Integral Calculus

Mariusz Wodzicki

March 28, 2011

$1 \mathbb{R}$-spaces

1.1 Vocabulary

1.1.1

We shall call a pair $\mathfrak{X}=(X, \mathcal{O})$, where X is a set and $\mathscr{O} \subseteq \mathbb{R}^{X}$ is a unital \mathbb{R}-algebra of real valued functions on a set X, an \mathbb{R}-space. Here X will be called the support of \mathfrak{X} and will be denoted $|\mathfrak{X}|$, while $\mathcal{O}=\mathcal{O}(\mathfrak{X})$ will be called the structural algebra of \mathfrak{X}.

In the category of \mathbb{R}-spaces morphisms from \mathfrak{X} to \mathfrak{Y} are maps $\phi:|\mathfrak{X}| \rightarrow|\mathfrak{Y}|$ such that

$$
\phi^{*} \mathcal{O}(\mathfrak{Y}):=\{f \circ \phi \mid f \in \mathcal{O}(\mathfrak{Y})\} \subseteq \mathcal{O}(\mathfrak{X}) .
$$

We shall denote the category of \mathbb{R}-spaces by \mathbb{R}-Spc.

1.1.2 An \mathbb{R}-space associated with a topological space

With any topological space (X, \mathscr{T}) one can naturally associate an \mathbb{R}-space $(X, C(X))$ where $C(X)=C(X, \mathscr{T})$ denotes the algebra of functions $X \rightarrow \mathbb{R}$ continuous with respect to topology \mathscr{T}. This defines a functor from the category of topological spaces Top to \mathbb{R}-Spc

$$
\begin{equation*}
C: \text { Top } \rightsquigarrow \mathbb{R} \text {-Spc, } \quad(X, \mathscr{T}) \longmapsto(X, C(X, \mathscr{T})) . \tag{1}
\end{equation*}
$$

1.1.3 \mathbb{R}-spaces associated with a subset of \mathbb{R}^{n}

We shall say that a function $f: D \rightarrow \mathbb{R}$ on a subset $D \subseteq \mathbb{R}^{n}$ is of class C^{r}, $0 \leq r \leq \infty$, (analytic, polynomial), if f is the restriction to D of a function of
class C^{r} (respectively, analytic, polynomial) defined on an open subset containing D.

Functions of class C^{r} (respectively, analytic, polynomial) on D form an algebra denoted below $C^{r}(D)$ (respectively, $\mathscr{O}^{\text {an }}(D), \mathscr{O}^{\text {pol }}(D)$). With each of the above algebras there is associated a corresponding \mathbb{R}-space: $\mathbf{D}^{r}=\left(D, C^{r}(D)\right)$, $\mathbf{D}^{\text {an }}=\left(D, \mathscr{O}^{\text {an }}(D)\right)$, and $\mathbf{D}^{\text {an }}=\left(D, \mathcal{O}^{\text {pol }}(D)\right)$, respectively.

1.1.4 The canonical topology

The topology $\mathscr{T}=\mathscr{T}(\mathfrak{X})$ generated by the family of preimages of open subsets of \mathbb{R} by members of $\mathcal{O}=\mathcal{O}(\mathfrak{X})$,

$$
\mathscr{B}=\left\{f^{-1}(V) \mid f \in \mathcal{O}, V \subseteq \mathbb{R} \text { open }\right\},
$$

is the weakest topology on $X=|\mathfrak{X}|$ in which all $f \in \mathcal{O}$ are continuous as functions $X \rightarrow \mathbb{R}$. We shall call it the canonical topology of an \mathbb{R}-space \mathfrak{X}.

This defines a functor

$$
\begin{equation*}
T: \mathbb{R}-\mathbf{S p c} \rightsquigarrow \mathbf{T o p}, \quad \mathfrak{X}=(X, \mathcal{O}) \longmapsto(X, \mathscr{T}(\mathfrak{X})) . \tag{2}
\end{equation*}
$$

Exercise 1 Show that the canonical topology is generated by the family of preimages of intervals $(-\varepsilon, \varepsilon)$:

$$
\mathscr{B}_{0}=\left\{f^{-1}(-\varepsilon, \varepsilon) \mid f \in \mathcal{O}, \varepsilon>0\right\} .
$$

Exercise 2 Show that the canonical topology is completely regular, i.e., for any closed subset $Z \subseteq X$ and a point $p \notin Z$, there exists a function $f: X \rightarrow \mathbb{R}$, continuous in canonical topology, such that

$$
f(p)=1 \quad \text { and } \quad f_{\mid Z}=1
$$

Exercise 3 Let (X, \mathscr{T}) be a topological space and $\mathfrak{Y}=(Y, \mathcal{O})$ be an \mathbb{R}-space. Show that a map $\phi:(X, \mathscr{T}) \rightarrow(Y, \mathscr{T}(\mathfrak{Y}))$ is continuous if and only if $\phi^{*}(\mathcal{O}) \subseteq$ $C(X, \mathscr{T})$.

