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1 Preliminaries

1.1 The language of sets
1.1.1

The concepts of a set and of being an element of a set,

a ∈ A (“a belongs to A”), (1)

are the two foundations on which the edifice of modern Mathematics is
built. Nearly everything else is expressed using just these two concepts.

1.1.2

A set A is a subset of set B if

for any a ∈ A, one has a ∈ B. (2)

We denote this using symbolic notation by A ⊆ B and say that set A is
contained in set B or, equivalently, that set B contains set A .

1.1.3

Sets A and B are declared equal if A ⊆ B and B ⊆ A .
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1.1.4

A safe guideline is to form new sets only from objects already known to
be elements of some sets.

1.1.5

Very few assumptions are made about sets. They are called axioms of
the Set Theory. Most important for us is the so-called Separation Axiom
which, for any set A and a well-formed statement R(x) , applicable to an
arbitrary element x of A , gurantees the existence of the subset consisting
of those x ∈ A for which R(x) holds. This subset is denoted as follows

{x ∈ A | R(x)}. (3)

The name, Separation Axiom, signifies the fact that we separate elements
x ∈ A for which R(x) holds from those for which R(x) does not hold.

1.1.6

The Separation Axiom guarantees then the existence of the singleton sets
{a} . Indeed, if a ∈ A , then

{a} = {x ∈ A | x = a}. (4)

1.1.7 The union of two sets

Another axiom guarantees that, for any two sets A and B , there exists
a set containing both A and B . If this is so, then we can guarantee that
the union, A ∪ B , exists. Indeed, let C be a set containing both A and B .
Then

A ∪ B = {c ∈ C | c ∈ A or c ∈ B}. (5)

1.1.8

Axiom 1.1.7 then guarantees the existence of the sets {a, b} . Indeed, if
a ∈ A and b ∈ B , then

{a, b} = {x ∈ A ∪ B | x = a or x = b}. (6)

The following lemma is as simple as useful.
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Lemma 1.1 For any elements a, b, and c of a set A, one has

{a, b} = {a, c} if and only if b = c. (7)

Proof. If b ∈ {a, c} , then either b = a or b = c . If b = a , then
c ∈ {a, b} = {b} which means that b = c . �

1.1.9 The empty set

Finally, we need a guarantee that there is at least one set. If this is so, then
there exists a set with no elements. Indeed, if A is a set, then the set

{a ∈ A | a /∈ A} (8)

has no elements.1 Note that, for another set B ,

{a ∈ A | a /∈ A} = {b ∈ B | b /∈ B}

since both are subsets of C = A ∪ B and two subsets X , X′ of a given set
C are equal if and only if

for any c ∈ C, one has c ∈ X if and only if c ∈ X′ . (9)

The set with no elements is referred to as the empty set and denoted ∅ .

1.1.10 The power set

The third and the last axiom concerned with formation of sets guarantees,
for any set A , the existence of the set of all subsets of A . We shall denote
this set by P(A) .

1.1.11 Families of subsets of a set

A family of subsets of a set A is the same as a subset X ⊆P(A) .
1Symbol /∈ denotes the negation of ∈ ; hence, a /∈ A reads “ a does not belong to A”.
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1.1.12 The union and intersection of a family of subsets

The union is defined as⋃
X ˜ {a ∈ A | a ∈ X for some X ∈ X} (10)

while the intersection is defined as⋂
X ˜ {a ∈ A | a ∈ X for all X ∈ X}. (11)

Notation ⋃
X∈X

X and
⋂

X∈X
X

is also used.

Exercise 1 Show that if X′ ⊆ X , then⋃
X′ ⊆

⋃
X and

⋂
X′ ⊇

⋂
X. (12)

1.1.13 The union and intersection of the empty family of subsets

The union and the intersection of a family X = {X} consisting of a single
subset X ⊆ A , is X itself. The empty family of subsets of A is contained
in {X} , therefore⋃

∅ ⊆
⋃
{X} = X and

⋂
∅ ⊇

⋂
{X} = X

for every X ⊆ A . It follows that⋃
∅ ⊆

⋂
X⊆A

X = ∅ and
⋂

∅ ⊇
⋃

X⊆A
X = A.

Since
⋂
X for any X ⊆P(A) is a subset of A , we obtain⋃

∅ = ∅ and
⋂

∅ = A.

