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Chapter 1

1.1 Introduction

1.1.1 Structures on a set

1.1.1.1

A very general class of mathematical structures is obtained by equipping
a set X with one or more subsets Γ ⊆ F(X) where F(X) is a set naturally
associated with set X . ‘Naturally’ here means that any map f : X → Y
induces a map

f∗ : F(X)→ F(Y) (1.1)

or a map
f ∗ : F(Y)→ F(X) (1.2)

1.1.1.2

In the first case we expect that

( f ◦ g)∗ = f∗ ◦ g∗, (1.3)

and we speak of covariant dependence on X , in the second case we require
that

( f ◦ g)∗ = g∗ ◦ f ∗, (1.4)

and we speak of contravariant dependence on X .

1.1.1.3

In modern Mathematics, such associations are called covariant and con-
travariant functors from the category of sets to the category of sets.
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1.1.2 A few examples of such functors

1.1.2.1 Cartesian powers

Given a set I , consider the correspondence that associates with a set X its
I -th Cartesian power

X  X I
˜ {(xi)i∈I | xi ∈ X} . (1.5)

The Cartesian power is a covariant functor, a map f : X → Y induces the
map

f∗ : X I → Y I , f∗ ((xi)i∈I)˜ ( f (xi))i∈I . (1.6)

1.1.2.2 Exponents

Given a set A , consider the correspondence that associates with a set X
the set of maps from X to A

X  AX
˜ {φ : X → A}. (1.7)

This functor is contravariant:

f ∗ : AY → AX, f ∗(φ)˜ φ ◦ f . (1.8)

1.1.2.3 The power set as a covariant functor

This is the functor that associates with a set X the set P(X) of all of its
subsets and, with a map f : X → Y , the map f∗ : P(X) → P(Y) that
sends a subset A ⊆ X to its image under f ,

f (A)˜ {y ∈ Y | y = f (x) for some x ∈ A}.

1.1.2.4 The power set as a contravariant functor

This functor associates with a set X , the same set P(X) , and with f : X →
Y , the map f ∗ : P(Y)→P(X) that sends a subset B ⊆ Y to its preimage
under f ,

f−1(B)˜ {x ∈ X | f (x) ∈ B}.
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1.1.2.5

For any A ⊆ X and B ⊆ Y , one has

f (A) ⊆ B if and only if A ⊆ f−1(B). (1.9)

This means that the pair of maps ( f∗, f ∗) forms a Galois connection between
partially ordered sets (P(X),⊆) and (P(Y),⊆) (cf. Notes on Partially
Ordered Sets).

1.1.2.6

For any set X , there exists a natural bijection1

χX : P(X)→ 2X, A 7→ χX
A, (1.10)

where

χX
A(x)˜

{
1 if x ∈ A
0 otherwise

(1.11)

is the characteristic function of a subset A ⊆ X . In the interest of simplifying
notation when possible, the superscript X is dropped when X is clear from
the context.

1.1.2.7

‘Naturality’ of (1.10) means that, given a map f : X → Y , the following
diagram commutes,

P(X) P(Y)

2X 2Y
u

χX

u

χY

u
f ∗

u
f ∗

, (1.12)

i.e., the composition of arrows either way produces the same result

χX ◦ f ∗ = f ∗ ◦ χY.

In categorical language, we could say that χ is a natural transformation of the
contravariant power-set functor P( ) into the exponent functor 2( ) (in this
case an isomorphism of functors, since all the maps χX are isomorphisms in
the category of sets, i.e., they are invertible maps).

1In the language of sets, 0 = ∅ and n = {0, . . . , n− 1} .
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1.1.2.8

Besides the category of sets there are other categories of interest in Math-
ematics, and there exist several interesting functors between them. Cat-
egorical language allows one to see various ‘natural’ constructions in a
clear light, and it facilitates noticing connections between seemingly distant
concepts and subjects. For this reason, it became very popular in modern
Mathematics to the point of being indispensible, and a ‘must-learn’ for a
beginner. We shall use it too.

1.1.2.9

You are encouraged to familiarize yourself with the language of categories
and functors as soon as possible and, after mastering the basics of cate-
gorical grammar, to learn also at least the concepts of an equivalence of
categories and of a pair of adjoint functors, and study numerous fundamen-
tally important examples these two concepts. To facilitate this, I include
the most besic definitions below.

Like with any language, acquiring proficiency requires constant use, so
you, after learning the basic concepts, should be constantly observing these
concepts at work in various branches of Mathematics.

1.2 First terms in the vocabulary

1.2.1 Families

1.2.1.1 Families of sets

The term a family of sets is used in two meanings: as a subset X ⊆P(U)
of the power set of some set U or, as a map

I →P(U), i 7→ Xi,

which assigns a set Xi to every element i ∈ I of certain set I . In the latter
case we speak of a family of subsets of U indexed by set I . The indexing
set can be arbitrary and it may come equipped with additional structure
like ordering.

1.2.1.2 Notation

It is customary to denote indexed families by (Xi)i∈I .
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1.2.1.3

A family of subsets of U viewed as a subset of P(U) is conceptually
simpler, as its definition does not rely on the notion of a map yet it can be
viewed as a special case of an indexed family, namely as a family indexed
by itself:

X →P(U), X 7→ X.

1.2.1.4 Families of elements of a set

A family of elements of a set X will be always used in the sense of a family
indexed by some set I . By definition it is a map

I → X, i 7→ xi.

Conceptually, there is no difference between a family of elements of X and a
map I → X . The difference is exclusively in notation and in the points of
emphasis.

In the language of families of elements the focus is on X and its ele-
ments. The nature of the indexing set is secondary and generally not very
important.

In the language of maps, the source and the target of a map are on equal
footing, and the map itself is usually sufficiently important to merit its own
symbol in notation.

1.2.1.5 Natural numbers

We shall frequently identify natural numbers with the sets:

0˜∅, 1˜ {0}, 2˜ {0, 1}, . . . , n˜ {0, . . . , n-1}, . . . (1.13)

Exercise 1 Show that 2 , 3 .

