
Math 53M, Fall 2003 Professor Mariusz Wodzicki

Differential Calculus of Vector Functions
October 9, 2003

These notes should be studied in conjunction with lectures.1

1 Continuity of a function at a point Consider a function f : D → Rn which is defined
on some subset D of Rm . Let a be a point of D. We shall say that f is continuous at a if L

f(x) tends to f(a) whenever x tends to a . (1)

If function f is continuous at every point of its domain, then we simply say that f is contin-
uous.

W Exercise 1 Any linear transformation is continuous. Show this using inequality (34) in
Prelim.

2 Differentiability of a function at a point Now, let a be an interior point of D.2 We
shall say that f is differentiable at a if there exists a linear transformation L : Rm → RnR
such that

f(x) − f(a) = L(x − a) + u(x) (2)

where u(x) is negligible, compared to dist(x, a), when x → a. “Negligible” means that
‖u(x)‖ approaches 0 faster than dist(x, a) does, i.e., that

lim
x→a

‖u(x)‖
dist(x, a)

= lim
x→a

‖u(x)‖
‖x − a‖

= 0 . (3)

If such a linear transformation L exists then L is unique. It will be denoted f ′(a) and called
the derivative of f at a and thus (2) can be rewritten as

f(x) = f(a) + (f ′(a))(x − a) + u(x) (4)

1Abbreviations Prelim and Problembook stand for Preliminaries and Problembook, respectively.
2A point a is an interior point of a set D if D containes some ball with center at a .
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where u(x) is negligible when x approaches a.

In the interest of keeping notation as transparent as possible, we shall be denoting f ′(a)
also f ′a . For example, in this alternate notation (f ′(a))(v) becomes f ′a(v) (which uses one
instaed of three pairs of parentheses).

3 If f is differentiable at a point a, then it is also continuous at a. This follows from the
following estimate for the distance between f(x) and f(a):

‖f(x) − f(a)‖ = ‖(f ′(a))(x − a) + u(x)‖

6 ‖(f ′(a))(x − a)‖+ ‖u(x)‖ (Triangle Inequality, cf. Sect. 6 of Prelim)

6 ‖f ′(a)‖‖x − a‖+ ‖u(x)‖ (inequality (34) in Prelim). (5)

4 Basic properties of the derivative The following properties follow directly from the
definition given in Section 2:

a) if f : D → R and g : D → R are differentiable at a point a then so is their sum f + g and

(f + g) ′(a) = f ′(a) + g ′(a) ; (6)

b) for any scalar c ∈ R , one has (cf)(a) = cf ′(a) ;

c) if f is a linear transformation then f ′(a) = f for all a.

5 Partial derivatives Consider a scalar-valued function f : D → R , where D ⊆ Rm , and
a point a ∈ D. Let j be any integer between 1 and m. The partial derivative

∂f

∂xj

(a) (7)

is defined as the ordinary derivative

dφj

dt

∣∣∣∣
t=aj

(8)
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of the function of single real variable

φj(t)˜ f




a1
...
t
...

am



 j -th coordinate (9)

obtained by freezing all but the j-th coordinate of a variable point x ∈ D.

Note that function φj is the composite f ◦ γj of f and the parametric curve γj : R → Rm ,

γj(t)˜


a1
...
t
...

am

 = a + (t − aj)ej . (10)

6 Theorem The n×m matrix corresponding to the linear transformation

f ′(a) : Rm → Rn

is formed by partial derivatives of components of f :

∂f1

∂x1
(a) . . .

∂f1

∂xm

(a)

...
...

∂fn

∂x1
(a) . . .

∂fn

∂xm

(a)

 . (11)

Here f(x) =

 f1(x)

. . .
fn(x)

; each component fi of f is a scalar-valued function D → R .

Matrix (11) is called the Jacobi3 matrix of f at a and will be denoted Jf (a). 4

3Carl Gustav Jacob Jacobi (1804–1851). He was equally good at each of the three greatest subjects of all:
Greek, Latin and Mathematics. In May 1832 he was promoted to full professor after being subjected to a
four hour disputation in Latin.

4We shall prove Theorem 6 in Section 13 below.
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W Exercise 2 Rewrite (4) in terms of Jacobi’s matrix (11).

Hint: Use formula (26) of Prelim.

7 Functions of class C1 A subset D ⊆ Rm is said to be open if every point a ∈ D is an L
interior point of D.

We say, in this case, that a function f : D → Rn is of class C1 if partial derivativesR
∂fi

∂xj

(a) (1 6 i 6 n , 1 6 m)

exist at all points a ∈ D and are continuous as functions of a.

8 Theorem A function of class C1 on D is differentiable at every point of D.

As a corollary, we obtain the following useful criterion.

