Integral Calculus

Mariusz Wodzicki

March 28, 2011

1 \mathbb{R} -spaces

1.1 Vocabulary

1.1.1

We shall call a pair $\mathfrak{X} = (X, \mathcal{O})$, where X is a set and $\mathcal{O} \subseteq \mathbb{R}^X$ is a unital \mathbb{R} -algebra of real valued functions on a set X, an \mathbb{R} -space. Here X will be called the *support* of \mathfrak{X} and will be denoted $|\mathfrak{X}|$, while $\mathcal{O} = \mathcal{O}(\mathfrak{X})$ will be called the *structural algebra* of \mathfrak{X} .

In the category of \mathbb{R} -spaces morphisms from \mathfrak{X} to \mathfrak{Y} are maps $\phi : |\mathfrak{X}| \to |\mathfrak{Y}|$ such that

$$\phi^* \mathcal{O}(\mathfrak{Y}) := \{ f \circ \phi \mid f \in \mathcal{O}(\mathfrak{Y}) \} \subseteq \mathcal{O}(\mathfrak{X}).$$

We shall denote the category of \mathbb{R} -spaces by \mathbb{R} -Spc.

1.1.2 An \mathbb{R} -space associated with a topological space

With any topological space (X, \mathcal{T}) one can naturally associate an \mathbb{R} -space (X, C(X)) where $C(X) = C(X, \mathcal{T})$ denotes the algebra of functions $X \to \mathbb{R}$ continuous with respect to topology \mathcal{T} . This defines a functor from the category of topological spaces **Top** to \mathbb{R} -**Spc**

$$C: \operatorname{Top} \rightsquigarrow \mathbb{R}\operatorname{-}\operatorname{Spc}, \qquad (X, \mathcal{T}) \longmapsto (X, C(X, \mathcal{T})). \tag{1}$$

1.1.3 \mathbb{R} -spaces associated with a subset of \mathbb{R}^n

We shall say that a function $f : D \to \mathbb{R}$ on a subset $D \subseteq \mathbb{R}^n$ is of class C^r , $0 \le r \le \infty$, (analytic, polynomial), if f is the restriction to D of a function of

class C^r (respectively, analytic, polynomial) defined on an open subset containing D.

Functions of class C^r (respectively, analytic, polynomial) on D form an algebra denoted below $C^r(D)$ (respectively, $\mathcal{O}^{an}(D)$, $\mathcal{O}^{pol}(D)$). With each of the above algebras there is associated a corresponding \mathbb{R} -space: $\mathbf{D}^r = (D, C^r(D))$, $\mathbf{D}^{an} = (D, \mathcal{O}^{an}(D))$, and $\mathbf{D}^{an} = (D, \mathcal{O}^{pol}(D))$, respectively.

1.1.4 The canonical topology

The topology $\mathcal{T} = \mathcal{T}(\mathfrak{X})$ generated by the family of preimages of open subsets of \mathbb{R} by members of $\mathcal{O} = \mathcal{O}(\mathfrak{X})$,

$$\mathscr{B} = \left\{ f^{-1}(V) \mid f \in \mathcal{O}, V \subseteq \mathbb{R} \text{ open} \right\},\$$

is the weakest topology on $X = |\mathfrak{X}|$ in which all $f \in \mathcal{O}$ are continuous as functions $X \to \mathbb{R}$. We shall call it the *canonical topology* of an \mathbb{R} -space \mathfrak{X} .

This defines a functor

$$T: \mathbb{R}\text{-}\mathbf{Spc} \rightsquigarrow \mathbf{Top}, \qquad \mathfrak{X} = (X, \mathcal{O}) \longmapsto (X, \mathcal{T}(\mathfrak{X})). \tag{2}$$

Exercise 1 Show that the canonical topology is generated by the family of preimages of intervals $(-\varepsilon, \varepsilon)$:

$$\mathscr{B}_0 = \left\{ f^{-1}(-\varepsilon,\varepsilon) \mid f \in \mathcal{O}, \, \varepsilon > 0 \right\}.$$

Exercise 2 Show that the canonical topology is completely regular, i.e., for any closed subset $Z \subseteq X$ and a point $p \notin Z$, there exists a function $f : X \to \mathbb{R}$, continuous in canonical topology, such that

$$f(p) = 1$$
 and $f_{|Z} = 1$.