1.1.14

By P∗(A) we shall denote the set of all nonempty subsets of A . It exists
since

P∗(A) = {X ∈P(A) | X 6= ∅}.
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1.1.15 Natural numbers represented by sets

Having the empty set, we can construct natural numbers as sets:

0˜∅, 1˜ {0}, 2˜ {0, 1}, 3˜ {0, 1, 2}, . . . (13)

or, in expanded form,

0˜∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, . . . .

1.1.16

For any natural number n , the corresponding set n has as its elements m ,
for all m < n . In particular, m ∈ n for each m < n .

Proposition 1.2 For any n, one has n /∈ n .

Proof. Suppose that the assertion does not hold. Let n be the smallest
natural number such that n ∈ n . Note that 0 /∈ 0 because 0 has no
elements. Hence n > 0. According to 1.1.16, there exists m < n such that
n = m . It follows that

m ∈ n = m

which contradicts the facat that n is the minimal natural number for which
the assertion of Proposition 1.2 fails. �

Corollary 1.3 If m 6= n, then m 6= n .

Proof. If m < n , then m ∈ n but n /∈ n . Thus m cannot be equal to
n . �

1.2 The product of sets
1.2.1 An ordered pair

For any elements s and t of a set S , let

(s, t)˜ {{s}, {s, t}}. (14)

Note that (14) guaranteed to exist and is a subset of the power set P(S) .
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1.2.2

If
(s, t) = (s′, t′),

then {s} = {s′} , in which case s = s′ , or {s} = {s′, t′} . In the former case,
we apply Lemma 1.1 to deduce that

{s, t} = {s′, t′}

and, since s = s′ , to apply the same lemma again to deduce that t = t′ .
In the latter case, both s′ and t′ would be elements of {s} , and that

would mean that

s′ = s = t′, and (s′, t′) = {{s}}.

In particular,
{s, t} ∈ {{s}}

which means that {s, t} = {s} . This in turn implies that t ∈ {s} which
means that

s = t = s′ = t′.

�

1.2.3

The above argument establishes the essential property of (14):

(s, t) = (s′, t′) if and only if s = s′ and t = t′. (15)

In all the applications of the notion of the ordered pair one uses only this
property and not its specific realization. You can consider (14) to provide
a proof that such an object indeed exists.

1.2.4 The (Cartesian) product of two sets

Definition 1.4 For any sets X and Y we define their Cartesian product to be

X×Y˜ {A ∈P(P(X ∪Y)) | A = (x, y) for some x ∈ X and y ∈ Y}.
(16)

6



Note that the set defined in (16) is guaranteed to exist and is a subset of
P(P(P(X ∪Y))) .

One can rewrite (16) in an informal way as saying

X×Y = {(x, y) | x ∈ X and y ∈ Y}. (17)

That, however, would still require demonstrating that the set on the right-
hand side of (17) exists. Definition (16) is free of this deficiency.

1.2.5 The (Cartesian) product of n sets

Given sets X1, . . . , Xn we can similarly define X1× · · · ×Xn as the set of
n-tuples

(x1, . . . , xn)

with x1 ∈ X1, . . . , xn ∈ Xn . One needs only to provide a corresponding
construction-definition of an n-tuple of elements of a set. The sole property
of an n-tuple that is being used in the above definition-construction of the
product of n sets is the equality principle: two n-tuples are equal if and
only if all of their components are equal:

(x1, . . . , xn) = (x′1, . . . , x′n) if and only if x1 = x′1, . . . , xn = x′n.

A convenient implementation of this principle is obtained if we adopt as a
model for (x1, . . . , xn) the set of pairs

{(1, x1), . . . , (n, xn)}. (18)

1.2.6

You may be surprised by the fact that instead of defining (x1, . . . , xn) ,
we only say that one can take (18) as a model for an n-tuple. This is an
instance of a very general pheonomenon that has been a constant feature
of Modern Mathematics: many important concepts appear as solutions to
certain formally posed problems. While the solutions are not unique, they all
lead to equivalent ways of developing conceptual basis of Mathematics.

1.2.7

Later we shall provide a uniform definition of the Cartesian product of an
arbitrary family of sets indexed by another set.
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1.2.8 The disjoint union of a family of subsets

The following subset of
(⋃

X
)
×X ,

äX ˜
{
(x, X) ∈

⋃
X×X

∣∣ x ∈ X
}

(19)

is called the disjoint union of X . The difference with the ordinary union
is that every element of

⋃
X remembers what X ∈ X does it come from.

Notation
ä

X∈X
X

is also used.