9 Criterion of differentiability A function f : D → Rn is differentiable at a point a if it is
of class C1 on some neighborhood of a, i.e., on some open ball

Br(a)˜
{
x ∈ Rm | dist(x, a) < r

}
. (12)

10 The case of a parametric curve γ(t) in Rn Any continuous function γ : I → Rn ,
where I is a subset of real line R , will be called a parametric curve in Rn . By abuse of
language, we shall say that a curve γ is contained in a subset Z ⊆ Rn if γ(t) ∈ Z for all
t ∈ I.

A particularly important case occurs when I is an interval of the real line. A curve parametrized
by an interval will be called a path.

For a parametric curve γ, derivative γ ′(a) is a linear transformation R → Rn .

Any linear transformation R → Rn is of the form t 7→ at for a suitable column-vector a.
In the case of linear transformation γ ′(a) : R → Rn that vector happens to be the velocity

4
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Figure 1: A parametric curve contained in the unit sphere in R3 :

γ : R → R3, γ(θ) =
1√

1 + θ2

 cos θ

sin θ

θ



vector of the parametric curve:

dγ

dt
(a)˜


dγ1

dt
(a)

...

dγn

dt
(a)

 . (13)

This is Jacobi’s matrix of γ . It has one column because m = 1 . Note that the velocity
vector is just the value of linear transformation γ ′(a) = γ ′

a at 1 :

dγ

dt
(a) = γ ′

a(1) .

11 The case of a scalar-valued function of m variablesf : D → R A scalar-valued func-
tion of m scalar variables

(x1, . . . , xm) 7→ f(x1, . . . , xm) (14)

5
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is best viewed as a function f : D → R defined on some suitable subset D ⊆ Rm . In this
case, we use the notation f(x), instead of f(x1, . . . , xm), where

x =

 x1
...

xm


is the corresponding point of Rm .

The linear functional f ′(a) : Rm → R is usually denoted dfa or df(a) and called the
differential of f at a. Jacobi’s matrix of f is:R (

∂f

∂x1
(a) . . .

∂f

∂xm

(a)
)

(15)

and
dfa(v) = ∇f(a) · v (16)

where ∇f(a) is the column-vector:

∇f(a) =



∂f

∂x1
(a)

...

∂f

∂xm

(a)

 . (17)

Vector (17) is called the gradient of f at a. Note that it is the transpose of Jacobi’s matrixR
(15).

In the case of a function f : D → R , formula (4) becomes

f(x) = f(a) + dfa(x − a) + u(x)

= f(a) +∇f(a) · (x − a) + u(x) (18)

where u(x) is negligible when x approaches a.
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12 Chain Rule Suppose that two functions are given

f : D → Rn where D ⊆ Rm

and
g : E → Rm where E ⊆ R`

such that the composition f ◦ g is well defined. This means that g(x) ∈ D

for every x ∈ E.

Suppose that g is differentiable at a and that f is differentiable at b = g(a).
In other words:

g(x) − g(a) = g ′(a)(x − a) + u(x) (19)

and
f(y) − f(b) = f ′(b)(y − b) + v(y) (20)

where u(x) and v(y) are negligible when x → a and y → b, respectively.

Plug y = g(x) and b = g(a) into (20) and use identity (19):

f(g(x)) − f(g(a)) = f ′(g(a)) (g(x) − g(a)) + v(g(x))

= f ′(g(a))
(
g ′(a)(x − a) + u(x)

)
+ v(g(x)) (21)

=
(
f ′(g(a)) ◦ g ′(a)

)
(x − a) + [f ′(g(a))(u(x)) + v(g(x))]

The composition of two linear transformations is linear. Therefore f ′(g(a)) ◦ g ′(a) is a
linear transformation from R` to Rn . On the other hand, the expression inside the square
brackets is negligible. We conclude that f ◦ g is differentiable at a and its derivative is given
by the following formula:

(f ◦ g) ′(a) = f ′(g(a)) ◦ g ′(a) . (22)

This is the general form of the Chain Rule. Here is an equivalent statement of the ChainR
Rule in terms of Jacobi’s matrices:

Jf◦g(a) = Jf (g(a)) Jg(a) . (23)

7
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W Exercise 3 Explain why the expression inside the square brackets in the last row of (21) is
negligible.

Hint: use identity (19) in conjunction with inequality (34) from Prelim.

13 As an application of the Chain Rule we shall now prove Theorem 9. Consider the
following two simple yet very useful linear transformations:

εj : R → Rm. εj(t)˜ tej, (24)

and

πi : Rn → R, πi


 v1

...
vn


˜ vi . (25)

W Exercise 4 Let L : Rm → Rn be a linear transformation with matrix A, cf. (26) in Prelim.
Verify that the composite transformation πi ◦ L ◦ εj : R → R has the form

t 7→ aijt (t ∈ R) .

The i-th component fi : Rm → R of f is the composite πi ◦ f , and we know that partial
derivative ∂fi

∂xj
(a) is the ordinary derivative of the composite function fi ◦ γj , cf. Section 5.