Exercise 3 Let (X, \mathcal{T}) be a topological space and $\mathfrak{Y} = (Y, \mathcal{O})$ be an \mathbb{R} -space. Show that a map $\phi : (X, \mathcal{T}) \to (Y, \mathcal{T}(\mathfrak{Y}))$ is continuous if and only if $\phi^*(\mathcal{O}) \subseteq C(X, \mathcal{T})$.

Derive from this that the functor **Top** $\rightsquigarrow \mathbb{R}$ -**Spc**, defined in (1), is left adjoint to the functor \mathbb{R} -**Spc** \rightsquigarrow **Top** defined in (2).

Exercise 4 Show that

$$S \circ T \circ S = S$$
 and $T \circ S \circ T = T$.

1.2 Integral of a differential form over a parametric patch

1.2.1 Regions in Euclidean space

A subset $D \subseteq \mathbb{R}^q$ will be called a region if it is contained in the closure of its interior. We shall mostly deal with open or closed regions.

1.2.2

Denote by Ω_D^1 the free $\mathcal{O}(D)$ -module of rank q with basis

$$d^{c}x_{1}, \ldots, d^{c}x_{q}$$

The map

$$d^c: \mathcal{O}(D) \longrightarrow \Omega_D^1, \qquad f \mapsto d^c f_= \sum_{i=1}^q \frac{\partial f}{\partial x_i} d^c x_i,$$
 (3)

is an \mathbb{R} -linear derivation of algebra $\mathcal{O}(D)$. It is in fact a *universal continuous* derivation with values in a locally convex $\mathcal{O}(D)$ -module. The subscript *c* indicates that and also serves the reader warning not to confuse $d^c f \in \Omega_D^1$ with $df \in \Omega_{\mathcal{O}(D)/\mathbb{R}}^1$.

Derivation (3) induces an $\mathcal{O}(D)$ -linear and obviously surjective map

$$\Omega^1_{\mathscr{O}(D)/\mathbb{R}} \longrightarrow \Omega^1_D \qquad df \mapsto d^c f,$$

which in turn induces a surjective map of differential graded $\mathcal{O}(D)$ -algebras

$$\Omega^*_{\mathcal{O}(D)/\mathbb{R}} \longrightarrow \Omega^*_D := \bigwedge^*_{\mathcal{O}(D)} \Omega^1_D, \qquad \alpha \mapsto \alpha^c.$$
(4)

Note that

$$(f_0 df_1 \wedge \dots \wedge df_p)^c = f_0 d^c f_1 \wedge \dots \wedge d^c f_p.$$

1.2.3 Volume forms

Since Ω_D^1 is free of rank q, its *p*-th exterior power, Ω_D^p is free of rank $\binom{q}{p}$. In particular, Ω_D^q is a free $\mathcal{O}(D)$ -module of rank 1,

$$\Omega_D^q = \mathcal{O}(D) \, d^c x_1 \wedge \dots \wedge d^c x_q. \tag{5}$$

1.2.4 A parametric "patch"

Let $\mathfrak{X} = (X, \mathcal{O})$ be an \mathbb{R} -space. For any region $D \in \mathbb{R}^q$, a morphism $\gamma : (D, C^{\infty}(D)) \to \mathfrak{X}$ will be a called a *q*-patch (of class C^{∞}) in \mathfrak{X} .

1.2.5

Any such morphism induces a morphism of differential graded R-algebras

$$\Omega^*_{\mathcal{O}(\mathfrak{x})/\mathbb{R}} \longrightarrow \Omega^*_{C^{\infty}(D)/\mathbb{R}}.$$
(6)

Its composition with with epimorphism (4) will be denoted γ^* and called the *pullback* map (associated with the patch).

