathbb{R} \to \mathbb{R}^n$ is of the form $t \mapsto$ at for a suitable column-vector a. In the case of linear transformation $\gamma'(a)$: $\mathbb{R} \to \mathbb{R}^n$ that vector happens to be the **velocity**

Figure 1: A parametric curve contained in the unit sphere in \mathbb{R}^3 :

$$
\gamma: \mathbb{R} \to \mathbb{R}^3
$$
, $\gamma(\theta) = \frac{1}{\sqrt{1+\theta^2}} \begin{pmatrix} \cos \theta \\ \sin \theta \\ \theta \end{pmatrix}$

vector of the parametric curve:

$$
\frac{d\gamma}{dt}(a) := \begin{pmatrix} \frac{d\gamma_1}{dt}(a) \\ \vdots \\ \frac{d\gamma_n}{dt}(a) \end{pmatrix}.
$$
 (13)

This is Jacobi's matrix of γ . It has one column because $m = 1$. Note that the velocity vector is just the value of linear transformation $\gamma'(\mathfrak{a}) = \gamma'_{\mathfrak{a}}$ at 1:

$$
\frac{d\gamma}{dt}(\mathfrak{a}) = \gamma'_{\mathfrak{a}}(1) \, .
$$

11 The case of a scalar-valued function of m **variables**f : D → R A scalar-valued function of m scalar variables

$$
(x_1, \ldots, x_m) \mapsto f(x_1, \ldots, x_m) \tag{14}
$$

is best viewed as a function f: D $\rightarrow \mathbb{R}$ defined on some suitable subset D $\subseteq \mathbb{R}^m$. In this case, we use the notation $f(x)$, instead of $f(x_1, \ldots, x_m)$, where

$$
\mathbf{x} = \left(\begin{array}{c} x_1 \\ \vdots \\ x_m \end{array}\right)
$$

is the corresponding point of \mathbb{R}^m .

The linear functional $f'(a) : \mathbb{R}^m \to \mathbb{R}$ is usually denoted df_a or $df(a)$ and called the **REP** differential of f at a. Jacobi's matrix of f is:

$$
\left(\frac{\partial f}{\partial x_1}(\mathbf{a}) \ \ldots \ \frac{\partial f}{\partial x_m}(\mathbf{a})\right) \tag{15}
$$

and

$$
df_a(\mathbf{v}) = \nabla f(\mathbf{a}) \cdot \mathbf{v} \tag{16}
$$

where $\nabla f(\mathbf{a})$ is the column-vector:

$$
\nabla f(\mathbf{a}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{a}) \\ \vdots \\ \frac{\partial f}{\partial x_m}(\mathbf{a}) \end{pmatrix} .
$$
 (17)

For Vector (17) (17) (17) is called the gradient of f at a. Note that it is the transpose of Jacobi's matrix $(\mathbf{15}).$ $(\mathbf{15}).$ $(\mathbf{15}).$

In the case of a function f: D $\rightarrow \mathbb{R}$, formula ([4](#page-0-4)) becomes

$$
f(\mathbf{x}) = f(\mathbf{a}) + df_{\mathbf{a}}(\mathbf{x} - \mathbf{a}) + \mathbf{u}(\mathbf{x})
$$

= $f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) + \mathbf{u}(\mathbf{x})$ (18)

where $u(x)$ is negligible when x approaches a.

12 Chain Rule Suppose that two functions are given

$$
f:D\to\mathbb{R}^n\qquad\text{where }D\subseteq\mathbb{R}^m
$$

and

$$
\mathsf{g}:\mathsf{E}\to\mathbb{R}^{\mathfrak{m}}\qquad\text{where}\;\;\mathsf{E}\subseteq\mathbb{R}^{\ell}
$$

such that the composition $f \circ g$ is well defined. This means that $g(x) \in D$ for every $x \in E$.

Suppose that g is differentiable at a and that f is differentiable at $\mathbf{b} = \mathbf{g}(\mathbf{a})$. In other words:

$$
\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{a}) = \mathbf{g}'(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \mathbf{u}(\mathbf{x}) \tag{19}
$$

and

$$
\mathbf{f}(\mathbf{y}) - \mathbf{f}(\mathbf{b}) = \mathbf{f}'(\mathbf{b})(\mathbf{y} - \mathbf{b}) + \mathbf{v}(\mathbf{y})
$$
 (20)

where $u(x)$ and $v(y)$ are negligible when $x \rightarrow a$ and $y \rightarrow b$, respectively.

Plug $y = g(x)$ and $b = g(a)$ into ([20](#page-6-0)) and use identity ([19](#page-6-1)):

$$
f(g(x)) - f(g(a)) = f'(g(a)) (g(x) - g(a)) + v(g(x))
$$

= $f'(g(a)) (g'(a)(x - a) + u(x)) + v(g(x))$ (21)
= $(f'(g(a)) \circ g'(a)) (x - a) + [f'(g(a))(u(x)) + v(g(x))]$

The composition of two linear transformations is linear. Therefore $f'(g(a)) \circ g'(a)$ is a linear transformation from \mathbb{R}^{ℓ} to \mathbb{R}^{n} . On the other hand, the expression inside the square brackets is negligible. We conclude that f ◦ g is differentiable at a and its derivative is given by the following formula:

$$
(f \circ g)'(a) = f'(g(a)) \circ g'(a)
$$
 (22)

This is the general form of the **Chain Rule.** Here is an equivalent statement of the Chain Rule in terms of Jacobi's matrices:

$$
J_{f \circ g}(a) = J_f(g(a)) J_g(a) \qquad . \qquad (23)
$$

Exercise 3 *Explain why the expression inside the square brackets in the last row of* (21) (21) (21) *is negligible.*

Hint: use identity ([19](#page-6-1)) in conjunction with inequality ([34](#page-9-0)) *from Prelim.*

13 As an application of the Chain Rule we shall now prove Theorem 9. Consider the following two simple yet very useful linear transformations:

$$
\varepsilon_j \colon \mathbb{R} \to \mathbb{R}^m. \qquad \varepsilon_j(t) := t e_j,
$$
\n(24)

and

$$
\pi_i \colon \mathbb{R}^n \to \mathbb{R}, \qquad \pi_i \left(\left(\begin{array}{c} \nu_1 \\ \vdots \\ \nu_n \end{array} \right) \right) := \nu_i \,.
$$
 (25)