1.2.1.6 Sequences

Families indexed by subsets of the set of natural numbers or, more generally,
by ordered countable sets, are called sequences.
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1.2.1.7 n -tuples

Families indexed by I = {1, . . . , n} are called ordered n-tuples of elements
of X , and notation

(x1, . . . , xn) instead of (xi)i∈{1,...,n}

is generally used. Ordered 2-, 3-, 4-tuples are respectively called ordered
pairs, triples, quadruples.

1.2.2 Rings of sets and algebras of subsets

1.2.2.1 Rings of sets

A nonempty family of sets R , i.e., a nonempty set whose elements are sets,
is said to be a ring of sets if the union, R ∪ R′ , and the difference, R \ R′ ,
belongs to R for any R, R′ ∈ R .

Exercise 2 Show that in every ring of sets R one has

R ∩ R′ ∈ R for any R, R′ ∈ R.

1.2.2.2 Algebras of subsets

A nonempty family A ⊆P(X) of subsets of a set X is said to be an algebra
of subsets of X if the intersection, A∩ A′ , and the complement, Ac˜X \ A ,
belongs to A for any A, A′ ∈ A .

Exercise 3 Show that A ⊆ P(X) is an algebra of subsets of a set X if and
only if A is a ring of sets which contains X .

1.2.2.3

The family of all finite subsets Pfin(X) of a set X is a ring of sets which is
an algebra of subsets of X if and only if X is finite.

1.2.3 Operations involving families of sets

1.2.3.1 Union

The union of a family X ⊆P(U) is the set

{u ∈ U | u ∈ X for some X ∈ X }. (1.14)

This set is denoted ⋃
X or

⋃
X∈X

X. (1.15)
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1.2.3.2

The union of an indexed family (Xi)i∈I is defined similarly⋃
i∈I

Xi˜ {u ∈ U | u ∈ Xi for some i ∈ I }. (1.16)

1.2.3.3 Intersection

The intersection a family X ⊆P(U) is the set

{u ∈ U | u ∈ X for every X ∈ X }. (1.17)

This set is denoted ⋂
X or

⋂
X∈X

X. (1.18)

1.2.3.4

The intersection of an indexed family (Xi)i∈I is defined similarly⋂
i∈I

Xi˜ {u ∈ U | u ∈ Xi for every i ∈ I }. (1.19)

Exercise 4 Show that the intersection⋂
i∈I

Ri

of any family of rings of sets (Ri)i∈I is a ring of sets. Likewise, show that the
intersection ⋂

i∈I

Ai

of any family of algebras of subsets (Ai)i∈I of a given set X is an algebra of subsets
of X .

1.2.3.5 Cartesian product

The Cartesian product of an indexed family (Xi)i∈I is the set of all families
ξ = (xi)i∈I of elements of

⋃
i∈I Xi such that xi ∈ Xi :

∏
i∈I

Xi˜
{
(xi)i∈I | xi ∈ Xi

}
. (1.20)

Equivalently,

∏
i∈I

Xi˜

{
ξ : I →

⋃
i∈I

Xi
∣∣ ξ(i) ∈ Xi

}
. (1.21)
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1.2.3.6 Notation

The Cartesian product of a finite family (X1, . . . , Xn) is usually denoted

X1 × · · · × Xn. (1.22)

1.2.3.7 Comment

It is important to observe that one can replace
⋃

i∈I Xi in the definition of
the Cartesian product by any set that contains all Xi . The corresponding
‘products’ will be essentially identical sets. This is due to the observation
that there exists a canonical identification between maps A → B whose
image is contained in a subset B′ ⊆ B , and maps A→ B′ .

1.2.3.8 Canonical projections

The Cartesian product comes equipped with the family of surjective maps,

πi : ∏
j∈I

Xj → Xi ξ 7→ xi (i ∈ I), (1.23)

which send a map ξ : I → ⋃
i∈I Xi to its value at each i . When I =

{1, . . . , n} , then πi is the i -th coordinate map

πi : (x1, . . . , xn) 7→ xi (i = 1, . . . , n).

1.2.3.9 A universal property of the Cartesian product

Given any set Y and a family ( fi)i∈I of maps fi : Y → Xi , there exists a
unique map f̃ : Y → ∏i∈I Xi such that

fi = πi ◦ f̃ (i ∈ I). (1.24)

Exercise 5 Verify that the map

f̃ : y 7→ ( fi(y))i∈I (y ∈ Y) (1.25)

satisfies (1.24), and that any map g : Y → ∏i∈I Xi which satisfies (1.24) coincides
with f̃ .
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1.2.3.10 Disjoint unions of sets

The disjoint union of an indexed family (Xi)i∈I should be thought of as
the union of all sets Xi except that we keep as many distinct ‘copies’ of an
element x ∈ ⋃i∈I Xi as there are sets Xi which contain x . We achieve this
by ‘tagging’ every element in

⋃
i∈I Xi by the index of the set it belongs to:

ä
i∈I

Xi˜
{
(i, x) ∈ I ×

⋃
i∈I

Xi | x ∈ Xi
}

. (1.26)

1.2.3.11 Notation

The disjoint union of a finite family (X1, . . . , Xn) is usually denoted

X1 t · · · t Xn. (1.27)

Exercise 6 Denote by p the composition of the inclusion map and the canonical
projection

ä
i∈I

Xi ↪→ I ×
⋃
i∈I

Xi →
⋃
i∈I

Xi. (1.28)

Show that p is surjective. Show that the fiber p−1(x) at x ∈ ⋃i∈I Xi is

p−1(x) = {(i, x) | x ∈ Xi}.

In particular, p−1(x) is in on-to-one correspondence with the set

{i ∈ I | x ∈ Xi}.

1.2.3.12

It follows that the disjoint union of a family of sets (Xi)i∈I is canonically
identified with their union if and only if sets Xi are disjoint for distinct
i ∈ I :

Xi ∩ Xj = ∅ (i , j).