1.2.6

For any *q*-form $\alpha \in \Omega_{\emptyset}^{q}$ and any *q*-patch γ , its pullback, $\gamma^{*}\alpha$ is a volume form on *D*. In particular,

$$\gamma^* \alpha = f d^c x_1 \wedge \dots \wedge d^c x_q$$

for a unique function $f \in C^{\infty}(D)$. This function will be denoted

$$\frac{\gamma^*\alpha}{d^c x_1 \wedge \dots \wedge d^c x_q}.$$
(7)

We define then $\int_{\gamma} \alpha$ as the *q*-tuple integral

$$\int_{\gamma} \alpha := \int_{D} f = \int_{D} \frac{\gamma^* \alpha}{d^c x_1 \wedge \dots \wedge d^c x_q}.$$
 (8)

Integral in (33) is meant in the sense of Riemann q-dimensional integral if D is bounded. If it is not, then (33) can be understood as an improper integral:

$$\int_{\gamma} \alpha := \lim_{r \to \infty} \int_{D \cap B_r(0)} \frac{\gamma^* \alpha}{d^c x_1 \wedge \dots \wedge d^c x_q}$$

1.2.7

2 Singular homology of an \mathbb{R} -space

2.1 Euclidean *q*-simplices

2.1.1

A standard model of the topological *q*-dimensional simplex Δ^q , where $0 \le q < \infty$, represents it as the following subspace of \mathbb{R}^{q+1} :

$$\{(t_0, \dots, t_q) \in \mathbb{R}^{q+1} \mid t_i \ge 0; t_0 + \dots + t_q = 1\}.$$
(9)

2.1.2 Barycentric coordinates

Restrictions to Δ^q of the q + 1 projections $\mathbb{R}^{q+1} \to \mathbb{R}$ are called *barycentric coordinates*.

2.1.3 Face maps

If q > 0, then the q-simplex has q + 1 faces of dimension q - 1:

$$\Delta_i^q := \{ (t_0, \dots, t_q) \in \mathbb{R}^{q+1} \mid t_i = 0 \} \qquad (0 \le i \le q).$$
(10)

Each face is identified with Δ^{q-1} via one of the following q + 1 face maps:

$$d_i^q : \Delta^{q-1} \longrightarrow \Delta^q, \qquad (t_0, ..., t_{q-1}) \mapsto (t_0, ..., t_{i-1}, 0, t_i, ..., t_{q-1}). \tag{11}$$

Note that

$$d_0^q$$
: $(t_0, ..., t_{q-1}) \mapsto (0, t_0, ..., t_{q-1})$ and d_{q+1}^q : $(t_0, ..., t_{q-1}) \mapsto (t_0, ..., t_{q-1}, 0)$.

Exercise 5 Show that

$$d_j^{q+1} d_i^q = d_i^{q+1} d_{j-1}^q \qquad (0 \le j < i \le q).$$
(12)

We shall refer to (12) as the Face Relations.

2.1.4 R-space structures on the topological simplices

Face maps (11) are as important as spaces Δ^q themselves. When equipping Δ^q with an \mathbb{R} -space structure we should do this simultaneously for all q and in a manner compatible with the face maps. In other words, let \mathcal{O}^q be, for each $q \in \mathbb{N}$, a subalgebra of the algebra of all \mathbb{R} -valued functions \mathbb{R}^{Δ^q} such that

$$(d_i^q)^* \mathcal{O}^q \subseteq \mathcal{O}^{q-1} \qquad (q > 1; 0 \le i \le q).$$

We shall call the resulting family of \mathbb{R} -spaces

$$\mathbf{\Delta} = \{ (\Delta^q, \mathcal{O}^q) \}_{q \in \mathbb{N}}$$

a Δ -realization.