W Exercise 4 Let L: $\mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation with matrix A, cf. ([26](#page-7-1)) in Prelim. *Verify that the composite transformation* $\pi_i \circ L \circ \epsilon_j : \mathbb{R} \to \mathbb{R}$ *has the form*

$$
t\mapsto a_{ij}t \qquad (t\in\mathbb{R})\,.
$$

The i-th component $f_i: \mathbb{R}^m \to \mathbb{R}$ of f is the composite $\pi_i \circ f$, and we know that partial derivative $\frac{\partial f_i}{\partial x_j}(\mathbf{a})$ is the ordinary derivative of the composite function $f_i \circ \gamma_j$, cf. Section [5](#page-1-0). Chain Rule gives us

$$
(\pi_i \circ f \circ \gamma_j)'(\mathfrak{a}_j) = \pi'_i(f(\mathbf{a})) \circ f'(\mathbf{a}) \circ \gamma'_j(\mathfrak{a}_j).
$$
 (26)

Now, π_i is linear, hence $(\pi_i)'(f(a)) = \pi_i$. On the other hand, $\gamma_j = a - a_j e_j + \epsilon_j$, as follows from ([10](#page-2-4)). Using the basic properties of the derivative we thus get $\gamma_j'(a) = \epsilon_j$.

By plugging this into ([26](#page-7-1)), we obtain the following equality of linear transformations $\mathbb{R} \to$ R:

$$
(\pi_i \circ f \circ \gamma_j)'(a_j) = \pi_i \circ f'(a) \circ \varepsilon_j.
$$
 (27)

The left-hand side of ([27](#page-7-2)) multiplies $t \in \mathbb{R}$ by $\frac{\partial f_i}{\partial x_j}(a)$, while the right-hand side multiplies t by entry a_{ij} of the matrix corresponding to derivative $f'(a)$. Therefore these two numbers must be equal, as asserted in Theorem 9.

14 Let us take a closer look, for example, at the case $\ell = m = 2$ and $n = 1$. Let

$$
\mathbf{g} = \left(\begin{array}{c} g_1 \\ g_2 \end{array}\right) : \mathsf{E} \to \mathbb{R}^2
$$

be a function from a subset $E \subseteq \mathbb{R}^2$ to \mathbb{R}^2 , and f be a scalar-valued function $D \to \mathbb{R}$. Jacobi's matrix of g at point $a =$ $\begin{pmatrix} a_1 \end{pmatrix}$ a_2 \setminus is

$$
J_{g}(a) = \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}}(a) & \frac{\partial g_{1}}{\partial x_{2}}(a) \\ \frac{\partial g_{2}}{\partial x_{1}}(a) & \frac{\partial g_{2}}{\partial x_{2}}(a) \end{pmatrix}
$$
(28)

and Jacobi's matrix of f at point $\mathbf{b} =$ $\int b_1$ \mathfrak{b}_2 $\bigg):=\left(\begin{array}{c} 9_1(a)\ 0\end{array}\right)$ $g_2(a)$ \setminus is

$$
J_f(\mathbf{b}) = \begin{pmatrix} \frac{\partial f}{\partial y_1}(\mathbf{b}) & \frac{\partial f}{\partial y_2}(\mathbf{b}) \end{pmatrix} .
$$
 (29)

Jacobi's matrix of f ∘ g at point a is, according to Chain Rule $(2,3)$, equal to the product of (29) (29) (29) and (28) (28) (28) :

$$
J_{f \circ g}(\mathbf{a}) = J_f(\mathbf{b}) J_g(\mathbf{a})
$$

= $\left(\frac{\partial f}{\partial y_1} \frac{\partial g_1}{\partial x_1} + \frac{\partial f}{\partial y_2} \frac{\partial g_2}{\partial x_1} \frac{\partial f}{\partial y_1} \frac{\partial g_1}{\partial x_2} + \frac{\partial f}{\partial y_2} \frac{\partial g_2}{\partial x_2}\right)$
= $\left(f_{y_1}(g_1)_{x_1} + f_{y_2}(g_2)_{x_1} f_{y_1}(g_1)_{x_2} + f_{y_2}(g_2)_{x_2}\right)$ (30)

where $f_{y_1} := \partial f / \partial y_1$ and $f_{y_2} := \partial f / \partial y_2$ are taken at point $b = \begin{pmatrix} g_1(a) \\ g_2(a) \end{pmatrix}$ $g_2(\mathbf{a})$ whereas $(g_i)_{x_1} :=$ $∂g_i/∂x_1$ and $(g_i)_{x_2} := ∂g_i/∂x_2$ are taken at point a.

We can rewrite formula ([30](#page-8-2)) in terms of the corresponding gradient vectors, see (17),

$$
\nabla(\mathbf{f} \circ \mathbf{g}) (\mathbf{a}) = \mathbf{J}_{\mathbf{g}}^{\mathsf{T}}(\mathbf{a}) \nabla \mathbf{f}(\mathbf{b})
$$
 (31)

or, in an abbreviated form:

$$
\nabla (f \circ g) = J_g^T \nabla f \qquad . \tag{32}
$$

Here J ^T denotes the *transpose* of the matrix J:

if
$$
J = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
 then $J^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. (33)

One of the basic properties of the *transposition* of matrices is that $(AB)^{T} = B^{T}A^{T}$. (Please, verify that!)