1.2.3.13 Canonical inclusions

The disjoint union comes equipped with the family of injective maps,

ιi : Xi →ä
j∈I

Xj x 7→ (i, x) (i ∈ I). (1.29)
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1.2.3.14 A universal property of the disjoint union

Given any set Y and a family ( fi)i∈I of maps fi : Xi → Y , there exists a
unique map f̃ : äi∈I Xi → Y such that

fi = f̃ ◦ ιi (i ∈ I). (1.30)

Exercise 7 Verify that the map

f̃ : (i, x) 7→ fi(x) (i ∈ I; x ∈ Xi) (1.31)

satisfies (1.30), and that any map g : äi∈I Xi → Y which satisfies (1.30) coincides
with f̃ .

1.2.3.15

Map p defined in (1.28) is precisely such universal map f̃ for the family of
inclusion maps

fi : Xi ↪→
⋃
j∈I

Xj (i ∈ I).

1.2.3.16

Note that the properties of the Cartesian product and of the disjoint union
of a family of sets are dual to each other. We shall explain this concept of
duality later.

1.3 Associativity properties of operations on families
of sets

1.3.1 Associativity of union

1.3.1.1 The indexed families case

Suppose we have two families of sets

(Xi)i∈I and (Xk)k∈K.

The iterated union ⋃
i∈I

Xi ∪
⋃

k∈K

Xk
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and the union ⋃
l∈ItK

Xl

are equal as sets. In the case of a pair of finite families (A1, . . . , Am) and
(B1, . . . , Bn) , this equality acquires the form

(A1 ∪ · · · ∪ Am) ∪ (B1 ∪ · · · ∪ Bn) = A1 ∪ · · · ∪ Am ∪ B1 ∪ · · · ∪ Bn.

1.3.1.2 The total family

In general, given any family of families of sets((
Xij

)
ij∈Ij

)
j∈J

, (1.32)

the universal property of the disjoint union allows us to form the total
family

(Xl)l∈L where L = ä
j∈J

Ij. (1.33)

Indeed, regarding all sets to be subsets of a common set U , family of
families of (1.32) is the same as a family of maps Ij → P(U)}j∈J and,
by the universal property of disjoint union, there exists a unique map
L→P(U) whose ‘restrictions’ to Ij are the component-families

(Ij →P(U))j∈J .

We shall refer to L→P(U) as the total family.

1.3.1.3

Now we are ready to make an observation about iterated unions of families.
The following sets are equal⋃

j∈J

⋃
ij∈Ij

Xij =
⋃
l∈L

Xl .

Exercise 8 Formulate the corresponding associativity laws for intersection of
families.
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1.3.1.4 The nonindexed families case

There are two natural maps⋃
: P(P(P(U))) −→P(P(U)) (1.34)

and ⋃
∗ : P(P(P(U))) −→P(P(U)). (1.35)

The first one is the familiar union-of-a-family map applied to P(U) instead
of U . It sends X ∈P(P(P(U))) , i.e., a family of families of subsets of U ,
to the family of subsets of U which belong to at least one member family
X ∈ X ⋃

X =
⋃

X ∈X
X .

The other one is induced by the map
⋃

: P(P(U))→P(U) . It is formed
by the unions of member families X ∈ X ,⋃

∗(X)˜
{

Y ⊆ U | Y =
⋃

X =
⋃

X∈X

X for some X ∈ X
}

.

Exercise 9 Show that the following diagram commutes

P(P(P(U))) P(P(U)))

P(P(U))) P(U)
u

⋃
w

⋃
∗

u

⋃
w

⋃ , (1.36)

i.e., show that the following two subsets of U ,⋃ (⋃
X
)
=

⋃
X∈⋃X

X

and ⋃⋃
∗(X) =

⋃
X ∈X

(⋃
X
)
=

⋃
X ∈X

( ⋃
X∈X

X

)
,

are equal for any family of families X ⊆P(P(U)) .
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1.3.1.5 Terminology

If one is going to deal with “families of families of subsets of a set U ,”
et caetera, on an extended basis, then one perhaps should use a less
cumbersome terminology. One could, for example, call subsets of the n
times iterated power set

Pn(U) = P(· · ·P︸       ︷︷       ︸
n times

(U) · · · ) (n ≥ 0)

n-families in a set U . In particular, subsets of U = P0(U) are 0-families,
families of subsets of U are 1-families, families of families of subsets of U
are 2-families, etc.

1.3.2 Cartesian product

1.3.2.1 Associativity of Cartesian product

Instead of equality, we have only a canonical identification between the
iterated Cartesian product of a family of families of sets and the Cartesian
product of the total family.

Let us consider first the case of a pair of families of sets

(Xi)i∈I and (Xk)k∈K.

The natural correspondence

((xi)i∈I , (xk)k∈K) ↔ (xl)l∈ItK

identifies the iterated Cartesian product

∏
i∈I

Xi × ∏
k∈K

Xk

with
∏

l∈ItK
Xl .

In the case of a pair of finite families (A1, . . . , Am) and (B1, . . . , Bn) , this
identification acquires the form(

(a1, . . . , am), (b1, . . . , bn)
)
↔ (a1, . . . , am, b1, . . . , bn).
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1.3.2.2 Iterated Cartesian product

In general, given any family of families of sets (1.32), the iterated Carte-
sian product and the Cartesian product of the total family are naturally
identified

∏
j∈J

∏
ij∈Ij

Xij ←→∏
l∈L

Xl where L = ä
j∈J

Ij. (1.37)

Indeed, elements of ∏ij∈Ij
Xij are maps

ξ j : Ij →
⋃

ij∈Ij

Xij

such that ξ j(ij) ∈ Xij . By composing maps ξ j with the inclusions⋃
ij∈Ij

Xij ↪→ U˜
⋃
l∈L

Xl ,

we can consider all ξ j as being maps with the common target U . Thus,
elements of

∏
j∈J

∏
ij∈Ij

Xij

become families (ξ j)j∈J of maps ξ j : Ij → U . By the universal property of
the disjoint union, there exists a unique map ξ̃ : L→ U whose ‘restrictions’
to Ij are families maps ξ j : Ij → U .