There are several natural realizations

Set theoretic realization $\Delta^{\text{set}} = \{ (\Delta^q, \mathbb{R}^{\Delta^q}) \},\$

Topological realization $\Delta^{top} = \{(\Delta^q, C(\Delta^q))\},$ **Realization of class** $C^r (0 \le r \le \infty)$ $\Delta^{(r)} = \{(\Delta^q, C^r(\Delta^q))\},$ **Smooth realization** $\Delta^{sm} = \{(\Delta^q, C^{\infty}(\Delta^q))\},$ **Analytic realization** $\Delta^{an} = \{(\Delta^q, \mathcal{O}^{an}(\Delta^q))\},$ **Polynomial realization** $\Delta^{pol} = \{(\Delta^q, \mathcal{O}^{pol}(\Delta^q))\}.$

Note that the realizations of class C^0 and C^{∞} are the same as the topological and, respectively, smooth realizations.

2.2 Singular chain complexes

2.2.1 Singular *q*-simplices

Fix a realization Δ . Given an \mathbb{R} -space $\mathfrak{X} = (X, \mathcal{O})$, morphisms

$$\gamma: \mathbf{\Delta}^q = (\Delta^q, \mathcal{O}^q) \longrightarrow \mathfrak{X}$$

will be called *singular q-simplices* in \mathfrak{X} .

2.2.2 Singular *q*-chains

Elements of the *free* abelian group generated by singular *q*-simplices

$$C_q(\mathfrak{X}) := \mathbb{Z} \operatorname{Hom}_{\mathbb{R}\text{-}\mathbf{Spc}}(\Delta^q, \mathfrak{X})$$
(13)

are called *singular q-chains* in \mathfrak{X} . It is customary to put

$$C_q(\mathfrak{X}) = 0 \qquad (q < 0)$$

in view of the fact that the sets of singular q-simplices are empty for q < 0.

2.2.3 The boundary maps

For any $q \ge 0$, the formula

$$\partial_q := d_0^* - d_1^* + \dots + (-1)^q d_q^* \tag{14}$$

or, more explicitly,

$$\partial_q(\sigma) := \sigma \circ d_0 - \sigma \circ d_1 + \dots + (-1)^q \sigma \circ d_q, \tag{15}$$

defines a homomorphism of abelian groups

$$\partial_q : C_q(\mathfrak{X}) \longrightarrow C_{q-1}(\mathfrak{X}). \tag{16}$$

Exercise 6 Show that

$$\partial_{q-1} \circ \partial_q = 0 \qquad (q \in \mathbb{Z}). \tag{17}$$

2.3 Chain complex vocabulary

2.3.1 Chain complexes of A-modules

Let A be an algebra. A sequence C_• of (left) A-modules $\{C_q\}_{q\in\mathbb{Z}}$ and of A-module maps $\partial_q : M_q \to M_{q-1}$ is called a *chain complex* of A-modules if maps ∂_q satisfy identity (16).

Maps $\{\partial_q\}_{q\in\mathbb{Z}}$ satisfying (16) are called *boundary maps*.

2.3.2 Cycles

Elements of Ker ∂_q are called *q*-cycles. They form an *A*-submodule of C_q which is usually denoted Z_q ("Zyklen" in German).

2.3.3 Boundaries

Elements of Im ∂_{q+1} are called *q*-boundaries. They form an *A*-submodule of Z_q which is usually denoted B_q .

2.3.4 Homology groups of a chain complex

Boundaries are considered to be "trivial" cycles. The *homology groups*, which are defined as the quotients

$$H_a(C_{\bullet}) := \operatorname{Ker} \partial_a / \operatorname{Im} \partial_{a+1}, \tag{18}$$

measure the difference between cycles and boundaries: H_q vanishes precisely when every q-cycle is a boundary. The homology groups of a chain complex of Amodules are A-modules themselves: the terminology "homology groups" is only a lasting tribute to tradition.