Exercise *5 Derive the following special case of Chain Rule ([23](#page-6-3))*:

$$
\nabla f(\gamma(a)) \cdot \frac{d\gamma}{dt}(a) = \frac{d(f \circ \gamma)}{dt}(a)
$$
 (34)

for $f: D \to \mathbb{R}$ *and a parametric curve* $\gamma: I \to D$ *. (Here* D *is a subset of* \mathbb{R}^m *.)*

15 Tangent vectors to a subset $Z \subseteq \mathbb{R}^n$ We shall say that a *column-vector* **v** is tangent to a set Z at point a if there exists a curve $\gamma: I \to \mathbb{R}^n$ contained in Z, and an interior point a of I, such that

$$
\gamma(\alpha) = \mathbf{a}
$$
 and $\frac{d\gamma}{d\mathbf{t}}(\alpha) = \mathbf{v}$. (35)

Note that, for any number $c \in \mathbb{R}$, "reparametrized" curve $\tilde{\gamma}(t) := \gamma(a + c(t - a))$ passes through point a at $t = a$ with the velocity c times "faster" than γ does (this follows from Chain Rule):

$$
\frac{d\tilde{\gamma}}{dt}(\alpha) = v \frac{d(\alpha + c(t - \alpha))}{dt}(\alpha) = cv.
$$
 (36)

Properly speaking, being tangent is rather a property of vectors anchored at point a: an *anchored vector* ab is said to be tangent to Z if the corresponding column-vector b – a is tangent at a to $Z.\overline{S}$

The set of all vectors tangent to Z at point a is usually denoted T_aZ and called the **tangent space** to Z *at* point a. It follows from equality ([36](#page-9-2)) that T_aZ contains for every vector ab, all its multiples \overrightarrow{cab} , $c \in \mathbb{R}$.

⁵Reread Section [9](#page-3-0) of **Prelim**!

16 *If* a *is an interior point of set* Z *then any column-vector is tangent to* Z *at* a*.*

Indeed, since a is an interior point of Z, it is contained in Z together with a ball of radius ϵ if one chooses number ϵ to be sufficiently small. Thus, the path

$$
\gamma: (-\epsilon, \epsilon) \to \mathbb{R}^n
$$
, where $\gamma(t) = a + tv$, (37)

passes through a at $a = 0$ and is contained in Z. Its velocity is constant, i.e. does not depend on $a \in (-\epsilon, \epsilon)$, and equals v. Note that function ([37](#page-10-0)) is a parametrization of a straight line segment, passing through point a with constant velocity v.

17 Three examples Let Z be a rectangle in the plane like the one in Figure [2](#page-11-0). We already know (see the previous section) that at any interior point a, the tangent space, T_aZ , is the plane

$$
\{\overrightarrow{\mathbf{a}\mathbf{b}} \mid \mathbf{b} \text{ is any point of } \mathbb{R}^2\}.
$$

Let us determine the tangent space, $T_b Z$, for a point b which lies on the edge of Z. Suppose that $\gamma: I \to \mathbb{R}^2$ is a path that is contained in Z and such that $\gamma(\mathfrak{a}) = \mathfrak{b}$ for some $\mathfrak{a} \in I$. Since for all $t \in I$ one has the obvious inequality

$$
\gamma_1(t)\geqslant b_1=\gamma_1(a),
$$

 $t = a$ is the absolute minimum of function γ_1 . In such a situation, Fermat's Theorem^{[6](#page-10-1)} from Freshman Calculus^{[7](#page-10-2)} tells us that $\gamma_1'(\mathfrak{a}) = 0$. In other words, the velocity vector

$$
\frac{\mathrm{d}\gamma}{\mathrm{d}t}(\mathfrak{a}) = \left(\begin{array}{c} 0\\ \gamma_2'(\mathfrak{a}) \end{array}\right)
$$

is *vertical* (i.e. *tangent* to the edge of Z). By considering the vertical path along the edge:

$$
\gamma(t) := \left(\begin{array}{c} b_1 \\ ct \end{array}\right) ,
$$

for a given number $c \in \mathbb{R}$, we see that any column-vector tangent to the edge at b:

$$
\mathbf{v} = \left(\begin{array}{c} 0 \\ \mathbf{c} \end{array}\right)
$$

is indeed the velocity vector for some path passing through b. To sum up: T_bZ is the line tangent to the boundary of Z at b.

 6 [Pierre de Fermat](http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Fermat.html) (1601–1665)

⁷See, e.g., Stewart §4.1, p. 226.

Figure 2: A subset Z of the plane and three points with different types of tangent spaces.

Finally, let us consider a corner point $\mathbf{c} =$ $\begin{pmatrix} c_1 \end{pmatrix}$ \overline{c}_2). Let $\gamma: I \to \mathbb{R}^2$ be a path contained in Z such that $\gamma(\alpha) = c$ for some $\alpha \in I$. Since $\gamma(t) \in Z$ for any $t \in I$, the following two inequalities:

$$
\gamma_1(t) \geqslant c_1 = \gamma_1(a) \qquad \text{and} \qquad \gamma_2(t) \geqslant c_2 = \gamma_2(a) \,,
$$

show that the both component functions of γ have absolute minima at $t = \alpha$. By the above mentioned Fermat's Theorem, $\gamma_1'(\mathfrak{a}) = \gamma_2'(\mathfrak{a}) = 0$, i.e.,

$$
\frac{d\gamma}{dt}(\alpha)=0\,.
$$

Thus, the tangent space to Z at corner point c consists of zero vector \vec{c} alone.

18 Directional derivative $D_v f$ Let f be a function from a subset D of \mathbb{R}^m to \mathbb{R}^n and γ be a parametric curve satisfying ([35](#page-9-3)) and contained in D. Then the composite $f \circ \gamma$ is a parametric curve in \mathbb{R}^n and Chain Rule tells us that its velocity vector equals

$$
(\mathbf{f} \circ \boldsymbol{\gamma})'_{\mathbf{a}}(1) = \mathbf{f}'_{\boldsymbol{\gamma}(\mathbf{a})}(\boldsymbol{\gamma}'_{\mathbf{a}}(1)) = \mathbf{f}'_{\mathbf{a}}(\mathbf{v}). \tag{38}
$$

We immediately notice that the right-hand side of ([38](#page-11-1)) depends *only* on vector **v** and not on any particular choice of parametric curve γ satisfying ([35](#page-9-3)).