This map ξ̃ is an element of ∏l∈L Xl . Since the correspondence between
families (ξ j)j∈J and maps ξ̃ is bijective, the correspondence in (1.37) is
bijective.

Exercise 10 Formulate and prove the corresponding associativity laws for disjoint
union.

1.3.2.3 Calculus of Cartesian powers of a set

For any sets A , B , and C , one has natural identifications

AB × AC ←→ ABtC (1.38)

and, more generally,
∏
j∈J

ABj ←→ Aäj∈J Bj (1.39)

which are special cases of identifications (1.37).
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1.3.2.4

One has also the following natural identification(
AB)C ←→ AB×C (1.40)

given by the following pair of mutually inverse correspondences(
AB)C 3 f 7→ φ ∈ AB×C, where φ(b, c)˜

(
f (c)

)
(b)

and
AB×C 3 φ 7→ f ∈

(
AB)C, where f (c)˜ φ( · , c).

1.3.2.5

Using the families-of-elements notation instead of maps notation, we can
describe identification (1.40) also in this form(

X I)J ←→ X I×J ,
(
(xij)i∈I

)
j∈J ↔ (xij)(i,j)∈I×J . (1.41)

1.4 The language of categories and functors

1.4.1 Oriented graphs

1.4.1.1

An oriented graph C consists of two classes, C0 (the class of vertices) and C1
(the class of arrows) which are related by a pair of correspondences:

C1

C0 C0


fl
t

[
[]s . (1.42)

1.4.1.2

For any arrow α we shall refer to s(α) as its source, and to t(α) as its target.
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1.4.1.3

Note that we are saying classes—not sets. Basic concepts of Category Theory
impose on the foundations on which the edifice of Mathematics rests, that
one is allowed to talk about classes that are not sets, like the class of all
sets, the class of all singleton sets, the class of all vector spaces over a
given field of coefficients, etc, and one is likewise allowed to talk about
correspondences between classes as if they were mappings between sets.

We henceforth will be cautiously extending to classes certain termi-
nology and notation usually associated with sets. For example, we may
indicate that a is a vertex of a graph C by writing either a ∈ C0 or
a ∈ VertC . Similarly, we may indicate that α is an arrow of a graph C by
writing either α ∈ C1 or α ∈ ArrC .

1.4.2 Categories

1.4.2.1 The class of composable arrows

Consider the class C2 of pairs (α0, α1) of arrows such that the source of α1
is the target of α0 . This class fits naturally into the diagram

C2

C1 	 C1

C0 C0 C0


fl

p0
[
[]p1


fl
t

[
[]

s

fl t

[
[]s

(1.43)

where pi sends (α0, α1) to αi .

1.4.2.2

A graph equipped with a correspondence

m : C2 ↔ C1 (1.44)

is said to be a category if (1.44) is associative, i.e.,

(α0 ◦ α1) ◦ α2 = α0 ◦ (α1 ◦ α2) (1.45)

for any composable triple of arrows. The latter means that

s(α0) = t(α1) and s(α1) = t(α2). (1.46)
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1.4.2.3 Objects and morphisms

1.4.2.4 HomC(a, b)

It was observed early that if one requires in the definition of a category
that, for any pair of objects a, b ∈ C0 , morphisms with a as their source
and with b as their target form a set and not just a class, then one can
avoid essentially all the potential dangers arising from presence of classes
in foundations of Category Theory.

This set is usually denoted HomC(a, b) and its elements are referred as
morphisms from a to b .

1.4.2.5 The class of composable pairs of morphisms

We say that a pair (α, β) of morphisms is composable if s(α) = t(β) . Denote
by C2 the class of composable pairs of morphisms. We assume that a
correspondence

m : C2 → C1, (α, β) 7→ α ◦ β, (1.47)

is given. It is referred to as composition of morphisms, and is possibly the
single most important element of the structure of a category.

1.4.2.6 The class of composable triples of morphisms

We say that a triple (α, β, γ) of morphisms is composable if s(α) = t(β)
and s(β) = t(γ) . As can be expected, we denote the class of composable
triples of morphisms by C3 . (Binary) composition (1.47) induces two
correspondences C3 → C2

m1 : (α, β, γ) 7→ (α ◦ β, γ) and m2 : (α, β, γ) 7→ (α, β ◦ γ). (1.48)

By applying correspondence (1.47), we obtain two correspondences C3 →
C1 . We require them to be equal which means that

(α ◦ β) ◦ γ = α ◦ (β ◦ γ) (1.49)

for any composable triple of morphisms. This condition is called associativ-
ity of the composition of morphisms.
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1.4.2.7

Associativity identity (1.49) can be expressed as commutativity of the
following diagram

C3 C2

C2 C1

u
m2

w
m1

u
m

w
m

(1.50)

1.4.2.8 The identity morphisms

We could stop here and call the defined structures categories. The classical
and still a ‘default’ definition of a category additionally requires presence
of a correspondence

i : C0 → C1, a 7→ ida ∈ HomC(a, a), (1.51)

such that
α ◦ ida = α and idb ◦α = α (1.52)

for any α ∈ HomC(a, b) . Morphism ida is referred to as the identity
morphism of object a .

1.4.2.9

Each of the identities in (1.52) can be expressed as commutativity of a
diagram of correspondences:

C1 × C0 C2

C1 C1

w
(idC1 ,i)

u

m

u

(idC1 ,s)

idC1

and

C0 × C1 C2

C1 C1

w
(i,idC1)

u

m

u

(t,idC1)

idC1

(1.53)

1.4.2.10

There are very good reasons not to require presence of the identity mor-
phisms in general, and to call the categories that possess such morphisms—
unital categories.
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1.4.2.11 Isomorphisms

We say that a morphism α ∈ HomC(a, b) is an isomorphism if there exists
β ∈ HomC(b, a) such that

α ◦ β = idb and β ◦ α = ida . (1.54)

Exercise 11 Show that if there exist morphisms β, γ ∈ HomC(b, a) such that

α ◦ β = idb and γ ◦ α = ida .

then β = γ .