Derive from this that the functor $\mathbf{T o p} \leadsto \mathbb{R}$-Spc, defined in (1), is left adjoint to the functor \mathbb{R}-Spc \rightsquigarrow Top defined in (2).

Exercise 4 Show that

$$
S \circ T \circ S=S \quad \text { and } \quad T \circ S \circ T=T .
$$

1.2 Integral of a differential form over a parametric patch

1.2.1 Regions in Euclidean space

A subset $D \subseteq \mathbb{R}^{q}$ will be called a region if it is contained in the closure of its interior. We shall mostly deal with open or closed regions.

1.2.2

Denote by Ω_{D}^{1} the free $\mathcal{O}(D)$-module of rank q with basis

$$
d^{c} x_{1}, \ldots, d^{c} x_{q} .
$$

The map

$$
\begin{equation*}
d^{c}: \mathcal{O}(D) \longrightarrow \Omega_{D}^{1}, \quad f \mapsto d^{c} f_{=} \sum_{i=1}^{q} \frac{\partial f}{\partial x_{i}} d^{c} x_{i} \tag{3}
\end{equation*}
$$

is an \mathbb{R}-linear derivation of algebra $\mathcal{O}(D)$. It is in fact a universal continuous derivation with values in a locally convex $\mathcal{O}(D)$-module. The subscript c indicates that and also serves the reader warning not to confuse $d^{c} f \in \Omega_{D}^{1}$ with $d f \in \Omega_{\mathscr{O}(D) / \mathbb{R}}^{1}$.

Derivation (3) induces an $\mathcal{O}(D)$-linear and obviously surjective map

$$
\Omega_{\mathcal{O}(D) / \mathbb{R}}^{1} \longrightarrow \Omega_{D}^{1} \quad d f \mapsto d^{c} f,
$$

which in turn induces a surjective map of differential graded $\mathcal{O}(D)$-algebras

$$
\begin{equation*}
\Omega_{O(D) / \mathbb{R}}^{*} \longrightarrow \Omega_{D}^{*}:=\bigwedge_{\sigma(D)}^{*} \Omega_{D}^{1}, \quad \alpha \mapsto \alpha^{c} \tag{4}
\end{equation*}
$$

Note that

$$
\left(f_{0} d f_{1} \wedge \cdots \wedge d f_{p}\right)^{c}=f_{0} d^{c} f_{1} \wedge \cdots \wedge d^{c} f_{p}
$$

1.2.3 Volume forms

Since Ω_{D}^{1} is free of rank q, its p-th exterior power, Ω_{D}^{p} is free of rank $\binom{q}{p}$. In particular, Ω_{D}^{q} is a free $\mathcal{O}(D)$-module of rank 1,

$$
\begin{equation*}
\Omega_{D}^{q}=\mathcal{O}(D) d^{c} x_{1} \wedge \cdots \wedge d^{c} x_{q} . \tag{5}
\end{equation*}
$$

1.2.4 A parametric "patch"

Let $\mathfrak{X}=(X, \mathcal{O})$ be an \mathbb{R}-space. For any region $D \in \mathbb{R}^{q}$, a morphism $\gamma:\left(D, C^{\infty}(D)\right) \rightarrow$ \mathfrak{X} will be a called a q-patch (of class C^{∞}) in \mathfrak{X}.

1.2.5

Any such morphism induces a morphism of differential graded \mathbb{R}-algebras

$$
\begin{equation*}
\Omega_{\tilde{O}(x) / \mathbb{R}}^{*} \longrightarrow \Omega_{C^{\infty}(D) / \mathbb{R}}^{*} . \tag{6}
\end{equation*}
$$

Its composition with with epimorphism (4) will be denoted γ^{*} and called the pullback map (associated with the patch).