The **directional derivative** of f at point a in the direction of a column-vector v is defined as

$$
D_{\mathbf{v}}\mathbf{f}(\mathbf{a}) = \frac{df(\mathbf{a} + t\mathbf{v})}{dt}\big|_{t=0} \tag{39}
$$

Note that $f(a + tv) = (f \circ \gamma)(t)$ where γ is the path introduced in ([37](#page-10-0)). By using identity (38) (38) (38) , we therefore get the identity:

$$
D_{\mathbf{v}}\mathbf{f}(\mathbf{a}) = \mathbf{f}'_{\mathbf{a}}(\mathbf{v}) = J_{\mathbf{f}}(\mathbf{a})\mathbf{v}
$$
 (40)

Identity ([40](#page-12-0)) combined with ([38](#page-11-1)) has the following very beautiful application.

If v is tangent to the level set of f at a :

$$
Z_{\mathbf{a}} := \{ \mathbf{x} \in D \mid \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{a}) \} \tag{41}
$$

then, by definition given in Section $\overline{15}$ $\overline{15}$ $\overline{15}$, there exists a parametrized curve contained in \overline{Z}_a and satisfying ([35](#page-9-3)). Function f is, of course, constant on any level set and, since γ is contained in Z_a , composite function $f \circ \gamma$ is constant. Thus, its derivative $f \circ \gamma$ _a is the zero linear transformation and the left-hand-side of identity (38) (38) (38) therefore vanishes. But the right-hand side of ([38](#page-11-1)) equals $D_v f$, in view of boxed identity ([40](#page-12-0)). Hence,

the derivative of **f** at a vanishes on vectors tangent to level set
$$
(41)
$$
 (42)

If $n = 1$, formula ([40](#page-12-0)) reads as follows:

$$
D_{\mathbf{v}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v} = \sum_{j=1}^{m} \frac{\partial f}{\partial x_j}(\mathbf{a}) v_j = 0.
$$
 (43)

In other words,

the gradient vector of f at a is *orthogonal* to level set
$$
(41)
$$
 (44)

Vice-versa, among vectors of the same length

the directional derivative of f attains the largest
value *on vectors orthogonal* to level set
$$
(4I)
$$
 (45)

Note that the j-th partial derivative is simply the directional derivative of f in the direction of the j-th basis vector e_j :

$$
\frac{\partial f}{\partial x_i}(\mathbf{a})=D_{\mathbf{e_j}}f(\mathbf{a})\,.
$$

19 Regular versus critical points of a scalar valued function f: $D \rightarrow \mathbb{R}$ If gradient vector $\nabla f(\mathbf{a})$ vanishes then $\nabla f(\mathbf{a}) \cdot \mathbf{v} = 0$ for *any* column-vector $\mathbf{v} \in \mathbb{R}^n$, while it is generally not true that any column-vector is tangent at point a to level set (4) (look at the singular points of two level sets shown in figure 3).

Figure 3: Both functions have a critical point at the origin; This produces visible singularities of the corresponding level sets. The tangent spaces at the corresponding critical points are determined in **Problembook** (Solved Exercises **??** and **??**).

Points $a \in D$ where $\nabla f(a) = 0$ are called the critical points of function $f: D \to \mathbb{R}$. At such ∞ points formula (43) (43) (43) is of no use.

Vice-versa, points $a \in D$ where $\nabla f(a) \neq 0$ are called the regular points of f: D $\rightarrow \mathbb{R}$. Their ϵ_{min} importance is expressed by the following fundamental fact.

If a is a regular point of a function $f: D \to \mathbb{R}$ then the level set of f passing through a is **smooth** in the vicinity of a . Moreover, vector −→ ab is tangent to the level set of f **if and only if** $\nabla f(a) \cdot (b - a) = 0$.

(46)

Note that the differential, df_a , which is a linear functional $\mathbb{R}^m \to \mathbb{R}$, is always either *onto* or *identically zero* (see Exercise [6](#page-14-0)). The latter happens when point a is critical, the former—if a is regular.

Exercise 6 *Show that every linear functional* $L: \mathbb{R}^m \to \mathbb{R}$ *is either zero or onto.*

Figure 4: The polynomial function

$$
f\left(\left(\begin{array}{c} x \\ y \end{array}\right)\right)=516x^4y-340x^2y^3+57y^5-640x^4-168x^2y^2+132y^4-384x^2y+292y^3+1024x^2
$$

of degree 5 has exactly seven critical points—five belonging to the level set passing through the origin, located at the center, which has indeed five singular points (cusps), cf. Figure ζ below.

Figure 5: The **blue** curve indicates points where ∂f ∂x vanishes and the **red** curve indicates points where $\frac{\partial f}{\partial y}$ vanishes (where the two curves approach each other the color becomes *violet*; where the blue curve approaches the level set (green curve) the color becomes *cyan*). Their intersection consists of critical points of function f from Figure [4](#page-14-1). You can see that there are exactly seven such points, and five of them coincide with the cusps of the level set of f. All seven critical points are *degenerate*, cf. Section [22](#page-17-0), p. [19](#page-18-0).

20 Special case: critical points of a scalar-valued function of two variables Recall from Section I that a function

$$
f: D \to \mathbb{R}^2, \qquad \left(\begin{array}{c} x \\ y \end{array}\right) \mapsto f\left(\left(\begin{array}{c} x \\ y \end{array}\right)\right),
$$

defined on a subset $D \subseteq \mathbb{R}^2$ is the same as a function of two scalar variables x and y. Let f be differentiable at a point ${\bf a}=$ $\begin{pmatrix} a_1 \end{pmatrix}$ a_2 \setminus . Since

$$
df_{\mathbf{a}}(\mathbf{v}) = \nabla f(\mathbf{a}) \cdot \mathbf{v} = f_{\mathbf{x}}(\mathbf{a}) \nu_1 + f_{\mathbf{y}}(\mathbf{a}) \nu_2 \qquad \left(\mathbf{v} = \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \right), \tag{47}
$$

differential df_a is identically zero (we express this by writing $df_a = 0$) if and only if the partial derivatives of f vanish:

$$
f_{x}(\mathbf{a}) = f_{y}(\mathbf{a}) = 0 \tag{48}
$$

or, equivalently, when the gradient of f vanishes at a.

For scalar-valued functions of one variable, the type of a critical point (a local maximum, a local minimum, an inflection point) is related to the behavior of the **second** derivative of f at that point. We expect the same for functions of two variables. What does this second derivative look like in our case?