1.4.2.12

In view of the above exercise, if there exists at least one right inverse and at
least one left inverse for a morphism α , then they are equal, which implies
that the two-sided inverse, (1.54), is unique when it exists. It is denoted
α−1 .

1.4.2.13 Endomorphisms of an object

Morphisms α : a → a are called endomorphisms of object a . The set
HomC(a, a) is often denoted EndC(a) .

1.4.2.14 Automorphisms of an object

Isomorphisms α : a → a are called automorphisms of object a . The set of
automorphisms is denoted AutC(a) .

1.4.2.15 Symmetries

Before categorical language was proposed and developed as means to
describe and study underlying structure of numerous areas of Mathematics,
automorphisms of various objects: geometric, physical systems, etc—were
often called symmetries.

1.4.2.16 Subcategories

For a category C , suppose that, a pair of subclasses C′0 ⊆ C0 and C′1 ⊆ C1
is given such that the source and the target of any morphism in C′1 is
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a member of C′0 and the composition of any two such morphisms is a
member of C′1 .

If we equip the pair of classes (C0,C1) with the source, target, and
multiplication correspondences induced from category C , we obtain a
category on its own. Denote it C′ .

This situation arises frequently. We say that C′ is a subcategory of C .

1.4.2.17 Full subcategories

If
HomC′(a, b) = HomC(a, b) (a, b ∈ C′0),

then we say that C′ is a full subcategory of category C .

1.4.3 Natural definitions of a morphism between sets

1.4.3.1 Set

The category of sets usually takes pride of being presented as the first
example of a category. The objects of this category are sets. There are,
however, several natural candidates for the morphisms. The standard
choice for morphisms X → Y is to take maps f : X → Y :

HomSet(X, Y) = YX.

This category will be denoted Set and referred to as the category of sets.
Note that isomorphisms in the category of sets coincide with the class

of bijections.

1.4.3.2 Multivalued maps

A multivalued map, φ : X( Y , from a set X to a set Y , is a map φ : X →
P(Y) . Multivalued maps will be also called multimaps.

1.4.3.3 Maps versus multimaps

Every map f : X → Y defines the multimap

x 7→ φ f (x)˜ { f (x)} (x ∈ X).

The correspondence f 7→ φ f identifies maps f : X → Y with multimaps
φ : X( Y satisfying the property

|φ(x)| = 1 (x ∈ X). (1.55)
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1.4.3.4 The image map for a multimap

Every multimap φ : X( Y naturally extends to a map P(X)→P(Y) ,

A 7−→ φ(A)˜
⋃

x∈A

φ(x) (A ⊆ X). (1.56)

We will continue to denote it φ and will call it the image map associated
with multimap φ .

1.4.3.5 The reverse of a multimap

Every multimap φ : X( Y also defines a multimap Y( X

φrev(y)˜ {x ∈ X | φ(x) 3 y}. (1.57)

We shall refer to it as the reverse of φ . When φ is a map f : X → Y , then
φrev(x) = {x ∈ X | f (x) = y} is called the fiber of f at y ∈ Y .

1.4.3.6 The preimage map for a multimap

The image map for the reverse multimap, φrev , will be called the preimage
map for φ .

Exercise 12 Show that

φrev(B) = {x ∈ X | φ(x) ∩ B , ∅} (B ⊆ Y). (1.58)

1.4.3.7 Composition of multimaps

Given multimaps φ : X( Y and χ : Y( Z , their composition,

χ ◦ φ : x 7−→ χ(φ(x)) (x ∈ X), (1.59)

is a multimap X( Z .

Exercise 13 Given maps f : X → Y and g : Y → Z, show that

φg ◦ φ f = φg◦ f . (1.60)

Exercise 14 Show that composition of multimaps is associative, i.e.,

(χ ◦ φ) ◦ υ = χ ◦ (φ ◦ υ),

for any υ : W ( X , φ : X( Y, and χ : Y( Z.
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1.4.3.8 Setmult

Thus, the class of sets equipped with multimaps as morphisms forms a
category. We shall denote it Setmult .

Exercise 15 Show that the canonical embedding ιX : X ↪→P(X) ,

ιX : x 7−→ {x} (x ∈ X)

is the identity endomorphism of set X in Setmult .

1.4.3.9 Submaps

Let us call a multimap φ : X → Y satisfying the condition

|φ(x)| ≤ 1 (x ∈ X), (1.61)

a submap (compare it with (1.55)).
If multimaps satisfying (1.55) corespond to maps F : X → Y , then

submaps correspond to partially defined maps from X to Y , i.e., to maps
f : X′ → Y whose domain is a subset of X .

Exercise 16 Show that χ ◦ φ is a submap if both φ and χ are submaps.

1.4.3.10 Setsub

The class of sets with submaps as morphisms defines another category
whose objects are sets. We shall denote it Setsub .

1.4.3.11 Setfin

More generally, we shall say that φ : X( Y is a finitely-valued map, if

|φ(x)| < ∞ (x ∈ X). (1.62)

Exercise 17 Show that χ ◦ φ is finitely-valued if both φ and χ are finitely-valued.

In particular, sets with finitely-valued maps as morphisms form a
category. We shall denote it Setfin .
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1.4.3.12 Setcount

Another possibility is to consider countably-valued maps as morphisms,

φ(x) countable for all x ∈ X . (1.63)

Let us denote denote the corresponding category by Setcount .

1.4.3.13

The above categories form an increasing chain of unital subcategories of
the category of sets and multimaps

Set ⊆ Setsub ⊆ Setfin ⊆ Setcount ⊆ Setmult.