1.2.6

For any q-form $\alpha \in \Omega_{\mathscr{O}}^{q}$ and any q-patch γ, its pullback, $\gamma^{*} \alpha$ is a volume form on D. In particular,

$$
\gamma^{*} \alpha=f d^{c} x_{1} \wedge \cdots \wedge d^{c} x_{q}
$$

for a unique function $f \in C^{\infty}(D)$. This function will be denoted

$$
\begin{equation*}
\frac{\gamma^{*} \alpha}{d^{c} x_{1} \wedge \cdots \wedge d^{c} x_{q}} \tag{7}
\end{equation*}
$$

We define then $\int_{\gamma} \alpha$ as the q-tuple integral

$$
\begin{equation*}
\int_{\gamma} \alpha:=\int_{D} f=\int_{D} \frac{\gamma^{*} \alpha}{d^{c} x_{1} \wedge \cdots \wedge d^{c} x_{q}} \tag{8}
\end{equation*}
$$

Integral in (33) is meant in the sense of Riemann q-dimensional integral if D is bounded. If it is not, then (33) can be understood as an improper integral:

$$
\int_{\gamma} \alpha:=\lim _{r \rightarrow \infty} \int_{D \cap B_{r}(0)} \frac{\gamma^{*} \alpha}{d^{c} x_{1} \wedge \cdots \wedge d^{c} x_{q}}
$$

1.2.7

2 Singular homology of an \mathbb{R}-space

2.1 Euclidean q-simplices

2.1.1

A standard model of the topological q-dimensional simplex Δ^{q}, where $0 \leq q<\infty$, represents it as the following subspace of \mathbb{R}^{q+1} :

$$
\begin{equation*}
\left\{\left(t_{0}, \ldots, t_{q}\right) \in \mathbb{R}^{q+1} \mid t_{i} \geq 0 ; t_{0}+\cdots+t_{q}=1\right\} \tag{9}
\end{equation*}
$$

2.1.2 Barycentric coordinates

Restrictions to Δ^{q} of the $q+1$ projections $\mathbb{R}^{q+1} \rightarrow \mathbb{R}$ are called barycentric coordinates.

2.1.3 Face maps

If $q>0$, then the q-simplex has $q+1$ faces of dimension $q-1$:

$$
\begin{equation*}
\Delta_{i}^{q}:=\left\{\left(t_{0}, \ldots, t_{q}\right) \in \mathbb{R}^{q+1} \mid t_{i}=0\right\} \quad(0 \leq i \leq q) \tag{10}
\end{equation*}
$$

Each face is identified with Δ^{q-1} via one of the following $q+1$ face maps:

$$
\begin{equation*}
d_{i}^{q}: \Delta^{q-1} \longrightarrow \Delta^{q}, \quad\left(t_{0}, \ldots, t_{q-1}\right) \mapsto\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{q-1}\right) . \tag{11}
\end{equation*}
$$

Note that

$$
d_{0}^{q}:\left(t_{0}, \ldots, t_{q-1}\right) \mapsto\left(0, t_{0}, \ldots, t_{q-1}\right) \quad \text { and } \quad d_{q+1}^{q}:\left(t_{0}, \ldots, t_{q-1}\right) \mapsto\left(t_{0}, \ldots, t_{q-1}, 0\right)
$$

Exercise 5 Show that

$$
\begin{equation*}
d_{j}^{q+1} d_{i}^{q}=d_{i}^{q+1} d_{j-1}^{q} \quad(0 \leq j<i \leq q) \tag{12}
\end{equation*}
$$

We shall refer to (12) as the Face Relations.

2.1.4 \mathbb{R}-space structures on the topological simplices

Face maps (11) are as important as spaces Δ^{q} themselves. When equipping Δ^{q} with an \mathbb{R}-space structure we should do this simultaneously for all q and in a manner compatible with the face maps. In other words, let \mathcal{O}^{q} be, for each $q \in \mathbb{N}$, a subalgebra of the algebra of all \mathbb{R}-valued functions $\mathbb{R}^{\Delta^{q}}$ such that

$$
\left(d_{i}^{q}\right)^{*} \mathcal{O}^{q} \subseteq \mathcal{O}^{q-1} \quad(q>1 ; 0 \leq i \leq q)
$$

We shall call the resulting family of \mathbb{R}-spaces

$$
\boldsymbol{\Delta}=\left\{\left(\Delta^{q}, \mathcal{O}^{q}\right)\right\}_{q \in \mathbb{N}}
$$

a Δ-realization.
There are several natural realizations
Set theoretic realization $\Delta^{\text {set }}=\left\{\left(\Delta^{q}, \mathbb{R}^{\Delta^{q}}\right)\right\}$,

