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1 R-spaces

1.1 Vocabulary
1.1.1

We shall call a pair X = (X, 0), where X isasetand O C RX is a unital R-algebra
of real valued functions on a set X, an R-space. Here X will be called the support
of X and will be denoted |X|, while © = O(X) will be called the structural algebra
of X.
In the category of R-spaces morphisms from X to g) are maps ¢ : |X| — [9)|
such that
0 :={fed| fE O} COX).

We shall denote the category of R-spaces by R-Spc.

1.1.2 An R-space associated with a topological space

With any topological space (X, ") one can naturally associate an R-space (X, C(X))
where C(X) = C(X, ) denotes the algebra of functions X — R continuous with
respect to topology . This defines a functor from the category of topological
spaces Top to R-Spc

C: Top» R-Spe, (X,9)+— (X,C(X,T)). (1)

1.1.3 R-spaces associated with a subset of R"

We shall say that a function f : D — R on a subset D C R" is of class C’,
0 < r £ o0, (analytic, polynomial), if f is the restriction to D of a function of
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class C" (respectively, analytic, polynomial) defined on an open subset containing
D.

Functions of class C" (respectively, analytic, polynomial) on D form an al-
gebra denoted below C"(D) (respectively, 0**(D), 0™ (D)). With each of the
above algebras there is associated a corresponding R-space: D" = (D, C"(D)),
D™ = (D, 6*(D)), and D™ = (D, 6*'(D)), respectively.

1.1.4 The canonical topology

The topology 9 = I (¥X) generated by the family of preimages of open subsets of
R by members of O = O(%),

B = {f‘l(V) | feo,Vc Ropen},

is the weakest topology on X = |¥| in which all f € O are continuous as functions
X — R. We shall call it the canonical topology of an R-space X.
This defines a functor

T: R-Spc - Top, X =(X,0) — (X,T(¥)). )

Exercise 1 Show that the canonical topology is generated by the family of preim-
ages of intervals (—¢, €):

By={f""(-e,)| f€O, e>0}.

Exercise 2 Show that the canonical topology is completely regular, i.e., for any
closed subset Z C X and a point p & Z, there exists a function f . X — R,
continuous in canonical topology, such that

fp)=1 and fiz=1

Exercise 3 Let (X,9) be a topological space and §) = (Y, O) be an R-space.
Show that a map ¢ . (X,T) — (Y,T(Y)) is continuous if and only if ¢*(0O) C
C(X,9).

Derive from this that the functor Top ~ R-Spc, defined in (1), is left adjoint
to the functor R-Spc ~ Top defined in (2).

Exercise 4 Show that

SoToS=S and TeST=T.



1.2 Integral of a differential form over a parametric patch
1.2.1 Regions in Euclidean space
A subset D C RY will be called a region if it is contained in the closure of its
interior. We shall mostly deal with open or closed regions.
1.2.2
Denote by Q}) the free O(D)-module of rank g with basis
dx,, ... dqu.
The map
| o 9f
d°: 0(D)— Qp,  frdf.) -

i=1 i

X, 3)

is an R-linear derivation of algebra O(D). It is in fact a universal continuous

derivation with values in a locally convex @(D)-module. The subscript ¢ indicates

that and also serves the reader warning not to confuse df € Qi) withd f € Q 1@( DR

Derivation (3) induces an O(D)-linear and obviously surjective map
Qupyr — Qp df ~ d°f,
which in turn induces a surjective map of differential graded O(D)-algebras
Qo — L = NopQp. @ at. 4
Note that
(fodfi A= Ndf,) = fodfi A NS,
1.2.3 Volume forms

Since Q}) is free of rank g, its p-th exterior power, Q’; is free of rank (i). In

particular, Q is a free O(D)-module of rank I,

Qi = O(D)dx| A= Ndx,. )

q

1.2.4 A parametric “patch”

Let X = (X, O) be an R-space. For any region D € R?, amorphismy : (D,C*(D)) —
X will be a called a g-patch (of class C*®) in X.
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1.2.5
Any such morphism induces a morphism of differential graded R-algebras

— OF

Q; C=(D)R" ©6)

O(®/R

Its composition with with epimorphism (4) will be denoted y* and called the pull-
back map (associated with the patch).