Suppose f is differentiable at every point x of D. The first derivative of f at x, which is \mathbb{R} called the **differential** of f at **x**, becomes a function

$$
df: D \to \{\text{linear functionals on } \mathbb{R}^2\}.
$$
 (49)

REM Any such function is called a differential form on D.

Example 1. The differential of function $f\left(\begin{array}{c} x \end{array}\right)$ $\begin{pmatrix} x \\ y \end{pmatrix}$ = x is denoted dx. Note that $f_x(x) = 1$ and $f_y(x) = 0$ for all $x \in \mathbb{R}^2$, hence

$$
dx_{a}(v) = v_{1} \qquad \qquad \left(v = \left(\begin{array}{c} v_{1} \\ v_{2} \end{array}\right)\right) \qquad (50)
$$

and you observe that, for every $a \in \mathbb{R}^2$, one has $dx_a = \pi_1$ where π_1 is linear functional $\mathbb{R}^2 \to \mathbb{R}$ defined in ([25](#page-7-3)). Thus, dx is an example of a **constant** differential form.

W Exercise τ Define differential form dy. Find $dy_x(v)$. Does it depend on $x \in \mathbb{R}^2$?

Exercise 8 *Express* df *in the following form*

$$
df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy
$$
 (51)

Hint. Use identities ($16 - 17$ $16 - 17$ $16 - 17$ *), in the case* $m = 2$, *together with identity (* 50 *) and the last exercise.*

The space of linear functionals on \mathbb{R}^2 can be itself identified with \mathbb{R}^2 ; see Section [13](#page-7-0) of Prelim. Under this identification, f_a corresponds, of course, to gradient vector ∇f(a). This is, after all, the main reason why we bothered to introduce $\nabla f(a)$ in the first place!

Having made this identification, we are dealing now with the gradient vector function

$$
\nabla f: D \to \mathbb{R}^2 \tag{52}
$$

instead of differential ([49](#page-16-1)). Its derivative $(\nabla f)'(a)$ at a is thus a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 . Let us calculate its matrix:

$$
\begin{pmatrix}\n\frac{\partial (f_x)}{\partial x}(\mathbf{a}) & \frac{\partial (f_x)}{\partial y}(\mathbf{a}) \\
\frac{\partial (f_y)}{\partial x}(\mathbf{a}) & \frac{\partial (f_y)}{\partial y}(\mathbf{a})\n\end{pmatrix} = \begin{pmatrix}\n\frac{\partial^2 f}{\partial x^2}(\mathbf{a}) & \frac{\partial^2 f}{\partial y \partial x}(\mathbf{a}) \\
\frac{\partial^2 f}{\partial x \partial y}(\mathbf{a}) & \frac{\partial^2 f}{\partial y^2}(\mathbf{a})\n\end{pmatrix} = \begin{pmatrix}\nf_{xx}(\mathbf{a}) & f_{yx}(\mathbf{a}) \\
f_{xy}(\mathbf{a}) & f_{yy}(\mathbf{a})\n\end{pmatrix}
$$
\n(53)

21 Clairaut's Theorem If f_{xy} and f_{yx} are **continuous** at a then they are equal.^{[8](#page-17-1)}

22 The Hesse Matrix By Clairaut's Theorem, under mild conditions on a function f, the matrix of the derivative of the gradient function ([53](#page-17-2)) is *symmetric.*[9](#page-17-3)

We shall call

$$
\begin{pmatrix}\nf_{xx}(a) & f_{yx}(a) \\
f_{xy}(a) & f_{yy}(a)\n\end{pmatrix}
$$
\n(54)

 \mathbb{R}^n the Hesse^{[10](#page-17-4)} matrix of a function f: D $\rightarrow \mathbb{R}$ at a point a. The determinant of ([54](#page-17-5))

$$
H_f(a) = \begin{vmatrix} f_{xx}(a) & f_{yx}(a) \\ f_{xy}(a) & f_{yy}(a) \end{vmatrix}
$$
 (55)

 $R \rightarrow \infty$ is called the **Hessian** of f at a.

This concept was introduced for the first time by Ludwig Otto Hesse $(1811 - 1874)$ in two articles published in 1844 and 1851 , respectively.

Hessian provides very important information about critical points. If a is a critical point of f, i.e. $df_a = 0$, then there are the following possibilities.

⁸[Alexis Claude Clairaut](http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Clairaut.html) (1713–1765)

⁹A matrix $A = (a_{ij})$ is **symmetric** if $a_{ij} = a_{ji}$ for all i and j; a symmetric matrix must be a square matrix. ¹⁰[Ludwig Otto Hesse](http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Hesse.html) (1811-1874)

Figure 6: The graph of a function $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^2$, in the neighborhood of a nondegenerate critical point; there are three possibilities: a *saddle* point, a local *minimum* and a local *maximum.*

(i) If $H_f(a) < 0$, then a is a **saddle point**;^{[11](#page-18-1)}

(ii) If $H_f(a) > 0$, then there are two further possibilities:

- a) **a** is a **local minimum**^{[12](#page-18-2)} if $f_{xx}(a) > 0$,
- b) **a** is a **local maximum** if $f_{xx}(a) < 0$.

Note that the positivity of $H_f(a) = f_{xx}f_{yy} - (f_{xy})^2$ requires that f_{xx} and f_{yy} have the same sign! Hence one can replace f_{xx} by f_{yy} in conditions ii.a) and ii.b) above.

The above three cases exhaust all the possibilities that can occur when the Hessian $H_f(a)$ does not vanish. If H_f(a) = 0 then a is called a degenerate critical point and the situation ϵ_{min} becomes **a lot more complicated** in general.

One thing worth remembering: **The Hessian classification of critical points is applicable** only at points where ∇f is differentiable and $f_{yx} = f_{xy}$.

¹¹See also Figure **??** in **Problembook**.

¹²See also Figure **??** in **Problembook**.

Example 2. Let $f\left(\begin{array}{c} x \end{array}\right)$ y $\binom{1}{k}$ = $x^2 + 3xy + 2y^2$. The differential of f equals (see Exercise [8](#page-16-2)) above)

$$
df = \frac{\partial f}{\partial x} dx + \frac{\partial g}{\partial y} dy = (2x + 3y)dx + (3x + 4y)dy
$$

or, equivalently, the gradient of f equals

$$
\nabla f = \left(\begin{array}{c} 2x + 3y \\ 3x + 4y \end{array}\right)
$$

.