Topological realization $\Delta^{\text {top }}=\left\{\left(\Delta^{q}, C\left(\Delta^{q}\right)\right\}\right.$,
Realization of class $C^{r}(0 \leq r \leq \infty) \quad \Delta^{(r)}=\left\{\left(\Delta^{q}, C^{r}\left(\Delta^{q}\right)\right\}\right.$,
Smooth realization $\Delta^{\mathrm{sm}}=\left\{\left(\Delta^{q}, C^{\infty}\left(\Delta^{q}\right)\right\}\right.$,
Analytic realization $\Delta^{\text {an }}=\left\{\left(\Delta^{q}, \mathscr{O}^{\text {an }}\left(\Delta^{q}\right)\right\}\right.$,
Polynomial realization $\Delta^{\mathrm{pol}}=\left\{\left(\Delta^{q}, \mathscr{O}^{\mathrm{pol}}\left(\Delta^{q}\right)\right\}\right.$.
Note that the realizations of class C^{0} and C^{∞} are the same as the topological and, respectively, smooth realizations.

2.2 Singular chain complexes

2.2.1 \quad Singular q-simplices

Fix a realization $\boldsymbol{\Delta}$. Given an \mathbb{R}-space $\mathfrak{X}=(X, \mathcal{O})$, morphisms

$$
\gamma: \Delta^{q}=\left(\Delta^{q}, \mathcal{O}^{q}\right) \longrightarrow \mathfrak{X}
$$

will be called singular q-simplices in \mathfrak{X}.

2.2.2 Singular q-chains

Elements of the free abelian group generated by singular q-simplices

$$
\begin{equation*}
C_{q}(\mathfrak{X}):=\mathbb{Z} \operatorname{Hom}_{\mathbb{R}-\mathbf{S p c}}\left(\boldsymbol{\Delta}^{q}, \mathfrak{X}\right) \tag{13}
\end{equation*}
$$

are called singular q-chains in \mathfrak{X}. It is customary to put

$$
C_{q}(\mathfrak{X})=0 \quad(q<0)
$$

in view of the fact that the sets of singular q-simplices are empty for $q<0$.

2.2.3 The boundary maps

For any $q \geq 0$, the formula

$$
\begin{equation*}
\partial_{q}:=d_{0}^{*}-d_{1}^{*}+\cdots+(-1)^{q} d_{q}^{*} \tag{14}
\end{equation*}
$$

or, more explicitly,

$$
\begin{equation*}
\partial_{q}(\sigma):=\sigma \circ d_{0}-\sigma \circ d_{1}+\cdots+(-1)^{q} \sigma \circ d_{q}, \tag{15}
\end{equation*}
$$

defines a homomorphism of abelian groups

$$
\begin{equation*}
\partial_{q}: C_{q}(\mathfrak{X}) \longrightarrow C_{q-1}(\mathfrak{X}) . \tag{16}
\end{equation*}
$$

Exercise 6 Show that

$$
\begin{equation*}
\partial_{q-1} \circ \partial_{q}=0 \quad(q \in \mathbb{Z}) . \tag{17}
\end{equation*}
$$

2.3 Chain complex vocabulary

2.3.1 Chain complexes of A-modules

Let A be an algebra. A sequence C. of (left) A-modules $\left\{C_{q}\right\}_{q \in \mathbb{Z}}$ and of A-module maps $\partial_{q}: M_{q} \rightarrow M_{q-1}$ is called a chain complex of A-modules if maps ∂_{q} satisfy identity (16).

Maps $\left\{\partial_{q}\right\}_{q \in \mathbb{Z}}$ satisfying (16) are called boundary maps.

2.3.2 Cycles

Elements of $\operatorname{Ker} \partial_{q}$ are called q-cycles. They form an A-submodule of C_{q} which is usually denoted Z_{q} ("Zyklen" in German).

2.3.3 Boundaries

Elements of $\operatorname{Im} \partial_{q+1}$ are called q-boundaries. They form an A-submodule of Z_{q} which is usually denoted \boldsymbol{B}_{q}.