Chain Rule gives us

(πi ◦ f ◦ γj)
′(aj) = π ′i(f(a)) ◦ f ′(a) ◦ γ ′

j(aj) . (26)

Now, πi is linear, hence (πi)
′(f(a)) = πi . On the other hand, γj = a−ajej +εj , as follows

from (10). Using the basic properties of the derivative we thus get γ ′
j(a) = εj .

By plugging this into (26), we obtain the following equality of linear transformations R →
R :

(πi ◦ f ◦ γj)
′(aj) = πi ◦ f ′(a) ◦ εj . (27)

The left-hand side of (27) multiplies t ∈ R by ∂fi

∂xj
(a), while the right-hand side multiplies t

by entry aij of the matrix corresponding to derivative f ′(a). Therefore these two numbers
must be equal, as asserted in Theorem 9.

8
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14 Let us take a closer look, for example, at the case ` = m = 2 and n = 1 . Let

g =

(
g1

g2

)
: E → R2

be a function from a subset E ⊆ R2 to R2 , and f be a scalar-valued function D → R .

Jacobi’s matrix of g at point a =

(
a1

a2

)
is

Jg(a) =


∂g1

∂x1
(a)

∂g1

∂x2
(a)

∂g2

∂x1
(a)

∂g2

∂x2
(a)

 (28)

and Jacobi’s matrix of f at point b =

(
b1

b2

)
˜

(
g1(a)
g2(a)

)
is

Jf(b) =

(
∂f

∂y1
(b)

∂f

∂y2
(b)

)
. (29)

Jacobi’s matrix of f ◦ g at point a is, according to Chain Rule (23), equal to the product of
(29) and (28):

Jf◦g(a) = Jf(b) Jg(a)

=

(
∂f

∂y1

∂g1

∂x1
+

∂f

∂y2

∂g2

∂x1

∂f

∂y1

∂g1

∂x2
+

∂f

∂y2

∂g2

∂x2

)
=

(
fy1 (g1)x1 + fy2 (g2)x1 fy1 (g1)x2 + fy2 (g2)x2

)
(30)

where fy1˜ ∂f/∂y1 and fy2˜ ∂f/∂y2 are taken at point b =

(
g1(a)
g2(a)

)
whereas (gi)x1˜

∂gi/∂x1 and (gi)x2 ˜ ∂gi/∂x2 are taken at point a.

We can rewrite formula (30) in terms of the corresponding gradient vectors, see (17),

∇(f ◦ g) (a) = JT
g (a)∇f(b) (31)

or, in an abbreviated form:

∇(f ◦ g) = JT
g ∇f . (32)

9
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Here JT denotes the transpose of the matrix J:

if J =

(
a b

c d

)
then JT =

(
a c

b d

)
. (33)

One of the basic properties of the transposition of matrices is that (AB)T = BTAT .
(Please, verify that!)

W Exercise 5 Derive the following special case of Chain Rule (23):

∇f(γ(a)) · dγ

dt
(a) =

d(f ◦ γ)

dt
(a) (34)

for f : D → R and a parametric curve γ : I → D. (Here D is a subset of Rm .)

15 Tangent vectors to a subset Z ⊆ Rn We shall say that a column-vector v is tangent
to a set Z at point a if there exists a curve γ : I → Rn contained in Z , and an interior
point a of I, such that

γ(a) = a and
dγ

dt
(a) = v . (35)

Note that, for any number c ∈ R , “reparametrized” curve γ̃(t)˜ γ(a + c(t − a)) passes
through point a at t = a with the velocity c times “faster” than γ does (this follows from
Chain Rule):

dγ̃

dt
(a) = v

d(a + c(t − a))

dt
(a) = cv . (36)

Properly speaking, being tangent is rather a property of vectors anchored at point a: an
anchored vector

−→
ab is said to be tangent to Z if the corresponding column-vector b − a isR

tangent at a to Z.5

The set of all vectors tangent to Z at point a is usually denoted TaZ and called the tangent
space to Z at point a. It follows from equality (36) that TaZ contains for every vector

−→
ab,

all its multiples c
−→
ab, c ∈ R .

5Reread Section 9 of Prelim!

10
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16 If a is an interior point of set Z then any column-vector is tangent to Z at a.

Indeed, since a is an interior point of Z, it is contained in Z together with a ball of radius
ε if one chooses number ε to be sufficiently small. Thus, the path

γ : (−ε, ε) → Rn, where γ(t) = a + tv , (37)

passes through a at a = 0 and is contained in Z. Its velocity is constant, i.e. does not
depend on a ∈ (−ε, ε), and equals v . Note that function (37) is a parametrization of a
straight line segment, passing through point a with constant velocity v .

17 Three examples Let Z be a rectangle in the plane like the one in Figure 2. We already
know (see the previous section) that at any interior point a, the tangent space, TaZ, is the
plane {−→

ab
∣∣ b is any point of R2} .