A point $a =$ $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ a_2 \setminus is a critical point of f if and only if

$$
\begin{cases} 2a_1 + 3a_2 = 0 \\ 3a_1 + 4a_2 = 0 \end{cases}
$$
 (56)

The only solution to ([56](#page-19-0)) is $a_1 = a_2 = 0$, i.e., the origin is the only critical point of f. Hesse's matrix (54) (54) (54) for f does not depend on a and equals

$$
\left(\begin{array}{cc}2 & 3\\3 & 4\end{array}\right).
$$

Therefore, the Hessian of f at the origin equals $2 \cdot 4 - 3^2 = -1 < 0$ and it follows that f has a saddle point at \circ . Note, however, that the restriction of f to the x-axis, f $\left(\left(\begin{array}{c} x \ z \end{array}\right)$ 0 $\Big) = x^2,$ and the restriction to the y-axis, f $\Big(\Big(\begin{array}{cc} 0 \end{array} \Big)$ y $\binom{1}{k}$ = 2y², both have a minimum at the origin!

Example [3](#page-13-0). Function f_0 from Figure $\mathfrak{z}(a)$ has only one critical point $\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ 0 \setminus where the Hesse matrix equals $H_{f_0}(\mathbf{0}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -2$ \setminus . In particular, critical point 0 is degenerate.

Example 4. Function f_1 from Figure $g(b)$ has two critical points: $\mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ 0) and $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$ 0 \setminus . The Hesse matrices are

$$
H_{f_1}(\mathbf{0}) = \begin{pmatrix} 4 & 0 \\ 0 & -2 \end{pmatrix} \qquad H_{f_1}\left(\begin{pmatrix} -2 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} -10 & 0 \\ 0 & -2 \end{pmatrix}
$$

(59)

which means that 0 is a saddle point while $\begin{pmatrix} -2 \ 0 \end{pmatrix}$ $\overline{0}$ \setminus is a local maximum.

23 Another look at the definition of a critical point In Section [19](#page-13-1) we declare a point $a \in D$ to be **critical** for a function $f : D \to \mathbb{R}$ if the differential of f at a identically vanishes:

$$
\mathrm{d}f_{\mathbf{a}} = 0 \;, \tag{57}
$$

i.e., if $\nabla f(\mathbf{a}) = 0$. Differential df_a is a linear functional $\mathbb{R}^m \to \mathbb{R}$. So, if a is *not* a critical point of f (recall that such points are called *regular*), then df_a maps \mathbb{R}^m *onto* $\mathbb R$ (see Exercise [6](#page-14-0)). And vice-versa:

a point a is critical for a function
$$
f: D \to \mathbb{R}
$$

if and only if $df_a: \mathbb{R}^m \to \mathbb{R}$ is **not** onto. (58)

Armed with this important observation, we now proceed to discuss critical points of vector valued functions.

24 Critical points of functions $f: D \to \mathbb{R}^n$ When is the image of a linear transformation L: $\mathbb{R}^m \to \mathbb{R}^n$ as big as possible? When L is **onto**, of course. Yes, but this is possible only when $m \ge n$. For $m \le n$, L will have the biggest possible image when L is one-to-one.

This observation, combined with our deepened understanding of what a critical point is (see display (58) (58) (58) above), leads us to the following definition.

> A point a is a **regular** point of a vector function $f: D \to \mathbb{R}^n$ if: **Case** $m \ge n$. $f'(a): \mathbb{R}^m \to \mathbb{R}^n$ is **onto**. **Case** $m \leq n$. $f'(a): \mathbb{R}^m \to \mathbb{R}^n$ is **one-to-one**.

Note that these two cases overlap when $m = n$. There is no conflict, however, since a linear transformation L: $\mathbb{R}^m \to \mathbb{R}^m$ is *onto* precisely when it is *one-to-one*.

 \mathbb{R}^n We say that a is a critical point if a is not regular.^{[13](#page-20-1)}

¹³Terminology: *regular point* and *critical point* applies only to points where the function is differentiable (contrary to what Stewart says in §15.7, p. 990).

Let me remind you what have we established in Section \bar{x} : the derivative, $f'(a)$, of a function $f: D \to \mathbb{R}^n$ vanishes on vectors tangent to the level set of f at point a. This holds for any point a . However, for points where f is *regular* the reverse is also true.

> If a is a regular point of a function $f: D \to \mathbb{R}^n$ then the level set of f passing through a is **smooth** in the vicinity of **a**. Moreover, $f'(a)(v) = 0$ if and only if vector v is tangent to the level set of f . (60)

The above statement is among the most important in Multivariable Calculus. Think of it as being the principal reason why you are learning about *regular points.* Another reason is the role *regularity* plays in the *Lagrange Multipliers method* (Section [30](#page-25-0) below).

25 Some comments and additions to Theorem ([60](#page-21-0)) Tangent vectors to the level set at a regular point form an $(m-n)$ -dimensional space in \mathbb{R}^m *if* $m \geq n$. This contrasts with the case $m \leq n$, when the level sets of regular points consist of isolated points. In particular, *no* non-zero vectors are tangent to such level sets, and therefore Theorem ([60](#page-21-0)) does not say much in this case. One can show, however, that

> when restricted to a sufficiently small neighbourhood, N, of a regular point a , function f becomes *one-to-one* — exactly like its derivative $f'(a)$ – and the image, $f(N)$, is smooth.

(61)

All of this forms a basis of a more advanced Multivariable Calculus. You should make your goal to learn this later $-$ after you become familiar with elements of Linear Algebra $-$ it is a fascinating subject and its applications are unlimited!

26 Regularity in some special cases You already know the meaning of *regularity* when $n=1$:

a point a is a regular point of $f : D \to \mathbb{R}$ if and only if $\nabla f(a) \neq 0$. (62)

What about the case $n = 2$? In this case $f =$ f_1 $f₂$ \setminus and, assuming that m , i.e. the number of variables, is *greater* than 1, the answer is as follows.