2.3.4 Homology groups of a chain complex

Boundaries are considered to be "trivial" cycles. The homology groups, which are defined as the quotients

$$
\begin{equation*}
H_{q}\left(C_{.}\right):=\operatorname{Ker} \partial_{q} / \operatorname{Im} \partial_{q+1}, \tag{18}
\end{equation*}
$$

measure the difference between cycles and boundaries: H_{q} vanishes precisely when every q-cycle is a boundary. The homology groups of a chain complex of A modules are A-modules themselves: the terminology "homology groups" is only a lasting tribute to tradition.

2.3.5 The category of chain complexes

Chain complexes of A-modules naturally form a category: morphisms $\varphi:\left(C_{\text {. }}, \partial_{\mathrm{o}}\right) \rightarrow$ $\left(C_{.}^{\prime}, \partial_{.}^{\prime}\right)$ consist of sequences of A-module maps $\varphi_{q}: C_{q} \rightarrow C_{q}^{\prime}$ such that all the squares in the following diagram

commute. We shall denote this category $\mathscr{C}(A)$.
A morphism between complexes induces a sequence of A-module maps between the corresponding homology groups

$$
H_{q}(\varphi): H_{q}(C) \longrightarrow H_{q}\left(C^{\prime}\right) .
$$

Each H_{q} is thus a functor

$$
\begin{equation*}
H_{q}: \mathscr{C}(A) \rightsquigarrow A \text {-mod. } \tag{19}
\end{equation*}
$$

One can also collectively think of $\boldsymbol{H}_{.}=\left\{\boldsymbol{H}_{q}\right\}_{q \in \mathbb{Z}}$ as a functor from $\mathscr{C}(A)$ into the category of graded A-modules.

2.3.6 Null-homotopic morphisms

A morphism $\varphi: C . \rightarrow C^{\prime}$. is said to be null-homotopic (or, homotopic to zero) if it can be represented as the "supercommutator"

$$
\begin{equation*}
\varphi_{q}=h_{q-1} \circ \partial_{q}+\partial_{q+1}^{\prime} \circ h_{q} \quad(q \in \mathbb{Z}) \tag{20}
\end{equation*}
$$

of the boundary maps and of a certain map $h: C . \rightarrow C_{\text {. }}^{\prime}$ of degree 1 . The latter means that $h=\left\{h_{q}\right\}_{q \in \mathbb{Z}}$ where h_{q} is an A-module map $C_{q} \rightarrow C_{q+1}^{\prime}$.

If h satisfies (20), then we call it a contracting homotopy for morphism φ.
Exercise 7 Show that

$$
H_{q}(\varphi)=0 \quad(q \in \mathbb{Z})
$$

for any null-morphism.

2.3.7 Homotopy classes of morphisms

We say that two morphisms φ and ψ from C. to $C_{.}^{\prime}$ are chain homotopic if $\varphi-\psi$ is null-homotopic.

Chain homotopy is an equivalence relation on the sets of morphisms

$$
\operatorname{Hom}_{\mathscr{G}(A)}\left(C_{.}, C_{.}^{\prime}\right)
$$

Null-homotopic morphisms define an ideal in the category of chain complexes of A-modules. The quotient category, which has chain complexes of A-modules as its objects, and homotopy classes of morphisms as its morphisms, is called the homotopy category of chain complexes of A-modules.

It follows from Exercise 7 that the homology functors (19) factorize through the homotopy category.

2.3.8 Homotopy equivalences

We say that a morphism $\varphi: C . \rightarrow C_{0}^{\prime}$ is a homotopy equivalence if it becomes an isomorphism between C. and C_{0}^{\prime} in the homotopy category.

Explicitly, φ is a homotopy equivalence if there exists a morphism $\psi: C_{.}^{\prime} \rightarrow C$. such that $\varphi \circ \psi$ is homotopic to $\mathrm{id}_{C^{\prime}}$ and $\psi \circ \varphi$ is homotopic to $\mathrm{id}_{C_{.}}$.

2.3.9 Contractible complexes

A complex C. is said to be contractible if it is homotopy equivalent to the zero complex.

Exercise 8 Show that C. is contractible if and only if $\mathrm{id}_{C .}$ is null-homotopic.

2.3.10

For any A-module M, consider the chain complex $M[0]$

$$
M[0]_{q}:= \begin{cases}M & \text { if } q=0 \tag{21}\\ 0 & \text { otherwise }\end{cases}
$$

The correspondence $M \mapsto M[0]$ defines a canonical embedding of the category of A-modules into the category of chain complexes of A-modules.