2 Relations

2.1 Relations as “verbs”
2.1.1

Given sets X1, . . . , Xn , a relation R between elements of these sets should
be thought of as a correspondence that assigns to a list of n arguments

x1 ∈ X1, . . . , xn ∈ Xn,

a statement that either holds or it does not hold. Such a statement must
of course be well formed and unambiguous. Note that the arguments are
drawn from the sets X1, . . . , Xn , that must be provided before the relation is
spelled out. The corresponding relation is referred to as an n-ary relation.

2.1.2

For the values of n =1, 2, 3, or 4, we refer to n-ary relations as unary,
binary, ternary, quaternary relations.

2.1.3

When X1, · · · , Xn are equal to a set X , we often say that R is an n-ary
relation on set X .
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2.1.4 The graph of a relation

The graph of R is the subset of X1× · · · ×Xn consisting of those n-tuples
(x1, . . . , xn) for which R(x1, . . . , xn) holds,

ΓR˜ {(x1, . . . , xn) ∈ X1× · · · ×Xn | R(x1, . . . , xn) holds}. (20)

The right hand side of (20) is also written as

{(x1, . . . , xn) ∈ X1× · · · ×Xn | R(x1, . . . , xn)}.

2.1.5

Note that the Separation Axiom is a statement of the existence of the graph
for unary relations. The existence of the graph for n-ary relations then
follows if one notices that an n-ary relation between elements of X1, . . . , Xn
gives rise to a unary relation on the Cartesian product X1× · · · ×Xn whose
graph coincides with the graph of the original n-ary relation.

2.1.6 The relation associated with E ⊆ X1× · · · ×Xn

If the graph is a subset of X1× · · · ×Xn canonically associated to a given
relation, then there is also a relation canonically associated to a given
subset E ⊆ X1× · · · ×Xn . Indeed, the statement

(x1, . . . , xn) ∈ E

defines a relation whose graph is E . We shall denote it RE and refer to it
as the relation canonically associated to E . It is the relation of membership in
E of the n-tuple (x1, . . . , xn) .

2.1.7 Permutations acting on relations

Let σ be a permutation of numbers 1 through n . By a permutation we
understand a list of n numbers,

σ(1) , . . . , σ(n),

in which each natural number between 1 and n is encountered exactly
once.
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For any n-ary relation R , we have an associated relation Rσ between
elements of sets Xσ(1), . . . , Xσ(n) , where

Rσ(xσ(1), . . . , xσ(n)) (21)

is the statement
R(x1, . . . , xn).

2.2 Comparing relations
2.2.1

Given two n-ary relations between elements of sets X1, . . . , Xn , we say
that R is weaker than S if

S (x1, . . . , xn) holds whenever R(x1, . . . , xn) does.

In this situation we also say that S is stronger than R .

Exercise 2 Show that R is weaker than S if and only if ΓR ⊆ ΓS .

2.2.2 Equipotent relations

If R is both weaker and stronger than S we say that the two relations
are equipotent. Note that R and S are equipotent if and only if ΓR = ΓS .

2.2.3 Weakest and strongest relations

A relation between elements of sets X1, . . . , Xn , that is never satisfied is
weaker than any other relation. Similarly, a relation always satisfied is
stronger than any other relation. The graph of the latter is the whole
Cartesian product X1× · · · ×Xn , the graph of the former is empty.

2.2.4 Weakest and strongest relations satisfying a given property

We shall say that a relation R is a weakest relation staisfying a given
property P if R is weaker than any relation satisfying P and R satisfies
P itself. Such a relation may not exist and, when it does exist, is not unique
by the very nature of the concept. This is the reason why we employ the
indefinite article: a weakest.
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Exercise 3 Formulate the dual concept of a strongest relation satisfying a given
property P .

2.2.5 A supremum of a class of relations

Given a nonempty class R of relations between elements of sets X1, . . . , Xn ,
their graphs form a nonempty family of subsets of X1× · · · ×Xn . The
relation Rsup canonically associated to the union of this family of subsets,⋃

R is in R

ΓR ,

is a weakest relation that is stronger than any relation in R . Any relation
with this property will be called a supremum of the class R .

2.2.6 An infimum of a class of relations

Similarly, the relation Rinf canonically associated to the intersection of the
graphs ⋂

R is in R

ΓR

is a strongest relation that is weaker than any relation in R . Any relation
with this property will be called an infimum of the class R .

2.3 Operations on relations
2.3.1 Negation

The statement ¬R(x1, . . . , xn) is the negation of the statement R(x1, . . . , xn) .
The graph of the negated relation ¬R is the complement in X1× · · · ×Xn
of the graph of R ,

Γ¬R =
(
X1× · · · ×Xn

)
\ ΓR .