2.3.5 The category of chain complexes

Chain complexes of A-modules naturally form a category: morphisms $\varphi : (C_{\bullet}, \partial_{\bullet}) \rightarrow (C'_{\bullet}, \partial'_{\bullet})$ consist of sequences of A-module maps $\varphi_q : C_q \rightarrow C'_q$ such that all the squares in the following diagram

$$\dots \stackrel{\partial_{q-1}}{\longleftarrow} C_{q-1} \stackrel{\partial_{q}}{\longleftarrow} C_{q} \stackrel{\partial_{q+1}}{\longleftarrow} C_{q+1} \stackrel{\partial_{q+2}}{\longleftarrow} \dots$$
$$\begin{array}{c} \varphi_{q-1} \\ \varphi_{q-$$

commute. We shall denote this category $\mathscr{C}(A)$.

A morphism between complexes induces a sequence of *A*-module maps between the corresponding homology groups

$$H_a(\varphi) : H_a(C) \longrightarrow H_a(C').$$

Each H_q is thus a functor

$$H_a: \mathscr{C}(A) \rightsquigarrow A\text{-mod.}$$
(19)

One can also collectively think of $H_{\bullet} = \{H_q\}_{q \in \mathbb{Z}}$ as a functor from $\mathscr{C}(A)$ into the category of *graded* A-modules.

2.3.6 Null-homotopic morphisms

A morphism $\varphi : C_{\bullet} \to C'_{\bullet}$ is said to be *null-homotopic* (or, *homotopic to zero*) if it can be represented as the "supercommutator"

$$\varphi_q = h_{q-1} \circ \partial_q + \partial'_{q+1} \circ h_q \qquad (q \in \mathbb{Z}).$$
⁽²⁰⁾

of the boundary maps and of a certain map $h : C_{\bullet} \to C'_{\bullet}$ of *degree* 1. The latter means that $h = \{h_q\}_{q \in \mathbb{Z}}$ where h_q is an A-module map $C_q \to C'_{q+1}$.

If h satisfies (20), then we call it a *contracting homotopy* for morphism φ .

Exercise 7 Show that

$$H_q(\varphi) = 0 \qquad (q \in \mathbb{Z})$$

for any null-morphism.

2.3.7 Homotopy classes of morphisms

We say that two morphisms φ and ψ from C_{\bullet} to C'_{\bullet} are *chain homotopic* if $\varphi - \psi$ is null-homotopic.

Chain homotopy is an equivalence relation on the sets of morphisms

$$\operatorname{Hom}_{\mathscr{C}(A)}(C_{\bullet}, C'_{\bullet}).$$

Null-homotopic morphisms define an *ideal* in the category of chain complexes of *A*-modules. The quotient category, which has chain complexes of *A*-modules as its objects, and homotopy classes of morphisms as its morphisms, is called the *homotopy category of chain complexes of A-modules*.

It follows from Exercise 7 that the homology functors (19) factorize through the homotopy category.

2.3.8 Homotopy equivalences

We say that a morphism $\varphi : C_{\bullet} \to C'_{\bullet}$ is a *homotopy equivalence* if it becomes an isomorphism between C_{\bullet} and C'_{\bullet} in the homotopy category.

Explicitly, φ is a homotopy equivalence if there exists a morphism $\psi : C'_{\bullet} \to C_{\bullet}$ such that $\varphi \circ \psi$ is homotopic to $\operatorname{id}_{C'_{\bullet}}$ and $\psi \circ \varphi$ is homotopic to $\operatorname{id}_{C_{\bullet}}$.

2.3.9 Contractible complexes

A complex C_{\bullet} is said to be *contractible* if it is homotopy equivalent to the *zero* complex.

Exercise 8 Show that C_{\bullet} is contractible if and only if $id_{C_{\bullet}}$ is null-homotopic.

2.3.10

For any A-module M, consider the chain complex M[0]

$$M[0]_q := \begin{cases} M & \text{if } q = 0\\ 0 & \text{otherwise} \end{cases}$$
(21)

The correspondence $M \mapsto M[0]$ defines a canonical embedding of the category of A-modules into the category of chain complexes of A-modules.