2.3.11 Shift functors

For any $j \in \mathbb{Z}$ and any chain complex C., define C. $[j]$ as

$$
\begin{equation*}
(C[j])_{q}:=C_{q-j} \quad \text { and } \quad(\partial[j])_{q}:=(-1)^{j} \partial_{q-j} \tag{22}
\end{equation*}
$$

This defines so called shift functors $\mathscr{C}(A) \rightsquigarrow \mathscr{C}(A)$.
Note that

$$
[i] \circ[j]=[i+j] \quad \text { and } \quad[0]=\mathrm{id}_{\mathscr{G}(A)}
$$

2.4 Singular homology

2.4.1 The singular chain complexes of an \mathbb{R}-space

In view of identities (17), the sequence of abelian groups $\left\{C_{q}(\mathfrak{X})\right\}_{q \in \mathbb{Z}}$ and homomorphisms $\left\{\partial_{q}\right\}_{q \in \mathbb{Z}}$ forms a chain complex of abelian groups (i.e., \mathbb{Z}-modules). We shall denote it $C .(\mathfrak{X})$ and refer to it as the singular chain complex of \mathfrak{X}.

This complex and its homology depend on the chosen realization $\boldsymbol{\Delta}$. To indicate this dependence we may be also using notation $C_{.}^{\boldsymbol{\Delta}}(\mathfrak{X})$.

Note that the correspondence $\mathfrak{X} \mapsto C_{\text {• }}^{\boldsymbol{\Delta}}(\mathfrak{X})$ is functorial in \mathfrak{X}, in other words, it defines a functor from the category of \mathbb{R}-spaces to the category of chain complexes of abelian groups.

2.4.2

In special cases like the ones mentioned in 2.1.4, we shall be speaking of settheoretic, continuous (or topological), smooth (or class C^{∞}), analytic and, respectively, polynomial singular chains. The corresponding complexes will be denoted $C^{\text {set }}(\mathfrak{X}), C^{\mathrm{top}}(\mathfrak{X}), C^{\mathrm{sm}}(\mathfrak{X}), C_{q}^{\mathrm{an}}(\mathfrak{X})$ and, respectively, $C_{q}^{\mathrm{pol}}(\mathfrak{X})$.

2.4.3

Note that $C_{\cdot}^{\text {set }}(\mathfrak{X})$ depends only on the underlying set $|\mathfrak{X}|$, not on the structural algebra $\mathcal{O}(\mathfrak{X})$.

2.4.4 The singular homology groups of an \mathbb{R}-space

The homology groups of $C_{\bullet}^{\boldsymbol{\Delta}}(\mathfrak{X})$ will be denoted $H_{\bullet}^{\boldsymbol{\Delta}}(\mathfrak{X})$ and referred to as the singular homology groups of \mathfrak{X} (with respect to a given realization $\boldsymbol{\Delta}$).

2.4.5

In special cases mentioned in 2.1.4, we shall be speaking of set-theoretic, continuous (or topological), smooth (or class C^{∞}), analytic and, respectively, polynomial singular homology groups of \mathfrak{X}. The corresponding groups will be denoted $H_{\cdot}^{\text {set }}(\mathfrak{X}), H_{\cdot}^{\mathrm{top}}(\mathfrak{X}), H_{\cdot}^{\mathrm{sm}}(\mathfrak{X}), H_{q}^{\text {an }}(\mathfrak{X})$ and, respectively, $\boldsymbol{H}_{q}^{\mathrm{pol}}(\mathfrak{X})$.

2.4.6 Example: singular homology of a point

A set consisting of a single element $X=\{*\}$ admits a unique \mathbb{R}-space structure: $\mathcal{O}=\mathbb{R}$. For every $q \in \mathbb{Z}$, there is only one singular q-simplex: the unique map $\sigma^{q}: \Delta^{q} \rightarrow\{*\}$, irrespective of the actual simplicial realization Δ we use. It follows that each singular chain group is a free group of rank 1 :

$$
C_{q}^{\Delta}(*)=\mathbb{Z} \sigma^{q} \quad(q \in \mathbb{Z}) .
$$

Exercise 9 Show that ∂_{q} in $C_{.}^{\boldsymbol{\Delta}}(*)$ is zero for any odd q, and that ∂_{q} is an isomorphism $C_{q} \simeq C_{q-1}$ for any even $q \geq 2$.