2.3.2 Alternative

The statement R ∨S (x1, . . . , xn) reads

R(x1, . . . , xn) or S (x1, . . . , xn). (22)
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Note that both R and S are supposed to be n-ary relations between
elements of the same sets. The relation R∧S is called the alternative of
R and S . It is a supremum of the set of relations {R, S } , i.e., it is a
weakest relation stronger than both R and S .

The graph of R ∨S is the union of the graphs of R and S ,

ΓR∨S = ΓR ∪ ΓS .

2.3.3 Conjunction

The statement R∧S (x1, . . . , xn) reads

R(x1, . . . , xn) and S (x1, . . . , xn). (23)

The relation R∧S is called the conjunction of R and S . It is an infimum
of the set of relations {R, S } , i.,e, it is a strongest relation weaker than
both R and S .

The graph of R∧S is the intersection of the graphs of R and S ,

ΓR∧S = ΓR ∩ ΓS .

2.3.4 Alternative and conjunction of an indexed family of relations

Given a family R of n-ary relations between elements of sets X1, . . . , Xn ,
the statement

∨
R(x1, . . . , xn) reads

R(x1, . . . , xn) for some R ∈ R , (24)

while
∧
R(x1, . . . , xn) reads

R(x1, . . . , xn) for all R ∈ R . (25)

The relations
∨
R and

∧
R are called the alternative and, respectively, the

conjunction of the family of n-ary relations R .

2.3.5

The alternative is a supremum while the conjunction is an infimum of the
family of relations R . The alternative is a weakest relation stronger than
every member of R , the conjunction is a strongest relation weaker than
every member of R .

Exercise 4 What are the graphs of
∨
R and

∧
R? Prove your answer.
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2.4 Binary Relations
2.4.1 The subsets of left and right relatives

Any binary relation R between elements of sets X and Y defines two
families of subsets of X and Y , respectively,

Ry˜ {x ∈ X | R(x, y)} and xR˜ {y ∈ Y | R(x, y)}. (26)

Here Ry is referred to as the set of left R -relatives of y , while xR is the set
of right R -relatives of x .

2.4.2 The left and right quotient sets

The family of the sets of left R -relatives

X/R ˜ {A ⊆ X | A = Ry for some y ∈ Y}, (27)

will be referred to as the left quotient set of R while the family of the sets
of right R -relatives,

R\Y ˜ {B ⊆ Y | B = xR for some x ∈ X}, (28)

will be referred to as the right quotient set of R .

2.4.3

By definition,

X/R ⊆P(X) and R\Y ⊆P(Y).

The two quotient sets depend only on the graph of the relation.

Exercise 5 Show that

X/R = X/S and R\Y = S \Y (29)

if ΓR = ΓS .
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2.4.4 Special notation

Binary relations traditionally are denoted using a slightly different notation.
For example, the fact that R(x, x′) holds is expressed symbolically as

x ∼R x′ (30)

or x ∼ x′ , if the binary relation is clear from the context. Various other
symbols are used instead of ∼ , especially for certain types of relations
like, e.g., ordering relations.

2.4.5 Composition

Given a binary relation R between elements of X and Y , and a binary
relation S between elements of Y and Z , we can define their composite
R ◦S as the relations between elements of X and Z , where the statement
(R ◦S )(x, z) reads

R(x, y) and S (y, z) for some y ∈ Y . (31)

2.4.6 Correspondences

We shall refer to subsets of P(X×Y) as correspondences between sets
X and Y . The graph of a binary relation R between X and Y is a
correspondence. Vice-versa, any correspondence E ⊆ X×Y is the graph
of a relation, e.g., of the relation RE , where RE(x, y) is the statement:

(x, y) ∈ E . (32)

2.4.7 Composition of correspondences

Given sets X , Y , Z , and subsets

E ⊆ X×Y and F ⊆ Y×Z,

let E ◦ F be the subset of X×Z consisting of pairs (x, z) such that

(x, y) ∈ E and (y, z) ∈ F for some y ∈ Y.

Exercise 6 Prove that the composition of binary relations is associative and

ΓR◦S = ΓR ◦ ΓS . (33)
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2.4.8 The identity relation

For any set X , we shall denote by idX the identity relation on X . The
statementr idX(x, x′) reads

x = x′. (34)

We may omit subscript X when the set in question is clear from the
context.

Exercise 7 Prove that

idX ◦R = R = R ◦ idY

where R is a binary relation between elements of X and Y.