2.3.11 Shift functors

For any $j \in \mathbb{Z}$ and any chain complex C_{\bullet} , define $C_{\bullet}[j]$ as

$$(C[j])_q := C_{q-j}$$
 and $(\partial[j])_q := (-1)^j \partial_{q-j}.$ (22)

This defines so called *shift* functors $\mathscr{C}(A) \rightsquigarrow \mathscr{C}(A)$.

Note that

$$[i] \circ [j] = [i+j]$$
 and $[0] = \operatorname{id}_{\mathscr{C}(A)}$.

2.4 Singular homology

2.4.1 The singular chain complexes of an R-space

In view of identities (17), the sequence of abelian groups $\{C_q(\mathfrak{X})\}_{q\in\mathbb{Z}}$ and homomorphisms $\{\partial_q\}_{q\in\mathbb{Z}}$ forms a chain complex of abelian groups (i.e., \mathbb{Z} -modules). We shall denote it $C_{\bullet}(\mathfrak{X})$ and refer to it as the *singular chain complex* of \mathfrak{X} .

This complex and its homology depend on the chosen realization Δ . To indicate this dependence we may be also using notation $C^{\Delta}_{\bullet}(\mathfrak{X})$.

Note that the correspondence $\mathfrak{X} \mapsto C^{\Delta}_{\bullet}(\mathfrak{X})$ is functorial in \mathfrak{X} , in other words, it defines a functor from the category of \mathbb{R} -spaces to the category of chain complexes of abelian groups.

2.4.2

In special cases like the ones mentioned in 2.1.4, we shall be speaking of *set*theoretic, continuous (or topological), smooth (or class C^{∞}), analytic and, respectively, polynomial singular chains. The corresponding complexes will be denoted $C_{\bullet}^{\text{set}}(\mathfrak{X}), C_{\bullet}^{\text{top}}(\mathfrak{X}), C_{\bullet}^{\text{sm}}(\mathfrak{X})$ and, respectively, $C_q^{\text{pol}}(\mathfrak{X})$.

2.4.3

Note that $C^{\text{set}}_{\bullet}(\mathfrak{X})$ depends only on the underlying set $|\mathfrak{X}|$, not on the structural algebra $\mathcal{O}(\mathfrak{X})$.

2.4.4 The singular homology groups of an R-space

The homology groups of $C^{\Delta}_{\bullet}(\mathfrak{X})$ will be denoted $H^{\Delta}_{\bullet}(\mathfrak{X})$ and referred to as the *singular homology groups* of \mathfrak{X} (with respect to a given realization Δ).

2.4.5

In special cases mentioned in 2.1.4, we shall be speaking of *set-theoretic*, *continuous* (or *topological*), *smooth* (or *class* C^{∞}), *analytic* and, respectively, *polynomial* singular homology groups of \mathfrak{X} . The corresponding groups will be denoted $H^{\text{set}}_{\bullet}(\mathfrak{X})$, $H^{\text{top}}_{\bullet}(\mathfrak{X})$, $H^{\text{sm}}_{\bullet}(\mathfrak{X})$, $H^{\text{an}}_{a}(\mathfrak{X})$ and, respectively, $H^{\text{pol}}_{q}(\mathfrak{X})$.

2.4.6 Example: singular homology of a point

A set consisting of a single element $X = \{*\}$ admits a unique \mathbb{R} -space structure: $\mathcal{O} = \mathbb{R}$. For every $q \in \mathbb{Z}$, there is only one singular *q*-simplex: the unique map $\sigma^q : \Delta^q \to \{*\}$, irrespective of the actual simplicial realization Δ we use. It follows that each singular chain group is a free group of rank 1:

$$C_a^{\Delta}(*) = \mathbb{Z}\sigma^q \qquad (q \in \mathbb{Z}).$$

Exercise 9 Show that ∂_q in $C^{\Delta}_{\bullet}(*)$ is zero for any odd q, and that ∂_q is an isomorphism $C_q \simeq C_{q-1}$ for any even $q \ge 2$.