1.2.6

For any g-form a € Q‘é and any g-patch y, its pullback, y*a is a volume form on
D. In particular,

Yia= fdx A Adx,
for a unique function f € C*(D). This function will be denoted

*

[d r2 [ (7)
dx; A ANdx,

We define then /y a as the g-tuple integral

ya
= = . 8
/y(x /Df /Dd"‘xl A - /\dqu ®)

Integral in (33) is meant in the sense of Riemann g-dimensional integral if D
is bounded. If it is not, then (33) can be understood as an improper integral:

) v a
a = lim - —.
y r—oo DnBr(O)dxl/\“'/\dxq

1.2.7
2 Singular homology of an R-space

2.1 Euclidean g-simplices
2.1.1

A standard model of the topological g-dimensional simplex A?, where 0 < g < oo,
represents it as the following subspace of R*!:

{(tgs i) €R™ |1, > 0510+ - + 1, =1}, )
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2.1.2 Barycentric coordinates

Restrictions to A? of the g + 1 projections R?"" — R are called barycentric coor-
dinates.

2.1.3 Face maps

If g > 0, then the g-simplex has g + 1 faces of dimension g — 1:
A = {(t,, ly) € R |, =0} 0<Li<yg. (10)
Each face is identified with A?! via one of the following ¢ + 1 face maps:

d? AT — A9 (s -eesty) P (s oontin 0oty it ). (1)

1

Note that

dl . (ty,....1,_) = (0,1y,....1,.;) and d(‘jﬂ D(tgs ety ) P (tgs st 1, 0).

Exercise 5 Show that
di*'al = df“dj_l 0<j<i<qg). (12)

We shall refer to (12) as the Face Relations.

2.1.4 R-space structures on the topological simplices

Face maps (11) are as important as spaces A? themselves. When equipping A? with
an R-space structure we should do this simultaneously for all g and in a manner
compatible with the face maps. In other words, let © be, for each ¢ € N, a
subalgebra of the algebra of all R-valued functions R’ such that

(@) 0" co™  (g>1;0<i<q).
We shall call the resulting family of R-spaces
A ={(A%, 0"} jen

a A-realization.
There are several natural realizations

Set theoretic realization A™ = { (A", [RM) }
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Topological realization A" = {(A9, C(AY)},
Realization of class C" (0 < r < o0) A" = {(AY, C"(AY)},
Smooth realization A*" = {(A?, C*(A?)},
Analytic realization A™ = {(A‘, 6™ (AY)},
Polynomial realization AP = {(A?, 6™ (AY)}.
Note that the realizations of class C° and C™ are the same as the topological

and, respectively, smooth realizations.

2.2 Singular chain complexes
2.2.1 Singular g-simplices

Fix a realization A. Given an R-space X = (X, 0), morphisms
y: AT=(AY,07) — X

will be called singular g-simplices in X.

2.2.2 Singular g-chains

Elements of the free abelian group generated by singular g-simplices
C,(X) := ZHomyg g, (A", X) (13)
are called singular q-chains in X. It is customary to put
C,®)=0 (¢<0)

in view of the fact that the sets of singular g-simplices are empty for g < 0.

2.2.3 The boundary maps

For any g > 0, the formula

9, 1=di —dj + -+ (=1)d] (14)
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or, more explicitly,
0,0) i=0cedy—0cod + -+ (=1)oed, (15)
defines a homomorphism of abelian groups
9, : C(X) — C_(X). (16)

Exercise 6 Show that

0,.,°0,=0 (g € 2). (17)

q-1 q

2.3 Chain complex vocabulary
2.3.1 Chain complexes of A-modules

Let A be an algebra. A sequence C, of (left) A-modules {C,} ., and of A-module
maps d, : M, - M__, is called a chain complex of A-modules if maps d, satisfy
identity (16).

Maps {9, } 7 satisfying (16) are called boundary maps.

2.3.2 Cycles

Elements of Ker d, are called g-cycles. They form an A-submodule of C, which is
usually denoted Z, (“Zyklen” in German).

2.3.3 Boundaries

Elements of Imd,,, are called g-boundaries. They form an A-submodule of Z,
which is usually denoted B,

2.3.4 Homology groups of a chain complex

Boundaries are considered to be “trivial” cycles. The homology groups, which are
defined as the quotients

H,(C.) :=Kerd,/Ima (18)

q+1°

measure the difference between cycles and boundaries: H, vanishes precisely
when every g-cycle is a boundary. The homology groups of a chain complex of A-
modules are A-modules themselves: the terminology “homology groups” is only

a lasting tribute to tradition.