2.4.9

The graph of the identity relation on X is the diagonal

∆X˜ {(x, x′) ∈ X2 | x = x′}. (35)

2.4.10 The opposite relation

For a relation R between X and Y , we define the opposite relation Rop as
the relation between Y and X such that

Rop(y, x) if and only if R(x, y) (x ∈ X, y ∈ Y).

Note that Rop = Rσ where σ is the permutation transposing 1 and 2.

Exercise 8 Prove that

(R ◦S )op = S op ◦Rop.

2.5 Binary relations on a set
2.5.1

Let us consider binary relations on a given set X . For any natural number
m , we define Rm as the m-tuple composition of R ,

Rm
˜ R ◦ · · · ◦R (m times), (36)

and R0 to be the identity relation idX on X .
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2.5.2 Transitive relations

We say that a binary relation R on a set X is transitive if, for any x, x′, x′′ ∈
X ,

R(x, x′) and R(x′, x′′) implies R(x, x′′).

Exercise 9 Show that R is transitive if and only if R2 is weaker than R .

2.5.3 Transitive closure

Exercise 10 Prove that, for any relation R , the following relation

R ∨R2 ∨R3 ∨ · · · (37)

is transitive.

We shall refer to (37) as the transitive closure of R . It is a weakest transitive
relation that is stronger than R .

2.5.4 Symmetric relations

A binary relation on a set X is symmetric, if for any x, x′ ∈ X ,

R(x, x′) implies R(x′, x).

Exercise 11 Show that R is symmetric if and only if R is weaker than Rop .

Exercise 12 Show that R is weaker than S if and only if Rop is weaker than
S op . Deduce from this that R is symmetric if and only if R and Rop are
equipotent.

2.5.5 Symmetric closure (symmetrization)

Exercise 13 Show that R ∨Rop is symmetric.

We shall refer to R ∨Rop as the symmetric closure, or symmetrization, of R .
It is a weakest symmetric relation stronger than R .
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2.5.6

For symmetric relations, one has xR = Rx , hence the two quotient sets
R\X and X/R coincide. In this case, we shall simply refer to the quotient
of X by R .

2.5.7 Reflexive relations

A binary relation on a set X is reflexive, if R(x, x) holds for any x ∈ X .

Exercise 14 Show that R is reflexive if and only if R is stronger than idX .

Exercise 15 Show that idX ∨R is a weakest reflexive relation stronger than R .

2.5.8 Weakly antisymmetric relations

A binary relation on a set X is weakly antisymmetric, if for any x, x′ ∈ X ,

R(x, x′) and R(x′, x) implies x = x′.

Exercise 16 Show that R is weakly antisymmetric if and only if R∧Rop is
weaker than idX .

2.5.9 Preorders

A transitive reflexive relation on a set X is called a preorder or quasiorder.

Exercise 17 Show that R is a preorder if and only if ΓR ◦ ΓR = ΓR and
∆X ⊆ ΓR .

Exercise 18 Show that

R̂ ˜ R0 ∨R ∨R2 ∨R3 ∨ · · · (38)

is a weakest preorder stronger than R .

2.6 Ordering relations
2.6.1

A weakly antisymmetric preorder is called an ordering relation.
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2.6.2 Notation for ordering relations

Generic notation for an ordering relation employs symbols like � , ≤ , or
their variants.

2.6.3 Linear orders versus partial orders

An ordering relation on a set X such that for any x, x′ ∈ X , either R(x, x′)
or R(x′, x) , is called a linear (or total) order. For emphasis, general ordering
relations are often referred to as partial orders.

2.7 Equivalence relations
2.7.1

A symmetric preorder is called an equivalence relation.

2.7.2 Equivalence closure

A weakest equivalence relation stronger than R will be referred to as the
equivalence closure of R . Note that such a relation is, by definition, not
unique, but any two are equipotent. Its existence follows from Exercise 19

below.

Exercise 19 Show that R̂ is symmetric if R is symmetric. Prove that the
relation Ŝ , where S = R ∨Rop is the symmetrization of R , is a weakest
equivalence relation stronger than R .

2.7.3 The equivalence class of an element

Given an equivalence relation R on a set X and an element x ∈ X , the
set of its R -relatives, xR = Rx is referred to as the equivalence class of x ,
and is often denoted x̄ or [x] .