Note that they share the same class of objects. They differ only in their
morphisms.

1.4.3.14 Composition of binary relations

A different approach to defining morphisms from a set X to a set Y is to
consider binary relations R ⊆ X×Y . For R ⊆ X×Y and S ⊆ Y× Z ,

R ◦S˜{(x, z) ∈ X×Z | there exists y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}.
(1.64)

is a binary relation between elements of X and Z . If we use notation
x ∼R y (“element x ∈ X is in relation R with element y ∈ Y”) to express the
fact that (x, y) ∈ R , then we can rewrite Definition (1.64) as follows

R ◦S˜{(x, z) ∈ X×Z | there exists y ∈ Y such that x ∼R y and y ∼S z}.
(1.65)

Exercise 18 Show that composition of binary relations is associative, i.e.,

(Q ◦ R) ◦ S = Q ◦ (R ◦ S)

for any Q ⊆W × X , R ⊆ X×Y, and S ⊆ Y× Z.

1.4.3.15 The identity relation

For any set X we shall call the binary relation

∆X˜ {(x, x′) ∈ X× X | x = x′} (1.66)

the identity relation on X .
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Exercise 19 Show that
∆X ◦ R = R = R ◦ ∆Y

for any R ⊆ X×Y.

1.4.3.16

Denote the category whose objects are sets and relations R ⊆ X × Y are
morphisms X → Y by Setrel .

1.4.4 Discrete categories

1.4.4.1

There are much simpler categories than the categories of sets. The sim-
plest, are perhaps the categories with the empty class of morphisms. Such
categories are referred to as discrete.

1.4.4.2 Discrete unital categories

Every unital category is supposed to have at least the identity morphisms
for each object. For this reason, in the context of unital categories discrete
means: no morphisms besides the identity morphisms.

1.4.5 Small categories

1.4.5.1

If the class of objects forms a set, such a category is called a small category.
In this case, the class of morphisms is a set too. Indeed, it is the union

C1 =
⋃

(a,b)∈C0×C0

HomC(a, b)

of the family of HomC(a, b) which is indexed by the Cartesian square of
the set of objects.

1.4.5.2

Several fundamentally important structures in Mathematics can be in-
terpreted as small categories. We give here just one yet very important
example of such structures: a preordered set. Other examples will appear
later.
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1.4.5.3 Preordered sets

We say that a binary relation J on a set X is a preorder (the term quasiorder
is used too), if it is reflexive,

x J x (x ∈ X), (1.67)

and transitive

if x J y and y J z , then x J z (x, y, z ∈ X). (1.68)

Of these two properties transitivity is far more important.
A preordered set. i.e., a set equipped with a preorder gives rise to the

category whose objects are elements of X , and Hom(x, y) consists of a
single element, if x J y , and is empty otherwise. Since Hom(x, y) has at
most one element, it does not matter how does one denote it. One may use,
for example, symbol J or, to indicate its source and target, x J y .

Note that in the associated category, objects x and y are isomorphic if
and only if x J y and y J x .

1.4.5.4

Vice-versa, any small category C with the property that, for any a, b ∈ C0 ,

HomC(x, y) has at most one element, (1.69)

is obtained this way.

Exercise 20 For a small category that satisfies (1.69), show that

x J y if HomC(x, y) , ∅

defines a preorder relation on X˜ Co .

1.4.5.5 Partially ordered sets

A partial order on a set X is a preorder which is weakly antisymmetric

if x J y and y J x , then x = y. (1.70)

1.4.5.6

Small discrete categories correspond to discrete partially ordered sets, i.e.,
the sets equipped with the smallest order relation—the identity relation:

x Jdiscr y if x = y.
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1.4.6 Functors

1.4.6.1

A functor F : C  D from a category C to a category D consists of two
correspondences: between the classes of objects and between the classes of
morphisms

F0 : C0 → D0 and F1 : C1 → D1

which are compatible with all the elements of the category structure. The
latter means that the following diagrams of correspondences

C0 D0

C1 D1

C0 D0

w
F0

u
s

w
F1

u
t

u
s

u
t

w
F0

(1.71)

and
C2 D2

C1 D1

u
m

w
F2

u
m

w
F1

(1.72)

are commutative. Here, F2 denotes the correspondence induced by F1 on
the classes of composable pairs:

F2 : C2 → D2, (α, β) 7→ (F1(α), F1(β)). (1.73)

1.4.6.2 Unital functors

When the corresponding categories are unital, i.e., possess identity mor-
phisms, then it is customary to require that a functor F : C D is compati-
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ble also with the identities. This means that the diagram

C0 D0

C1 D1

u
id

w
F0

u
id

w
F1

(1.74)

is supposed to commute. We shall call such functors unital.

1.4.6.3

In the interest of keeping notation as transparent as possible it is customary
to omit subscript indices and denote the correspondences between the
objects, morphisms, composable pairs of morphisms, etc., using the same
symbol F .

1.4.6.4

Commutativity of the two squares in diagram (1.71) then can be expressed
as

s(F(α)) = F(s(α)) and t(F(α)) = F(t(α)) (α ∈ C1), (1.75)

while commutativity of diagram (1.72) expresses the fact that

F(α) ◦ F(β) = F(α ◦ β) (1.76)

for any pair of composable morphisms α and β in C .
Finally, commutativity of diagram (1.74) means that

idF(a) = F (ida) (a ∈ C0). (1.77)

1.4.6.5 Contravariant functors

The functors we defined above are also called covariant functors. The
contravariant variety is obtained if one requires instead

s(F(α)) = F(t(α)) and t(F(α)) = F(s(α)) (α ∈ C1), (1.78)

and
F(β) ◦ F(α) = F(α ◦ β) (1.79)

for any pair of composable morphisms α and β in C .

Exercise 21 Express requirements (1.78) and (1.79) with help of diagrams analo-
gous to (1.71) and (1.72).
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1.4.6.6 An example: the graph functor

For a multimap φ : X( Y , the set

Γφ˜ {(x, y) ∈ X×Y | φ(x) 3 y} (1.80)

will be called the graph of φ . It can be naturally identified with the set⋃
x∈X

{x} × φ(x).