Let us determine the tangent space, TbZ, for a point b which lies on the edge of Z. Suppose
that γ : I → R2 is a path that is contained in Z and such that γ(a) = b for some a ∈ I.
Since for all t ∈ I one has the obvious inequality

γ1(t) > b1 = γ1(a),

t = a is the absolute minimum of function γ1 . In such a situation, Fermat’s Theorem6 from
Freshman Calculus7 tells us that γ ′1(a) = 0 . In other words, the velocity vector

dγ

dt
(a) =

(
0

γ ′2(a)

)
is vertical (i.e. tangent to the edge of Z). By considering the vertical path along the edge:

γ(t)˜

(
b1

ct

)
,

for a given number c ∈ R , we see that any column-vector tangent to the edge at b:

v =

(
0
c

)
is indeed the velocity vector for some path passing through b. To sum up: TbZ is the line
tangent to the boundary of Z at b.

6Pierre de Fermat (1601–1665)
7See, e.g., Stewart §4.1, p. 226.

11
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b
a

c

Z

Figure 2: A subset Z of the plane and three
points with different types of tangent spaces.

Finally, let us consider a corner point c =

(
c1

c2

)
. Let γ : I → R2 be a path contained in

Z such that γ(a) = c for some a ∈ I. Since γ(t) ∈ Z for any t ∈ I, the following two
inequalities:

γ1(t) > c1 = γ1(a) and γ2(t) > c2 = γ2(a) ,

show that the both component functions of γ have absolute minima at t = a. By the above
mentioned Fermat’s Theorem, γ ′1(a) = γ ′2(a) = 0 , i.e.,

dγ

dt
(a) = 0 .

Thus, the tangent space to Z at corner point c consists of zero vector −→cc alone.

18 Directional derivative Dvf Let f be a function from a subset D of Rm to Rn and γ

be a parametric curve satisfying (35) and contained in D. Then the composite f ◦ γ is a
parametric curve in Rn and Chain Rule tells us that its velocity vector equals

(f ◦ γ) ′a(1) = f ′γ(a)(γ
′
a(1)) = f ′a(v) . (38)

We immediately notice that the right-hand side of (38) depends only on vector v and not
on any particular choice of parametric curve γ satisfying (35).

The directional derivative of f at point a in the direction of a column-vector v is definedR
as

Dvf(a) =
df(a + tv)

dt
|t=0 . (39)

12
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Note that f(a + tv) = (f ◦ γ)(t) where γ is the path introduced in (37). By using identity
(38), we therefore get the identity:

Dvf(a) = f ′a(v) = Jf (a) v (40)

Identity (40) combined with (38) has the following very beautiful application.

If v is tangent to the level set of f at a :

Za˜ {x ∈ D | f(x) = f(a)} (41)

then, by definition given in Section 15, there exists a parametrized curve contained in Za

and satisfying (35). Function f is, of course, constant on any level set and, since γ is
contained in Za , composite function f ◦ γ is constant. Thus, its derivative f ◦ γ) ′a is the
zero linear transformation and the left-hand-side of identity (38) therefore vanishes. But
the right-hand side of (38) equals Dvf , in view of boxed identity (40). Hence,

the derivative of f at a vanishes on vectors tangent to level set (41) . (42)

If n = 1 , formula (40) reads as follows:

Dvf(a) = ∇f(a) · v =

m∑
j=1

∂f

∂xj

(a)vj = 0 . (43)

In other words,

the gradient vector of f at a is orthogonal to level set (41) (44)

Vice-versa, among vectors of the same length

the directional derivative of f attains the largest
value on vectors orthogonal to level set (41)

(45)

13
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Note that the j-th partial derivative is simply the directional derivative of f in the direction
of the j-th basis vector ej :

∂f

∂xj

(a) = Dejf(a) .

19 Regular versus critical points of a scalar valued function f : D → R If gradient vector
∇f(a) vanishes then ∇f(a) ¨ v = 0 for any column-vector v ∈ Rn , while it is generally not
true that any column-vector is tangent at point a to level set (41) (look at the singular points
of two level sets shown in figure 3).

(a) f0

((
x

y

))
= x3 − y2 (b) f1

((
x

y

))
= x2(x + 2) − y2

Figure 3: Both functions have a critical point at the origin; This
produces visible singularities of the corresponding level sets.
The tangent spaces at the corresponding critical points are de-
termined in Problembook (Solved Exercises ?? and ??).

Points a ∈ D where ∇f(a) = 0 are called the critical points of function f : D → R . At such L
points formula (43) is of no use.

Vice-versa, points a ∈ D where ∇f(a) 6= 0 are called the regular points of f : D → R . Their L
importance is expressed by the following fundamental fact.

14
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If a is a regular point of a function f : D → R then
the level set of f passing through a is smooth in the
vicinity of a . Moreover, vector

−→
ab is tangent to the

level set of f if and only if ∇f(a) ¨ (b − a) = 0 .