Exercise 10 Show that the inclusion of $\mathbb{Z}[0]$ into $C^{\Delta}_{\bullet}(*)$ is a homotopy equivalence.

2.4.7

We have noted before that the set-theoretic singular complex $C_{\bullet}^{\text{set}}(\mathfrak{X})$ depends only on the underlying set $X = |\mathfrak{X}|$, not on the structural algebra $\mathcal{O}(\mathfrak{X})$. We shall therefore also denote it by $C_{\bullet}^{\text{set}}(X)$.

We will now prove that $C^{\text{set}}_{\bullet}(X)$ is homotopy equivalent to $C^{\text{set}}_{\bullet}(*)$ which we already know is homotopy equivalent to $\mathbb{Z}[0]$.

Proposition 2.1 For any two maps ϕ and ψ from a set X to a set Y, the induced morphisms of the set-theoretic singular chain complexes are homotopy equivalent.

Proof. Since the cardinality of Y^X is less or equal 1 when one of the sets is empty, we can assume that both X and Y are nonempty.

Let $y \in Y$. It suffices to show that, for any map $\phi : X \to Y$, the morphism $\phi_{\bullet} : C_{\bullet}^{\text{set}}(X) \to C_{\bullet}^{\text{set}}(Y)$ is chain homotopic to the morphism ψ_{\bullet} induced by the map that sends every element of X to y:

$$\psi(x) = y \qquad (x \in X).$$

Define the maps h_q : $C_q^{\text{set}}(X) \to C_{q+1}^{\text{set}}(Y)$ as follows:

$$h(\sigma)(t_0, \dots, t_{q+1}) := \begin{cases} \phi\left(\sigma\left(\frac{t_1}{1-t_0}, \dots, \frac{t_{q+1}}{1-t_0}\right)\right) & (0 \le t_0 < 1) \\ y & (t_0 = 1) \end{cases}.$$
(23)

We have

$$((\partial h)(\sigma))(t_0, ..., t_q) = h(\sigma)(0, t_0, ..., t_q) - h(\sigma)(t_0, 0, t_1, ..., t_q) + \cdots + (-1)^{q+1}h(\sigma)(t_0, ..., t_q, 0)$$
(24)

and

$$((h\partial)(\sigma))(t_0, ..., t_q) = h(\sigma)(t_0, 0, t_1, ..., t_q) + \dots + (-1)^q h(\sigma)(t_0, ..., t_q, 0) .$$
 (25)

By combining (24)–(25) with (23) we obtain

$$\left((\partial h + h\partial)\sigma\right)\left(t_0, \dots, t_q\right) = h(\sigma)\left(0, t_0, \dots, t_q\right) = \sigma\left(t_0, \dots, t_q\right),$$

i.e.,

$$(\partial h + h\partial)\sigma = \sigma \qquad \left(\sigma \in C_q^{\text{set}}(X)\right).$$

Corollary 2.2 Any map between nonempty sets $\phi : X \to Y$ induces a homotopy equivalence between $C_{\bullet}^{\text{set}}(X)$ and $C_{\bullet}^{\text{set}}(Y)$.

Indeed, for any map $\psi : Y \to X$, morphism $\phi_{\bullet} \circ \psi_{\bullet} = (\phi \circ \psi)_{\bullet}$ is chain homotopic to $\operatorname{id}_{C^{\operatorname{set}}_{\bullet}(Y)}$ and $\psi_{\bullet} \circ \phi_{\bullet} = (\psi \circ \phi)_{\bullet}$ is chain homotopic to $\operatorname{id}_{C^{\operatorname{set}}_{\bullet}(X)}$ in view of just proven Proposition 2.1.