Exercise 22 Verify that ΓidX = ∆X and, for any φ : X ( Y and χ : Y ( Z,
one has

Γχ◦φ = Γφ ◦ Γχ. (1.81)

Thus, the double correspondence

X 7→ X, φ 7→ Γφ (X ∈ ObSet, φ ∈ ArrSetmult), (1.82)

defines a cotravariant functor Γ : Setmult  Setrel . When φ satisfies condi-
tion (1.55), Γφ cincides with the graph of the corresponding map f : X → Y .

1.4.6.7

Note that the correspondence

HomSetmult(X, Y) −→P(X×Y), φ 7−→ Γφ,

is bijective: for any R ⊆ X×Y , one has R = ΓφR where φR : X( Y is the
multimap

φR(x)˜ {y ∈ Y | (x, y) ∈ R}.

1.4.6.8

Functors very often encode natural constructions in Mathematics. We have
already encountered a few functors in Section 1.1.2 of the Introduction,
all being functors Set  Set, the first and the third being covariant, the
second and the fourth being contravariant.

1.4.6.9 The canonical inclusion functors

Given a subcategory C′ of a category C , the natural inclusion correspon-
dences ι0 : C′0 → C0 and ι1 : C′1 → C1 define the inclusion functor ι : C′  C .
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1.4.6.10 The category of small categories

The category whose objects are small categories and morphisms are covari-
ant functors between small categories is itself a category. It is denoted Cat
and is called the category of (small nonunital) categories.

1.4.6.11 The category of small unital categories

If we consider only unital small categories and unital functors, then we
obtain the category of small unital categories. We shall denote it here Cat1 .
The reader should be warned that since categories are usually assumed to
possess identity morphisms, the category of small unital categories is often
denoted Cat.

1.4.6.12 The category of sets viewed as a subcategory of the category of
small categories

Let us identify sets X with small discrete categories X ,

X0 = X, X1 = Ø.

Any map f : X → Y defines a functor F : X Y ,

F0 = f , F1 = id∅,

and every functor F : X  Y is necessarily of this form since id∅ is the
only map from ∅ to ∅ .

In particular, the category of sets can be viewed as a full subcategory of
the category of small categories.

1.4.6.13 Set viewed as a subactory of Cat

In the unital case, we associate with any set X the category X′ ,

X′0 = X, X′1 = X

with all the structural correspondences being idX (note that X′2 = {(x, x) |
x ∈ X} is here naturally identified with set X ).

Any map f : X → Y defines a functor F : X′  Y′ ,

F0 = f , F1 = f , (1.83)

Exercise 23 Show that any unital functor F : X′ → Y′ is of the form (1.83).

It follows that Set, the unital category of sets, is a full subcategory of
Cat, the category of small unital categories.
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1.4.6.14

Since functors between unital categories do not necessarily respect the
identity morphisms (an example will be given below), Cat1 is a subcategory
of Cat yet not a full subcategory.

1.4.6.15 Natural transformations of functors

Given two (covariant) functors F and G from a category C to a category
D , a natural transformation between them, denoted φ : F ⇒ G , consists
of a single correspondence φ : C0 → D1 which is compatible with all the
present structures. The latter means that

φ(a) ∈ HomD(F(a), G(a)) (a ∈ C0), (1.84)

and, for any morphism α ∈ HomC(a, b) , the following square commutes

F(a) G(a)

F(b) G(b)
u

F(α)

w
φ(a)

u

G(α)

w
φ(b)

(1.85)

1.4.6.16

In the language of correspondences, conditions (1.84) translates into com-
mutativity of the following diagram

D0

C0 D1

D0



fiF0

w
φ

[
[
[[]G0

u
s

u
t

(1.86)
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while conditions (1.85) expresses commutativity of the diagram

C1 D2

D2 D1

u
(G1,φ◦s)

w
(φ◦t,F1)

u
m

w
m

(1.87)

Exercise 24 Formulate the definition of a natural transformation of contravari-
ant functors analogous to (1.84)-(1.85).

Exercise 25 Formulate the definition of a natural transformation of contravari-
ant functors analogous to diagrams (1.86)-(1.87).

1.4.6.17

We have already encountered a natural transformation of contravariant
functors χ : P( )⇒ 2( ) in Section 1.1.2.6.

1.4.6.18

Many properties normally expressed as identities involving objects, mor-
phisms, sets, maps, elements of various sets, etc, can be often expressed
as commutativity of certain diagrams. This leads to proliferation of what
some call ‘diagrammatic thinking’ in modern Mathematics. Employing
diagrams often can significantly clarify the picture.

On some occasions information conveyed by diagrams may be more
difficult to understand than the same information expressed differently. I
would say that it is probably easier to understand the meaning of conditions
(1.85) than the meaning of the commutativity of diagram (1.87). That is
probably due to the fact that the conditions (1.85) are themselves expressed
in terms of commutativity of some easy-to-understand diagrams.

1.4.7 The opposite category

1.4.7.1

Note that if one retains the clases of objects and arrows, C0 and C1 , but
exchanges the source and the target correspondences, s : C1 → C0 and
t : C1 → C0 , then one obtains a category again. This is the opposite category
Cop .
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1.4.7.2

More precisely,

C
op
0 = C0, C

op
1 = C1, sop = t, and top = s. (1.88)

If an object a of C is considered as an object of Cop , then it should be
denoted aop . Similarly for morphisms: if α : a → b is a morphism in C ,
then α considered as a morphism of the opposite category is a morphism
bop → aop and it should be denoted αop .

1.4.7.3

The correspondences

a 7→ aop and α 7→ αop (a ∈ C0; α ∈ C1),

define a contravariant functor

( )
op
C : C Cop.

1.4.7.4

Note that

( )
op
C ◦ ( )

op
Cop = idCop and ( )

op
Cop ◦ ( )op

C = idC .