(46)

Note that the differential, dfa , which is a linear functional Rm → R , is always either
onto or identically zero (see Exercise 6). The latter happens when point a is critical, the
former—if a is regular.

W Exercise 6 Show that every linear functional L : Rm → R is either zero or onto.

Figure 4: The polynomial function

f

((
x

y

))
= 516x4y−340x2y3+57y5−640x4−168x2y2+132y4−384x2y+292y3+1024x2

of degree 5 has exactly seven critical points—five belonging to the level set passing through
the origin, located at the center, which has indeed five singular points (cusps), cf. Figure 5
below.

15
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Figure 5: The blue curve indicates points where ∂f
∂x vanishes and the red

curve indicates points where ∂f
∂y vanishes (where the two curves approach

each other the color becomes violet; where the blue curve approaches the
level set (green curve) the color becomes cyan). Their intersection consists of
critical points of function f from Figure 4. You can see that there are exactly
seven such points, and five of them coincide with the cusps of the level set of
f . All seven critical points are degenerate, cf. Section 22, p. 19.

20 Special case: critical points of a scalar-valued function of two variables Recall from
Section 11 that a function

f : D → R2,
(

x

y

)
7→ f

((
x

y

))
,

defined on a subset D ⊆ R2 is the same as a function of two scalar variables x and y. Let

f be differentiable at a point a =

(
a1

a2

)
. Since

dfa (v) = ∇f(a) · v = fx(a) v1 + fy(a) v2

(
v =

(
v1

v2

))
, (47)

16
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differential dfa is identically zero (we express this by writing dfa = 0) if and only if the
partial derivatives of f vanish:

fx(a) = fy(a) = 0 (48)

or, equivalently, when the gradient of f vanishes at a.

For scalar-valued functions of one variable, the type of a critical point (a local maximum,
a local minimum, an inflection point) is related to the behavior of the second derivative of
f at that point. We expect the same for functions of two variables. What does this second
derivative look like in our case?

Suppose f is differentiable at every point x of D. The first derivative of f at x, which is
called the differential of f at x, becomes a functionR

df : D → {linear functionals on R2} . (49)

Any such function is called a differential form on D.R

Example 1. The differential of function f

((
x

y

))
= x is denoted dx. Note that fx(x) = 1

and fy(x) = 0 for all x ∈ R2 , hence

dxa (v) = v1

(
v =

(
v1

v2

))
(50)

and you observe that, for every a ∈ R2 , one has dxa = π1 where π1 is linear functional
R2 → R defined in (25). Thus, dx is an example of a constant differential form.

W Exercise 7 Define differential form dy. Find dyx (v). Does it depend on x ∈ R2?

W Exercise 8 Express df in the following form

df =
∂f

∂x
dx +

∂f

∂y
dy . (51)

Hint. Use identities (16-17), in the case m = 2 , together with identity (50) and the last exercise.

17
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The space of linear functionals on R2 can be itself identified with R2 ; see Section 13 of
Prelim. Under this identification, f ′a corresponds, of course, to gradient vector ∇f(a). This
is, after all, the main reason why we bothered to introduce ∇f(a) in the first place!

Having made this identification, we are dealing now with the gradient vector function

∇f : D → R2 (52)

instead of differential (49). Its derivative (∇f) ′(a) at a is thus a linear transformation from
R2 to R2 . Let us calculate its matrix:

∂(fx)

∂x
(a)

∂(fx)

∂y
(a)

∂(fy)

∂x
(a)

∂(fy)

∂y
(a)

 =


∂2f

∂x2 (a)
∂2f

∂y∂x
(a)

∂2f

∂x∂y
(a)

∂2f

∂y2 (a)

 =

 fxx(a) fyx(a)

fxy(a) fyy(a)

 (53)

21 Clairaut’s Theorem If fxy and fyx are continuous at a then they are equal.8

22 The Hesse Matrix By Clairaut’s Theorem, under mild conditions on a function f, the
matrix of the derivative of the gradient function (53) is symmetric.9

We shall call  fxx(a) fyx(a)

fxy(a) fyy(a)

 (54)

the Hesse10 matrix of a function f : D → R at a point a. The determinant of (54)R
Hf(a) =

∣∣∣∣∣ fxx(a) fyx(a)

fxy(a) fyy(a)

∣∣∣∣∣ (55)

is called the Hessian of f at a.R
This concept was introduced for the first time by Ludwig Otto Hesse (1811-1874) in two articles
published in 1844 and 1851, respectively.

Hessian provides very important information about critical points. If a is a critical point of
f, i.e. dfa = 0 , then there are the following possibilities.

8Alexis Claude Clairaut (1713–1765)
9A matrix A=(aij) is symmetric if aij = aji for all i and j ; a symmetric matrix must be a square matrix.