Exercise 10 Show that the inclusion of $\mathbb{Z}[0]$ into $C_{0}^{\Delta}(*)$ is a homotopy equivalence.

2.4.7

We have noted before that the set-theoretic singular complex $C_{.}^{\text {set }}(\mathfrak{X})$ depends only on the underlying set $X=|\mathfrak{X}|$, not on the structural algebra $\mathcal{O}(\mathfrak{X})$. We shall therefore also denote it by $C_{\text {set }}^{\text {set }}(X)$.

We will now prove that $C_{.}^{\text {set }}(X)$ is homotopy equivalent to $C_{.}^{\text {set }}(*)$ which we already know is homotopy equivalent to $\mathbb{Z}[0]$.

Proposition 2.1 For any two maps ϕ and ψ from a set X to a set Y, the induced morphisms of the set-theoretic singular chain complexes are homotopy equivalent.

Proof. Since the cardinality of Y^{X} is less or equal 1 when one of the sets is empty, we can assume that both X and Y are nonempty.

Let $y \in Y$. It suffices to show that, for any map $\phi: X \rightarrow Y$, the morphism $\phi .: C_{\text {et }}^{\text {set }}(X) \rightarrow C_{\text {et }}^{\text {set }}(Y)$ is chain homotopic to the morphism ψ. induced by the map that sends every element of X to y :

$$
\psi(x)=y \quad(x \in X)
$$

Define the maps $h_{q}: C_{q}^{\text {set }}(X) \rightarrow C_{q+1}^{\text {set }}(Y)$ as follows:

$$
h(\sigma)\left(t_{0}, \ldots, t_{q+1}\right):=\left\{\begin{array}{ll}
\phi\left(\sigma\left(\frac{t_{1}}{1-t_{0}}, \ldots, \frac{t_{q+1}}{1-t_{0}}\right)\right) & \left(0 \leq t_{0}<1\right) \tag{23}\\
y & \left(t_{0}=1\right)
\end{array} .\right.
$$

We have

$$
\begin{align*}
& ((\partial h)(\sigma))\left(t_{0}, \ldots, t_{q}\right)= \\
& \quad h(\sigma)\left(0, t_{0}, \ldots, t_{q}\right)-h(\sigma)\left(t_{0}, 0, t_{1}, \ldots, t_{q}\right)+\cdots \\
& \tag{24}\\
& \quad+(-1)^{q+1} h(\sigma)\left(t_{0}, \ldots, t_{q}, 0\right)
\end{align*}
$$

and

$$
\begin{align*}
((h \partial)(\sigma))\left(t_{0}, \ldots, t_{q}\right)= & \\
& h(\sigma)\left(t_{0}, 0, t_{1}, \ldots, t_{q}\right)+\cdots+(-1)^{q} h(\sigma)\left(t_{0}, \ldots, t_{q}, 0\right) . \tag{25}
\end{align*}
$$

By combining (24)-(25) with (23) we obtain

$$
((\partial h+h \partial) \sigma)\left(t_{0}, \ldots, t_{q}\right)=h(\sigma)\left(0, t_{0}, \ldots, t_{q}\right)=\sigma\left(t_{0}, \ldots, t_{q}\right),
$$

i.e.,

$$
(\partial h+h \partial) \sigma=\sigma \quad\left(\sigma \in C_{q}^{\text {set }}(X)\right) .
$$

Corollary 2.2 Any map between nonempty sets $\phi: X \rightarrow Y$ induces a homotopy equivalence between $C_{.}^{\text {set }}(X)$ and $C_{.}^{\text {set }}(Y)$.

Indeed, for any map $\psi: Y \rightarrow X$, morphism $\phi . \circ \psi .=(\phi \circ \psi)$. is chain homotopic to $\mathrm{id}_{C_{0}^{\text {set }}(Y)}$ and $\psi . \circ \phi .=\left(\psi^{\circ} \phi\right)$. is chain homotopic to $\mathrm{id}_{C^{\text {set }}(X)}$ in view of just proven Proposition 2.1.