Corollary 2.3 For any nonempty set X, the set-theoretic singular chain complex $C^{\text{set}}_{\bullet}(X)$ is homotopy equivalent to $\mathbb{Z}[0]$. In particular,

$$H_q^{\text{set}}(X) = \begin{cases} \mathbb{Z} & (q=0) \\ 0 & (q>0) \end{cases}.$$
 (26)

2.5 De Rham Theory

2.6 De Rham Pairing

2.6.1

Let $\mathfrak{X} = (X, \mathcal{O})$ be an \mathbb{R} -space. For any $q \in \mathbb{N}$, there is an obvious pairing

$$C_q^{\mathrm{sm}}(\mathfrak{X}) \times \Omega^q_{\mathscr{O}/\mathbb{R}} \longrightarrow \mathbb{R}, \qquad (\sigma, \alpha) \mapsto \int_{\sigma} \alpha$$
 (27)

where the integration is extended by \mathbb{Z} -linearity from singular *q*-simplices to singular *q*-chains:

if
$$\sigma = \sum m_{\gamma} \gamma$$
, then $\int_{\sigma} \alpha := \sum m_{\gamma} \int_{\gamma} \alpha$. (28)

2.6.2

de Rham pairing is obviously additive (i.e., \mathbb{Z} -linear) in left argument and \mathbb{R} -linear in right argument.

Theorem 2.4 (Stokes Theorem) The boundary map $\partial : C_q(\mathfrak{X}) \to C_{q-1}(\mathfrak{X})$ and the de Rham differential $d : \Omega_{\mathcal{O}/\mathbb{R}}^{q-1}$ are adjoint to each other, i.e.,

$$\int_{\partial\sigma} \beta = \int_{\sigma} d\beta \qquad (\sigma \in C_q(\mathfrak{X}), \ \beta \in \Omega^{q-1}_{\mathcal{O}/\mathbb{R}}).$$
(29)

2.6.3

An equivalent formulation of Stokes' Theorem is obtained by considering the singular *cochain complex* ($C^*_{\Delta}(\mathfrak{X};\mathbb{R}), \delta$) which is defined as the *dual* of the singular chain complex:

$$C^{q}_{\Delta} := \operatorname{Hom}_{\mathbb{Z}\operatorname{-mod}}(C^{\Delta}_{q}(\mathfrak{X}), \mathbb{R}) = \operatorname{Map}(\operatorname{Hom}_{\mathbb{R}\operatorname{-}\operatorname{Spc}}(\Delta^{q}, \mathfrak{X}), \mathbb{R})$$
(30)

and

$$(\delta^{q}(\varphi))(\sigma) := \varphi(\partial\sigma) \qquad \left(\varphi \in C^{q}_{\Delta}(\mathfrak{X}), \, \sigma \in C^{\Delta}_{q}(\mathfrak{X})\right). \tag{31}$$

2.6.4 De Rham Map

De Rham Map is the dual form of the de Rham Pairing introduced in (27)

$$\Omega^{q}_{\mathcal{O}(\mathfrak{X})/\mathbb{R}} \longrightarrow C^{q}_{\mathrm{sm}}(\mathfrak{X};\mathbb{R}), \qquad \alpha \mapsto \int \alpha, \qquad (32)$$

where $\int \alpha$ is a singular cochain

$$\int \alpha : \sigma \mapsto \int_{\sigma} \alpha \qquad \left(\sigma \in C_q^{\rm sm}(\mathfrak{X}) \right). \tag{33}$$

Theorem 2.5 (Stokes Theorem (dual form)) One has

$$\int d\beta = \delta \left(\int d\beta \right) \qquad \left(\beta \in \Omega^*_{\mathcal{O}/\mathbb{R}}\right),$$

i.e., de Rham Map is a morphism of cochain complexes,

$$\left(\Omega^{q}_{\mathscr{O}/\mathbb{R}},d\right)\longrightarrow \left(C^{q}_{\mathrm{sm}}(\mathfrak{X};\mathbb{R}),\delta\right).$$

2.6.5

It follows that the de Rham Map induces a homomorphism of cohomology groups (which are graded \mathbb{R} -vector spaces):

$$H^*_{\mathrm{dR}}(\mathscr{O}(\mathfrak{X})/\mathbb{R}) \longrightarrow H^*_{\mathrm{sm}}(\mathfrak{X};\mathbb{R}).$$