> A point a is a regular point of a function $f: D \to \mathbb{R}^2$ if and only if the gradient vectors of its component functions $\nabla f_1(\mathbf{a})$ and $\nabla f_2(\mathbf{a})$ **span a plane** in \mathbb{R}^m . (63)

If they do not — the point is **critical**. This happens either because gradient vectors $\nabla f_1(\mathbf{a})$ and $\nabla f_2(\mathbf{a})$ are **collinear** or, in the most degenerate case, because they both vanish.

Case $m = 1$. In the familiar case of a parametric curve $\gamma: I \to \mathbb{R}^n$, the **regular** points are numbers $a \in I$ where the velocity vector, $\frac{d\gamma}{dt}$ dt (a), introduced in $(\frac{13}{13})$ $(\frac{13}{13})$ $(\frac{13}{13})$, does not vanish. Accordingly, the **critical** points are precisely those numbers $a \in I$ for which the velocity vector, dγ dt (a) , does vanish. Recall that only at such points the curve parametrized by function γ can have *local*^{[14](#page-22-0)} singularities like "cusps" or "corners".

Case $m = 2$. For a function $f: D \to \mathbb{R}^n$, defined on a subset $D \subseteq \mathbb{R}^2$, the Jacobi matrix has two columns:

$$
J_{f}(\mathbf{a}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{a}) \\ \vdots & \vdots \\ \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{a}) \end{pmatrix}.
$$
 (64)

Assuming $n \geq 2$, we have the following characterization of regular points:

A point a is a regular point of a function $f: D \to \mathbb{R}^n$, defined on a subset $D \subseteq \mathbb{R}^2$, if and only if the two columns of Jacobi matrix (64) (64) (64) span a plane in \mathbb{R}^n . (65)

If they do not — the point is **critical**. This happens either because the two columns of matrix ([64](#page-22-1)) are **collinear** or, in the most degenerate case, because they both vanish.

Comment. You must have noticed parallels between cases $m = 1$ and $n = 1$, as well as between cases $m = 2$ and $n = 2$. This is not accidental, one can rephrase the definition of a regular point by saying that **a** point $a \in D$ is a regular point of function f when the Jacobi matrix, $J_f(a)$, has

¹⁴This does not preclude that the *global* image of γ may have singularities like "nodes" even though γ has no critical points; cf. Figure $7(a)$ $7(a)$.

Figure 7: *Every point* $a \in \mathbb{R} = (-,)$ *is regular for the function* $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ *given by* $\gamma(t) = \begin{pmatrix} t^2 - 2 \ t \end{pmatrix}$ $t(t^2 - 2)$ \setminus .

The image of γ *, i.e., set* $\gamma(\mathbb{R})$ *, has a singularity at the origin and* γ *is not one-to-one*, *since* $\gamma(-\sqrt{2}) = 0 = \gamma(\sqrt{2})$, *see Subfigure (a). Function* γ *is one-to-one when restricted to the neighborhood* (−, 1/2) *of point* − √ 2*, see Subfigure (b), or to the neighborhood* (−1/2,) *of point* [√] 2*, see Subfigure (c). In either case, the image of the restricted function is a smooth arc.*

the largest possible rank.^{[15](#page-23-1)} When m or n equals 1 the largest possible value of rank of J_f(a) is 1. When the smaller of the two numbers m and n equals 2, the largest possible value of rank of $J_f(a)$ is 2.

¹⁵**Rank** of an $n \times m$ matrix A is the dimension of the space spanned by the rows of A (equivalently, by the columns of A). As such, the largest value the rank can take is $min(m, n)$, the smaller of the two numbers m and n.

In the case of square *matrices*, an $n \times n$ matrix A has rank n if and only if det $A \neq 0$. Rank of a matrix is one of the fundamental concepts of Linear Algebra.

27 Local extrema of a function $f: D \to \mathbb{R}$ **along a path** Consider a path $\gamma: I \to D$. We shall say that a function $f: D \to \mathbb{R}$ has, at a point $a = \gamma(a)$, *a local maximum (minimum) along path* γ if the composite function

$$
f \circ \gamma \colon I \to \mathbb{R} \tag{66}
$$

has a local maximum (respectively, minimum) at a . In this case, Fermat's Theorem mentioned a few times before tells us that the derivative of $f \circ \gamma$ at a vanishes and we deduce from Chain Rule ([22](#page-6-4)) — see also Exercise [5](#page-9-5) and formula ([34](#page-9-0)) — that

df<sub>$$
\gamma(\mathfrak{a})
$$</sub> annihilates the velocity vector $\frac{d\gamma}{dt}(\mathfrak{a})$, i.e. $\nabla f(\mathfrak{a}) \cdot \frac{d\gamma}{dt}(\mathfrak{a}) = 0$ (67)

In other words, gradient $\nabla f(\mathbf{a})$ and the velocity vector $\frac{d\gamma}{dt}$ dt (a) are **orthogonal** to each other.

28 Local extrema of a function $f: D \to \mathbb{R}$ on a subset Z of D Very often one has to find the maximum or the minimum value that a function f can take on a given subset Z of its domain D. From ([67](#page-24-0)) we know that if γ : I \rightarrow Z is *any* differentiable path passing through a point $a = \gamma(a)$ – where function f has its local maximum or minimum on Z — then differential df_a annihilates velocity vector $\frac{d\gamma}{dt}$ (a) .

Now, any vector tangent to Z at point a occurs as the velocity vector of some path passing through it. Hence we arrive at the following generalization of **Fermat's Theorem**.

> If a function f has a local extremum on Z at a point a then df^a **vanishes on all vectors tangent** to Z at point a . (68)

Note that Theorem ([68](#page-24-1)) covers also the case when Z is the *whole* set D . If a is an *interior* point of D then any vector $\mathbf{v} \in \mathbb{R}^m$ is tangent to D at \mathbf{a} . Thus, Theorem ([68](#page-24-1)) has the following corollary.

> If f has a local extremum at an *interior* point a then df^a **is zero**, i.e. a is a **critical point** of the function f .