Corollary 2.3 For any nonempty set X, the set-theoretic singular chain complex $C_{\text {. }}{ }^{\text {set }}(X)$ is homotopy equivalent to $\mathbb{Z}[0]$. In particular,

$$
H_{q}^{\mathrm{set}}(X)= \begin{cases}\mathbb{Z} & (q=0) \tag{26}\\ 0 & (q>0)\end{cases}
$$

2.5 De Rham Theory

2.6 De Rham Pairing

2.6.1

Let $\mathfrak{X}=(X, \mathcal{O})$ be an \mathbb{R}-space. For any $q \in \mathbb{N}$, there is an obvious pairing

$$
\begin{equation*}
C_{q}^{\mathrm{sm}}(\mathfrak{X}) \times \Omega_{\sigma / \mathbb{R}}^{q} \longrightarrow \mathbb{R}, \quad(\sigma, \alpha) \mapsto \int_{\sigma} \alpha \tag{27}
\end{equation*}
$$

where the integration is extended by \mathbb{Z}-linearity from singular q-simplices to singular q-chains:

$$
\begin{equation*}
\text { if } \quad \sigma=\sum m_{\gamma} \gamma, \quad \text { then } \quad \int_{\sigma} \alpha:=\sum m_{\gamma} \int_{\gamma} \alpha \tag{28}
\end{equation*}
$$

2.6.2

de Rham pairing is obviously additive (i.e., \mathbb{Z}-linear) in left argument and \mathbb{R}-linear in right argument.

Theorem 2.4 (Stokes Theorem) The boundary map $\partial: C_{q}(\mathfrak{X}) \rightarrow C_{q-1}(\mathfrak{X})$ and the de Rham differential $d: \Omega_{\mathcal{O / R}}^{q-1}$ are adjoint to each other, i.e.,

$$
\begin{equation*}
\int_{\partial \sigma} \beta=\int_{\sigma} d \beta \quad\left(\sigma \in C_{q}(\mathfrak{X}), \beta \in \Omega_{\partial / \mathbb{R}}^{q-1}\right) . \tag{29}
\end{equation*}
$$

2.6.3

An equivalent formulation of Stokes' Theorem is obtained by considering the singular cochain complex $\left(C_{\Delta}^{*}(\mathfrak{X} ; \mathbb{R}), \delta\right)$ which is defined as the dual of the singular chain complex:

$$
\begin{equation*}
C_{\Delta}^{q}:=\operatorname{Hom}_{\mathbb{Z}-\mathrm{mod}}\left(C_{q}^{\boldsymbol{\Delta}}(\mathfrak{X}), \mathbb{R}\right)=\operatorname{Map}\left(\operatorname{Hom}_{\mathbb{R}-\mathrm{Spc}}\left(\boldsymbol{\Delta}^{q}, \mathfrak{X}\right), \mathbb{R}\right) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\delta^{q}(\varphi)\right)(\sigma):=\varphi(\partial \sigma) \quad\left(\varphi \in C_{\Delta}^{q}(\mathfrak{X}), \sigma \in C_{q}^{\boldsymbol{\Delta}}(\mathfrak{X})\right) . \tag{31}
\end{equation*}
$$

2.6.4 De Rham Map

De Rham Map is the dual form of the de Rham Pairing introduced in (27)

$$
\begin{equation*}
\Omega_{O(\mathfrak{X}) / \mathbb{R}}^{q} \longrightarrow C_{\mathrm{sm}}^{q}(\mathfrak{X} ; \mathbb{R}), \quad \alpha \mapsto \int \alpha, \tag{32}
\end{equation*}
$$

where $\int \alpha$ is a singular cochain

$$
\begin{equation*}
\int \alpha: \sigma \mapsto \int_{\sigma} \alpha \quad\left(\sigma \in C_{q}^{\mathrm{sm}}(\mathfrak{X})\right) \tag{33}
\end{equation*}
$$

Theorem 2.5 (Stokes Theorem (dual form)) One has

$$
\int d \beta=\delta\left(\int d \beta\right) \quad\left(\beta \in \Omega_{\mathscr{G} \mathbb{R}}^{*}\right)
$$

i.e., de Rham Map is a morphism of cochain complexes,

$$
\left(\Omega_{\sigma / \mathbb{R}}^{q}, d\right) \longrightarrow\left(C_{\mathrm{sm}}^{q}(\mathfrak{X} ; \mathbb{R}), \delta\right)
$$

2.6.5

It follows that the de Rham Map induces a homomorphism of cohomology groups (which are graded \mathbb{R}-vector spaces):

$$
H_{\mathrm{dR}}^{*}(\mathcal{O}(\mathfrak{X}) / \mathbb{R}) \longrightarrow H_{\mathrm{sm}}^{*}(\mathfrak{X} ; \mathbb{R})
$$