10Ludwig Otto Hesse (1811–1874)
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(a) Hf(a) < 0 (b) Hf(a) > 0 and fxx > 0 (c) Hf(a) > 0 and fxx < 0

Figure 6: The graph of a function f : D → R , where D ⊆ R2 ,
in the neighborhood of a nondegenerate critical point; there are
three possibilities: a saddle point, a local minimum and a local
maximum.

(i) If Hf(a) < 0 , then a is a saddle point;11

(ii) If Hf(a) > 0 , then there are two further possibilities:

a) a is a local minimum12 if fxx(a) > 0 ,

b) a is a local maximum if fxx(a) < 0 .

Note that the positivity of Hf(a) = fxxfyy −(fxy)2 requires that fxx and fyy have the same
sign! Hence one can replace fxx by fyy in conditions ii.a) and ii.b) above.

The above three cases exhaust all the possibilities that can occur when the Hessian Hf(a)
does not vanish. If Hf(a) = 0 then a is called a degenerate critical point and the situation L
becomes a lot more complicated in general.

One thing worth remembering: The Hessian classification of critical points is applicable
only at points where ∇f is differentiable and fyx = fxy .

11See also Figure ?? in Problembook.
12See also Figure ?? in Problembook.
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Example 2. Let f

((
x

y

))
= x2 + 3xy + 2y2 . The differential of f equals (see Exercise 8

above)

df =
∂f

∂x
dx +

∂g

∂y
dy = (2x + 3y)dx + (3x + 4y)dy

or, equivalently, the gradient of f equals

∇f =

(
2x + 3y
3x + 4y

)
.

A point a =

(
a1

a2

)
is a critical point of f if and only if

{
2a1 + 3a2 = 0

3a1 + 4a2 = 0
. (56)

The only solution to (56) is a1 =a2 =0 , i.e., the origin is the only critical point of f.

Hesse’s matrix (54) for f does not depend on a and equals(
2 3
3 4

)
.

Therefore, the Hessian of f at the origin equals 2 ·4−32 = −1 < 0 and it follows that f has

a saddle point at 0. Note, however, that the restriction of f to the x-axis, f

((
x

0

))
= x2 ,

and the restriction to the y-axis, f

((
0
y

))
= 2y2 , both have a minimum at the origin!

Example 3. Function f0 from Figure 3(a) has only one critical point 0 =

(
0
0

)
where the

Hesse matrix equals Hf0(0) =

(
0 0
0 −2

)
. In particular, critical point 0 is degenerate.

Example 4. Function f1 from Figure 3(b) has two critical points: 0 =

(
0
0

)
and

(
−2
0

)
.

The Hesse matrices are

Hf1(0) =

(
4 0
0 −2

)
Hf1

((
−2
0

))
=

(
−10 0
0 −2

)
20
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which means that 0 is a saddle point while
(

−2
0

)
is a local maximum.

23 Another look at the definition of a critical point In Section 19 we declare a point
a ∈ D to be critical for a function f : D → R if the differential of f at a identically vanishes:

dfa = 0 , (57)

i.e., if ∇f(a) = 0 . Differential dfa is a linear functional Rm → R . So, if a is not a critical
point of f (recall that such points are called regular), then dfa maps Rm onto R (see
Exercise 6). And vice-versa:

a point a is critical for a function f : D → R
if and only if dfa : Rm → R is not onto.

(58)

Armed with this important observation, we now proceed to discuss critical points of vector
valued functions.

24 Critical points of functions f : D → Rn When is the image of a linear transformation
L : Rm → Rn as big as possible? When L is onto, of course. Yes, but this is possible only
when m > n . For m 6 n , L will have the biggest possible image when L is one-to-one.

This observation, combined with our deepened understanding of what a critical point is
(see display (58) above), leads us to the following definition.

A point a is a regular point of a vector function f : D → Rn if:

Case m > n . f ′(a) : Rm → Rn is onto.

Case m 6 n . f ′(a) : Rm → Rn is one-to-one.

(59)

Note that these two cases overlap when m = n . There is no conflict, however, since a
linear transformation L : Rm → Rm is onto precisely when it is one-to-one.

We say that a is a critical point if a is not regular.13R
13Terminology: regular point and critical point applies only to points where the function is differentiable

(contrary to what Stewart says in §15.7, p. 990).
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Let me remind you what have we established in Section 18: the derivative, f ′(a) , of a
function f : D → Rn vanishes on vectors tangent to the level set of f at point a . This
holds for any point a . However, for points where f is regular the reverse is also true.

If a is a regular point of a function f : D → Rn then
the level set of f passing through a is smooth in the
vicinity of a . Moreover, f ′(a) (v) = 0 if and only if
vector v is tangent to the level set of f .

(60)

The above statement is among the most important in Multivariable Calculus. Think of it
as being the principal reason why you are learning about regular points. Another reason is
the role regularity plays in the Lagrange Multipliers method (Section 30 below).