2.3.5 The category of chain complexes

Chain complexes of A-modules naturally form a category: morphisms ¢ : (C,,d,) —
(C!,0!) consist of sequences of A-module maps ¢ g -G C; such that all the
squares in the following diagram

0, 0, [7)
q-1 q q+1 q+2
Coi C, Co1
coq_ll O l(pq o \L@q-H
C’ C Cc .~
' R S
04—] 1 aq aq+1 i aq+2

commute. We shall denote this category € (A).
A morphism between complexes induces a sequence of A-module maps be-
tween the corresponding homology groups

H,(9) : H(C) — H,C).
Each H g is thus a functor
Hq . 6(A) » A-mod. (19)

One can also collectively think of H, = { H, g } gez a5 2 functor from € (A) into the
category of graded A-modules.

2.3.6 Null-homotopic morphisms

A morphism ¢ : C, — C! is said to be null-homotopic (or, homotopic to zero) if
it can be represented as the “supercommutator”

@, =h,°0,+ a;H °h, (q € 2). (20)
of the boundary maps and of a certain map h : C, — C! of degree 1. The latter
means that h = {h,} ., where h, is an A-module map C, — C’

q+1°
If h satisfies (20), then we call it a contracting homotopy for morphism ¢.

Exercise 7 Show that
H, (p)=0 (g€ 2)

for any null-morphism.



2.3.7 Homotopy classes of morphisms

We say that two morphisms ¢ and y from C, to C! are chain homotopic if ¢ — y
is null-homotopic.
Chain homotopy is an equivalence relation on the sets of morphisms

Homyg,,,(C,, C)).

Null-homotopic morphisms define an ideal in the category of chain complexes of
A-modules. The quotient category, which has chain complexes of A-modules as
its objects, and homotopy classes of morphisms as its morphisms, is called the
homotopy category of chain complexes of A-modules.

It follows from Exercise 7 that the homology functors (19) factorize through
the homotopy category.

2.3.8 Homotopy equivalences

We say that a morphism ¢ : C, — C! is a homotopy equivalence if it becomes an
isomorphism between C, and C! in the homotopy category.

Explicitly, @ is a homotopy equivalence if there exists amorphismy : C! — C,
such that @  y is homotopic to id. and y » @ is homotopic to id. .

2.3.9 Contractible complexes

A complex C, is said to be contractible if it is homotopy equivalent to the zero
complex.

Exercise 8 Show that C, is contractible if and only if i is null-homotopic.

2.3.10

For any A-module M, consider the chain complex M[0]

M), =4 ™M i4=0 @)
1 0  otherwise

The correspondence M +— M|[0] defines a canonical embedding of the category
of A-modules into the category of chain complexes of A-modules.



2.3.11 Shift functors

For any j € Z and any chain complex C,, define C,[] as
(CLUD, :=C,_; and  (dlj]), :=(-1Y9,_;. (22)

This defines so called shift functors €(A) ~» €(A).
Note that

[i]e[jl=1[i+ /] and [0] = idgy) -

2.4 Singular homology
2.4.1 The singular chain complexes of an R-space

In view of identities (17), the sequence of abelian groups {C, (¥)} , and homo-
morphisms {d,} ., forms a chain complex of abelian groups (i.e., Z-modules).
We shall denote it C,(¥X) and refer to it as the singular chain complex of X.

This complex and its homology depend on the chosen realization A. To indi-
cate this dependence we may be also using notation C2(X).

Note that the correspondence X — CA(%) is functorial in %, in other words, it
defines a functor from the category of R-spaces to the category of chain complexes
of abelian groups.

24.2

In special cases like the ones mentioned in 2.1.4, we shall be speaking of set-
theoretic, continuous (or topological), smooth (or class C™), analytic and, respec-
tively, polynomial singular chains. The corresponding complexes will be denoted
C (%), CP(%), CS™(%), C;"(¥) and, respectively, CEOI(%).

243

Note that C¥*(X) depends only on the underlying set |X|, not on the structural
algebra O(X).

2.4.4 The singular homology groups of an R-space

The homology groups of C2(X) will be denoted H2(X) and referred to as the
singular homology groups of X (with respect to a given realization A).
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24.5

In special cases mentioned in 2.1.4, we shall be speaking of set-theoretic, contin-
uous (or topological), smooth (or class C*), analytic and, respectively, polyno-
mial singular homology groups of X. The corresponding groups will be denoted
H*(X), H™(%), H™(%), H™(¥) and, respectively, H}*(%).