(69)

29 Example Let $f: E \to \mathbb{R}$ be a function on the ellipse

$$
E := \left\{ x = \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \left| \left(\frac{x - c_1}{a} \right)^2 + \left(\frac{y - c_2}{b} \right)^2 \leqslant 1 \right. \right\}.
$$
 (70)

with center at $\mathbf{c} =$ $\begin{pmatrix} c_1 \end{pmatrix}$ c_2 \setminus . Local extrema of f on E are *either* critical points of f belonging to E *or* points $x =$ $\int x$ y \setminus satisfying the following two equations:

$$
\begin{cases}\n\nabla f(\mathbf{x}) \cdot \begin{pmatrix}\na^2(y - c_2) \\
-b^2(x - c_1)\n\end{pmatrix} = 0\\
\left(\frac{x - c_1}{a}\right)^2 + \left(\frac{y - c_2}{b}\right)^2 = 1\n\end{cases}
$$
\n(71)

The *second* equation expresses the fact that point x belongs to the boundary, ∂E, of ellipse E. The *first* equation expresses the fact that df_x vanishes on any column-vector tangent to ∂E at point $\begin{pmatrix} x \\ y \end{pmatrix}$ y \setminus . This is so, because *any* such column-vector is a multiple of columnvector $\begin{pmatrix} a^2(y-c_2) \\ a^2(y-c_2) \end{pmatrix}$ $-b^2(x - c_1)$ \setminus (cf. Solved Exercise **??** in **Problembook**).

30 Lagrange multipliers Now, a practical application of great importance. Suppose that you must find extrema of a function $f: D \to \mathbb{R}$ where argument x is subject to a number of side conditions:

$$
g_1(\mathbf{x}) = k_1 , \ldots , g_r(\mathbf{x}) = k_r \tag{72}
$$

 \mathbb{R} called **constraints** (functions g_1, \ldots, g_r and numbers k_1, \ldots, k_r being given in advance). The first thing you should do is to rewrite r constraints (72) (72) (72) as a single vector constraint:

$$
\mathbf{g}(\mathbf{x}) = \mathbf{K} \tag{73}
$$

where $g(x) =$ $\sqrt{ }$ $\overline{ }$ $g_1(\mathbf{x})$. . . $g_r(\mathbf{x})$ \setminus \int and $K =$ $\sqrt{ }$ $\overline{ }$ k_1 . . . k_{r} \setminus . Denote by ^Z the corresponding level set of

vector-constraint function g :

$$
Z = \{ \mathbf{x} \in D \mid \mathbf{g}(\mathbf{x}) = \mathbf{K} \} .
$$
 (74)

Theorem ([68](#page-24-1)) tells us that df_a vanishes on vectors tangent to Z at a point a if function f has a local extremum on Z at a . If a is a **regular** point of vector-constraint function g then its derivative $g'(a)$ vanishes precisely on vectors tangent to Z.

Now, derivative $g'(a)$ is a linear transformation from \mathbb{R}^m to \mathbb{R}^r and differential df_a is a linear functional on \mathbb{R}^m . Since $g'(a)$ vanishes *only* on those vectors on which df_a vanishes, one can "divide" linear functional df_a by linear transformation $g'(a)$. The exact meaning of this phrase is:

there exists a (not necessarily unique)[16](#page-26-0) *linear functional* Λ *on* R r *such that* df^a *is the composition of* Λ *and* $g'(a)$:

$$
df_a = \Lambda \circ g'(a) . \tag{75}
$$

Any linear functional on \mathbb{R}^r is conveniently described by formula ([35](#page-9-3)) in Section [13](#page-7-0) of **Prelim**, as you already know. In our case, this means that

$$
\Lambda(\mathbf{v}) = \lambda \cdot \mathbf{v} \qquad (\mathbf{v} \in \mathbb{R}^{\mathbf{r}}) \tag{76}
$$

for a suitable vector $\lambda =$ $\sqrt{ }$ $\overline{ }$ λ_1 . . . λ_r \setminus $\vert \cdot$

Exercise 9 *Verify that equality* (75) (75) (75) *can be rewritten as follows:*

$$
\nabla f(\mathbf{a}) = \lambda_1 \nabla g_1(\mathbf{a}) + \cdots + \lambda_r \nabla g_r(\mathbf{a}) \quad . \tag{77}
$$

Equality ([77](#page-26-2)) expresses the fact that gradient vector ∇f(a) is a *linear combination* of gradient vectors $\nabla g_1(\mathbf{a}), \ldots, \nabla g_r(\mathbf{a})$ with coefficients $\lambda_1, \ldots, \lambda_r$. Coefficients $\lambda_1, \ldots, \lambda_r$ are re called Lagrange multipliers.^{[17](#page-26-3)} To sum up, we have established the following remarkable theorem which is the essence of the Lagrange multipliers method.

¹⁶ A is unique if the number of constraints, r, does not exceed dimension m. Incidentally, this is the only interesting case.

¹⁷[Giuseppe Lodovico Lagrangia](http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Lagrange.html) (1736–1813), his name is better known in its French form.

At any point a where function f has a local extremum *with r constraints* ([72](#page-25-1)), gradient vector $\nabla f(a)$ can be expressed as a linear combination ([77](#page-26-2)) of gradient vectors $\nabla g_1(\mathbf{a}), \ldots, \nabla g_r(\mathbf{a})$ for *suitable* numbers $\lambda_1, \ldots, \lambda_r$ pro**vided** a is a **regular** point of the vector-constraint function:

$$
g(x) = \left(\begin{array}{c} g_1(x) \\ \vdots \\ g_r(x) \end{array}\right) .
$$

(78)

Theorem (78) (78) (78) holds for any values of m and r. In practice, its usefulness for finding constrained extrema of f is limited only to situations when the number of constraints is *less* than m. Here is the reason: if $r \ge m$ then the level sets of all regular points of g reduce to isolated points. In this case, one simply checks the values of the function f at those isolated points that satisfy constraints (72) (72) (72) .

Finally, you should be always prepared that there may be no points satisfying given constraints, in which case level set ([74](#page-25-2)) is *empty*. When this happens then there is no point, of course, in trying to find corresponding constrained extrema of function f .