25 Some comments and additions to Theorem (60) Tangent vectors to the level set at a
regular point form an (m−n)-dimensional space in Rm if m > n . This contrasts with the
case m 6 n , when the level sets of regular points consist of isolated points. In particular,
no non-zero vectors are tangent to such level sets, and therefore Theorem (60) does not say
much in this case. One can show, however, that

when restricted to a sufficiently small neighbourhood, N, of
a regular point a , function f becomes one-to-one — exactly
like its derivative f ′(a) — and the image, f(N), is smooth.

(61)

All of this forms a basis of a more advanced Multivariable Calculus. You should make your
goal to learn this later — after you become familiar with elements of Linear Algebra — it is
a fascinating subject and its applications are unlimited!

26 Regularity in some special cases You already know the meaning of regularity when
n = 1 :

a point a is a regular point of f : D → R if and only if ∇f(a) 6= 0. (62)
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What about the case n = 2 ? In this case f =

(
f1

f2

)
and, assuming that m , i.e. the

number of variables, is greater than 1, the answer is as follows.

A point a is a regular point of a function f : D → R2

if and only if the gradient vectors of its component
functions ∇f1(a) and ∇f2(a) span a plane in Rm .

(63)

If they do not — the point is critical. This happens either because gradient vectors ∇f1(a)
and ∇f2(a) are collinear or, in the most degenerate case, because they both vanish.

Case m = 1 . In the familiar case of a parametric curve γ : I → Rn , the regular points

are numbers a ∈ I where the velocity vector,
dγ

dt
(a) , introduced in (13), does not vanish.

Accordingly, the critical points are precisely those numbers a ∈ I for which the velocity

vector,
dγ

dt
(a) , does vanish. Recall that only at such points the curve parametrized by

function γ can have local14 singularities like “cusps” or “corners”.

Case m = 2 . For a function f : D → Rn , defined on a subset D ⊆ R2 , the Jacobi matrix
has two columns:

Jf (a) =



∂f1

∂x1
(a)

∂f1

∂x2
(a)

...
...

∂f2

∂x1
(a)

∂f2

∂x2
(a)

 . (64)

Assuming n > 2 , we have the following characterization of regular points:

A point a is a regular point of a function f : D → Rn ,
defined on a subset D ⊆ R2 , if and only if the two
columns of Jacobi matrix (64) span a plane in Rn .

(65)

If they do not — the point is critical. This happens either because the two columns of matrix
(64) are collinear or, in the most degenerate case, because they both vanish.

Comment. You must have noticed parallels between cases m = 1 and n = 1 , as well as between
cases m = 2 and n = 2 . This is not accidental, one can rephrase the definition of a regular point
by saying that a point a ∈ D is a regular point of function f when the Jacobi matrix, Jf (a) , has

14This does not preclude that the global image of γ may have singularities like “nodes” even though γ has
no critical points; cf. Figure 7(a).
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(a) The image of γ
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(b) γ((−, 1/2))
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3
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–2 –1 1 2

(c) γ((−1/2, ))

Figure 7: Every point a ∈ R = (−, ) is regular for the function γ : R → R2 given by

γ(t) =

(
t2 − 2

t(t2 − 2)

)
.

The image of γ , i.e., set γ(R) , has a singularity at the origin and γ is not one-to-one,
since γ(−

√
2) = 0 = γ(

√
2) , see Subfigure (a). Function γ is one-to-one when restricted

to the neighborhood (−, 1/2) of point −
√

2 , see Subfigure (b), or to the neighborhood
(−1/2, ) of point

√
2 , see Subfigure (c). In either case, the image of the restricted function

is a smooth arc.

the largest possible rank.15 When m or n equals 1 the largest possible value of rank of Jf (a) is 1 .
When the smaller of the two numbers m and n equals 2 , the largest possible value of rank of Jf (a)
is 2 .

15Rank of an n×m matrix A is the dimension of the space spanned by the rows of A (equivalently, by the
columns of A). As such, the largest value the rank can take is min(m,n) , the smaller of the two numbers m

and n .
In the case of square matrices, an n × n matrix A has rank n if and only if detA 6= 0 . Rank of a matrix

is one of the fundamental concepts of Linear Algebra.
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27 Local extrema of a function f : D → R along a path Consider a path γ : I → D . We
shall say that a function f : D → R has, at a point a = γ(a) , a local maximum (minimum)
along path γ if the composite function

f ◦ γ : I → R (66)

has a local maximum (respectively, minimum) at a . In this case, Fermat’s Theorem men-
tioned a few times before tells us that the derivative of f ◦ γ at a vanishes and we deduce
from Chain Rule (22) — see also Exercise 5 and formula (34) — that

dfγ(a) annihilates the velocity vector
dγ

dt
(a) , i.e. ∇f(a) · dγ

dt
(a) = 0 . (67)

In other words, gradient ∇f(a) and the velocity vector
dγ

dt
(a) are orthogonal to each other.