2.4.6 Example: singular homology of a point

A set consisting of a single element X = {*} admits a unique R-space structure:
O = R. For every g € Z, there is only one singular g-simplex: the unique map
ol : A7 — {x}, irrespective of the actual simplicial realization A we use. It
follows that each singular chain group is a free group of rank 1:

Cl(x) = Zo* (q € 2).

Exercise 9 Show that 0, in CA(%) is zero for any odd q, and that 9, is an isomor-
phism C, ~ C,__, for any even q > 2.

Exercise 10 Show that the inclusion of Z[0] into C*(x) is a homotopy equiva-
lence.

24.7

We have noted before that the set-theoretic singular complex C*'(X) depends only
on the underlying set X = |¥X|, not on the structural algebra O(X). We shall there-
fore also denote it by C'(X).

We will now prove that C:*(X) is homotopy equivalent to C:*'(x) which we
already know is homotopy equivalent to Z[0].

Proposition 2.1 For any two maps ¢ and y from a set X to a set Y, the induced
morphisms of the set-theoretic singular chain complexes are homotopy equivalent.

Proof. Since the cardinality of Y is less or equal 1 when one of the sets is
empty, we can assume that both X and Y are nonempty.

Let y € Y. It suffices to show that, for any map ¢ : X — Y, the morphism
. 1 C*(X) - C*(Y) is chain homotopic to the morphism y, induced by the
map that sends every element of X to y:

p(x) =y (x € X).
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Define the maps £, : C;*(X) — Cqsffl(Y) as follows:

Bty ot ,) = {f(”(ﬁ_tof_m)) E?S_’;)“), (23)
-

We have

((0n)(©)) (g, .. 1,) =
h(0)(0, 1y, ....1,) — h(0)(15,0, 1), ..., 1,) + -
+ (=D™h(o)(1y, ....1,,0) (24)

9 q’

and

((ho)(@)) (tgs --.n1,) =
h(6) (19, 0.1, ....1,) + - + (=1)?h(0) (g, ....1,,0) . (25)
By combining (24)—(25) with (23) we obtain
((0h + ho)o) (tg, ....1,) = h(6)(0, 1o, ....1,) = 6 (tg, -0 1,)

1.e.,
Oh+hoo=0c  (0c€CX)).
O

Corollary 2.2 Any map between nonempty sets ¢ : X — Y induces a homotopy
equivalence between C*'(X) and C*(Y).

Indeed, forany map v : Y — X, morphism ¢, ey, = (¢oy), is chain homotopic
t0 idcse(yy and y, o b, = (yo ), is chain homotopic to id ey, in view of just proven

Proposition 2.1.

Corollary 2.3 For any nonempty set X, the set-theoretic singular chain complex
C*(X) is homotopy equivalent to Z[0). In particular,

set _ VA (q = 0)
H(X) = {0 oo (26)
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2.5 De Rham Theory

2.6 De Rham Pairing
2.6.1

Let X = (X, O) be an R-space. For any g € N, there is an obvious pairing

Cr®)xQl  — R, (c,a) — /a 27)

where the integration is extended by Z-linearity from singular g-simplices to sin-
gular g-chains:

if o= my then /a:=2my/a. (28)
c Y

2.6.2

de Rham pairing is obviously additive (i.e., Z-linear) in left argument and R-linear
in right argument.

Theorem 2.4 (Stokes Theorem) The boundary map 0 : C(X) — C,_(X) and

the de Rham differential d Q‘g[é are adjoint to each other, i.e.,

/ p= / df (o€ C,X), peQl ). (29)
do c

2.6.3

An equivalent formulation of Stokes’ Theorem is obtained by considering the sin-
gular cochain complex (Cy(¥;R), 6) which is defined as the dual of the singular
chain complex:

C! = Homy, 0q(CA(¥), R) = Map(Homg, (A, %), R) (30)

and
(6(@)) (6) := @(do) (peClX),0€ CqA(x)) . 3D
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2.6.4 De Rham Map

De Rham Map is the dual form of the de Rham Pairing introduced in (27)

Q! — CI (%;R), a— /(x,

O(%)/R

where / a is a singular cochain

/a:aH/a (O'GC;m(X)).

Theorem 2.5 (Stokes Theorem (dual form)) One has

/dﬁzé(/dﬁ) (BeQp),

i.e., de Rham Map is a morphism of cochain complexes,

(Qf . d) — (CL(X:R),5).

OIR?

2.6.5

(32)

(33)

It follows that the de Rham Map induces a homomorphism of cohomology groups

(which are graded R-vector spaces):

H((O(X)/R) — H (%;R).

m
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