1.4.7.5 An example: a partially ordered set

If C is the category that corresponds to a partially ordered set (X,�) , cf.
Section 1.4.5.6, then Cop corresponds to set X equipped with the reverse
order, �rev .

1.4.7.6

One of the uses of the concept of the opposite category is that it allows to
consider any contravariant functor F : C D as a covariant functor either
C  Dop or Cop  D . Formally speaking, this is done by composing F
with ( )

op
D or ( )

op
Cop ,

( )
op
D ◦ F : C→ Dop or F ◦ ( )op

Cop : Cop  D.
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1.4.7.7

Any functor F : C D , induces also a functor from Cop to Dop

Fop
˜ ( )

op
D ◦ F ◦ ( )op

Cop . (1.89)

Note that Fop is covariant (respectively, contravariant) when F is covariant
(respectively, contravariant).

1.4.7.8

Assigning to any category C its opposite category Cop is natural in C , so
one can expect that it gives rise to a functor on the category of (small)
categories. This is so indeed, the correspondences

C 7→ Cop and F 7→ Fop (C ∈ Cat0; F ∈ Cat1), (1.90)

defined by (1.88) and (1.89), yield a functor ( )op : Cat Cat.

Exercise 26 Is functor (1.90) covariant or contravariant?

1.4.7.9 Setmult ' (Setrel)
op

The graph functor, Γ : Setmult  Setrel , which was defined in Section
1.4.6.6, identifies the category of sets with multimaps as morphisms with
the category opposite to the category of sets with binary relations as
morphisms. In other words, Setmult is isomorphic to (Setrel)

op .
Isomorphisms between categories are, generally speaking, a rare occur-

rence.

1.4.7.10 Importance of the opposite category concept

Any diagram in a category C can be interpreted as the same diagram—but
with the direction of all arrows reversed—in the opposite category.

An immediate corollary of this simple observation yields the following
Duality Principle:

For any categorical concept or construction involving one or
more diagrams, there is a dual concept or construction.
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1.4.8 Categories of arrows

1.4.8.1

For any category there are several naturally associated categories whose
objects are morphisms. We shall mention here three.

1.4.8.2 The category of arrows

For a category C , let C→ be the category whose objects are morphisms of
C ,

(C→)0˜ C1, (1.91)

and morphisms φ : α→ β are pairs of morphisms φ = (φs, φt) in C ,

φs : s(α)→ s(β), φt : t(α)→ t(β), (1.92)

such that the following diagram commutes

• •

• •
u

α

w
φs

u
β

w
φt

(1.93)

1.4.8.3

Category of arrows C→ is sometimes also denoted ArrC . One should
be advised however, that ArrC may also be used to denote the class of
morphisms in C .

1.4.8.4 Two comma categories

For any object a in a category C , one can consider two categories: one,
Ca→ , whose objects are morphisms in C with source a ,

(Ca→)0˜ {α ∈ C1 | s(α) = a}, (1.94)

and another one, C→a , whose objects are morphisms with target a ,

(Ca→)0˜ {α ∈ C1 | t(α) = a}. (1.95)
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1.4.8.5

Morphisms φ : α→ β in Ca→ are morphisms φ : t(α)→ t(β) such that the
following diagram commutes

•

a

•
u

φ
AA
ACα

‚‚‚›
β

(1.96)

1.4.8.6

Morphisms φ : α→ β in C→a are morphisms φ : s(α)→ s(β) such that the
following diagram commutes

•

a

•
u

φ

‚‚‚›α

AA
AC
β

(1.97)

1.4.9 Categories of diagrams

1.4.9.1

(Covariant) functors from a small category Γ to an arbitrary category C

form a category, denoted CΓ , with morphisms φ : F → G being natural
transformations of functors.

1.4.9.2 Diagrams as functors

Such functors are often called diagrams in C and the reason will become
clear when we look at a series of simple examples.

1.4.9.3 C

Consider the category with a single object, 0, with empty class of mor-
phisms. Denote this category by 1. Functors from 1 to C correspond to
single objects in C , and C1 becomes naturally identified with category C

itself.
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1.4.9.4 C→

Consider the category with two objects, 0 and 1, and a single morphism

0 → 1.

Denote this category by 2. Functors from 2 to C correspond to single
morphisms in C , and C2 becomes naturally identified with the category of
arrows, C→ .

1.4.9.5 The category of composable pairs of arrows

Consider the category with three objects, 0, 1 and 2, and just three mor-
phisms, the following two

0 → 1 → 2,

and their composition. Denote this category by 3. Functors from 3 to
C correspond to composable pairs of morphisms in C , and C3 becomes
naturally identified with the category of composable pairs of arrows in C .

Exercise 27 The category of composable pairs of arrows in C has class C2 as its
class of objects. Knowing that morphisms φ : (α0, α1)→ (β0, β1) are defined in a
natural manner, give the definition of morphisms.

1.4.9.6

Categories 1, 2 and 3 correspond to the linearly ordered sets {0} , {0, 1} ,
{0, 1, 2} . Let n be the category with n objects

0, 1, . . . , n-1

which corresponds to the linearly ordered set {0, . . . , n− 1} .

Exercise 28 Find the number of morphisms in n.

Exercise 29 Provide a description of Cn which generalizes to arbitrary n the
descriptions given above for n = 1, 2, 3 .
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1.4.9.7 The category of commuting squares

Consider the category with four objects

00, 01, 10, and 11,

and just five morphisms
00 01

10 11

u
`

w
>

[
[
[[]
4

u
a

w
⊥

Denote this category by � . Objects of C� are commuting squares in C .

Exercise 30 Describe morphisms in C� .

1.4.9.8 The category of families of objects

Let I be the category with a set I as its class of objects and empty class
of morphisms. Objects of CI are families (ai)i∈I of objects of category C

indexed by set I .

Exercise 31 Describe morphisms φ : (ai)i∈I → (bi)i∈I .
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