28 Local extrema of a function f : D → R on a subset Z of D Very often one has to
find the maximum or the minimum value that a function f can take on a given subset Z

of its domain D . From (67) we know that if γ : I → Z is any differentiable path passing
through a point a = γ(a) — where function f has its local maximum or minimum on Z

— then differential dfa annihilates velocity vector
dγ

dt
(a) .

Now, any vector tangent to Z at point a occurs as the velocity vector of some path passing
through it. Hence we arrive at the following generalization of Fermat’s Theorem.

If a function f has a local extremum on Z at a point a then
dfa vanishes on all vectors tangent to Z at point a .

(68)

Note that Theorem (68) covers also the case when Z is the whole set D . If a is an interior
point of D then any vector v ∈ Rm is tangent to D at a . Thus, Theorem (68) has the
following corollary.

If f has a local extremum at an interior point a then
dfa is zero, i.e. a is a critical point of the function f .

(69)
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29 Example Let f : E → R be a function on the ellipse

E˜

{
x =

(
x

y

)
∈ R2

∣∣∣∣ (x − c1

a

)2

+

(
y − c2

b

)2

6 1
}

. (70)

with center at c =

(
c1

c2

)
. Local extrema of f on E are either critical points of f belonging

to E or points x =

(
x

y

)
satisfying the following two equations:


∇f(x) ¨

(
a2(y − c2)

−b2(x − c1)

)
= 0(

x − c1

a

)2

+

(
y − c2

b

)2

= 1
. (71)

The second equation expresses the fact that point x belongs to the boundary, ∂E, of ellipse
E. The first equation expresses the fact that dfx vanishes on any column-vector tangent to

∂E at point
(

x

y

)
. This is so, because any such column-vector is a multiple of column-

vector
(

a2(y − c2)

−b2(x − c1)

)
(cf. Solved Exercise ?? in Problembook).

30 Lagrange multipliers Now, a practical application of great importance. Suppose that
you must find extrema of a function f : D → R where argument x is subject to a number
of side conditions:

g1(x) = k1 , . . . , gr(x) = kr (72)

called constraints (functions g1, . . . , gr and numbers k1, . . . , kr being given in advance).R
The first thing you should do is to rewrite r constraints (72) as a single vector constraint:

g(x) = K (73)

where g(x) =

 g1(x)
...

gr(x)

 and K =

 k1
...

kr

 . Denote by Z the corresponding level set of

vector-constraint function g :

Z = {x ∈ D | g(x) = K} . (74)
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Theorem (68) tells us that dfa vanishes on vectors tangent to Z at a point a if function
f has a local extremum on Z at a . If a is a regular point of vector-constraint function g
then its derivative g ′(a) vanishes precisely on vectors tangent to Z .

Now, derivative g ′(a) is a linear transformation from Rm to Rr and differential dfa

is a linear functional on Rm . Since g ′(a) vanishes only on those vectors on which dfa

vanishes, one can “divide” linear functional dfa by linear transformation g ′(a) . The exact
meaning of this phrase is:

there exists a (not necessarily unique)16 linear functional Λ on Rr such that dfa is the
composition of Λ and g ′(a) :

dfa = Λ ◦ g ′(a) . (75)

Any linear functional on Rr is conveniently described by formula (35) in Section 13 of
Prelim, as you already know. In our case, this means that

Λ(v) = λ · v (v ∈ Rr) (76)

for a suitable vector λ =

 λ1
...

λr

.

W Exercise 9 Verify that equality (75) can be rewritten as follows:

∇f(a) = λ1∇g1(a) + · · · + λr∇gr(a) . (77)

Equality (77) expresses the fact that gradient vector ∇f(a) is a linear combination of gradi-
ent vectors ∇g1(a), . . . , ∇gr(a) with coefficients λ1 , . . . , λr . Coefficients λ1 , . . . , λr are
called Lagrange multipliers.17 To sum up, we have established the following remarkableR
theorem which is the essence of the Lagrange multipliers method.

16 Λ is unique if the number of constraints, r , does not exceed dimension m . Incidentally, this is the only
interesting case.

17Giuseppe Lodovico Lagrangia (1736–1813), his name is better known in its French form.
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At any point a where function f has a local extremum with r constraints
(72), gradient vector ∇f(a) can be expressed as a linear combination (77)
of gradient vectors ∇g1(a), . . . , ∇gr(a) for suitable numbers λ1, ..., λr pro-
vided a is a regular point of the vector-constraint function:

g(x) =

 g1(x)
...

gr(x)

 .

(78)

Theorem (78) holds for any values of m and r . In practice, its usefulness for finding
constrained extrema of f is limited only to situations when the number of constraints is
less than m . Here is the reason: if r > m then the level sets of all regular points of g
reduce to isolated points. In this case, one simply checks the values of the function f at
those isolated points that satisfy constraints (72).

Finally, you should be always prepared that there may be no points satisfying given con-
straints, in which case level set (74) is empty. When this happens then there is no point, of
course, in trying to find corresponding constrained extrema of function f .
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