2.7.4 A partition of a set

A family of subsets Q ⊆ P(X) of X is called a partition of X if the
union of Q equals X , i.e., if every element of X belongs to some member
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Q ∈ Q , and different members are disjoint,

Q ∩Q′ 6= ∅ implies Q = Q′ (Q, Q′ ∈ Q).

Exercise 20 Given a partition Q of X, show that the relation RQ given by

RQ(x, x′) if there exists Q ∈ Q that contains both x and x′ ,

is an equivalence relation on X.

2.7.5

We shall call RQ the equivalence relation associated with partition Q . For
this relation,

x̄ is the unique member set Q ∈ Q that contains x . (39)

Exercise 21 For any equivalence relation R on X, show that the quotient set
X/R is a partition of X and

ΓR =
⋃

Q∈X/R

Q×Q. (40)

Exercise 22 Let R be a family of binary relations on a set X. For each of
the following properties: transitive, symmetric, weakly antisymmetric, relexive,
preorder, order, equivalence, answer the following question:

does
∧

R have property P if every member R ∈ R has it?

Prove your answers.

2.8 Line geometries
2.8.1

A pair of sets P and L equipped with a binary relation I is said to be
a line geometry if for all pairs of distinct elements P, P′ ∈ P and l, l′ ∈ L ,
the corresponding sets of I-relatives have no more than one element in
common,

|PI ∩ P′I | ≤ 1 (P 6= P′), (41)

and
|I l ∩I l′| ≤ 1 (l 6= l′). (42)
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2.8.2 Terminology and notation

Elements of P are traditionally referred to as points while elements of L

are called lines. The points are usually denoted by capital letters while the
lines are denoted by lower case letters. Finally, I is called the incidence
relation between points and lines. Statement I (P, l) reads:

P is incident to l .

Equivalently, we say that a line l passes through a point P or that P lies on
a line l .

2.8.3 The pencil of lines

For any point P , the set PI of lines passing through P is called the pencil
of lines at P .

2.8.4 The set of points on a line

Dually, for any line l , the set I l of points incident to l is called the set of
points on l .

2.8.5

In geometric terminology PI ∩ P′I 6= ∅ reads as

there is a line passing through P and P′ ,

while I l ∩I l′ 6= ∅ reads as

lines l and l′ intersect each other.

Thus, the pair of conditions (41) and (42) expresses the fact that no
more than one line passes through any pair of distinct points P and P′ ,
and any pair of distinct lines l and l′ intersects at no more than a single
point.

2.8.6 Collinearity of points

If, for a set of points Q , ⋂
P∈Q

PI 6= ∅,

then we say that the points of Q ⊆ P are collinear.
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2.8.7 Concurrence of lines

If, for a set of lines M , ⋂
l∈M

I l 6= ∅,

then we say that the lines of M ⊆ L are concurrent.

2.8.8 Configurations of points and lines

If numbers of points n = |P| and lines b = |L| are finite, if the number
of lines in each pencil r = |PI | does not depend on the point, and if the
number of points on each line k = |I l| does not depend on the line, we
say that (P,L, I ) is an (nr, bk)-configuration of points and lines.

2.8.9 nr -configurations

In the case when n = b and r = k , we talk of nr -configurations. These are
the line geometries with n points and lines with r lines passing through
every point and r points on every line.

2.8.10 Incidence geometries

Line geometries are instances of relational systems called incidence geome-
tries. Their study has been been particularly intensive in the last 60 years
and is at the crossroads of several branches of Mathematics like Combina-
torics, Group Theory, Number Theory, Algebraic Geometry, Representation
Theory.

2.8.11 Projective planes

By replacing in conditions (41) and (42) inequality by equality,

|PI ∩ P′I | = 1 (P 6= P′), (43)

and
|I l ∩I l′| = 1 (l 6= l′), (44)

we obtain the definition of a projective plane if one, additionally, requests
the following two nondegeneracy conditions:

there exist three distinct points P, P′, P′′ ∈ P

such that PI ∩ P′I ∩ P′′I = ∅ ,
(45)
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and, for every P ∈ P , PI has at least 3 elements,

|PI | > 2 (P ∈ P). (46)

2.8.12

Thus, the pair of conditions (43) and (44) expresses the fact that a unique
line passes through any pair of distinct points P and P′ , and any pair of
distinct lines l and l′ intersects at a unique point.

Exercise 23 Let (P,L, I ) be a binary relation assumed only to satisfy condi-
tion (41). Show that if any three distinct points are collinear, then there exists a
single line l ∈ L such that all points lie on l .

2.8.13

It follows that a line geometry failing condition (45) has all the points
lying on a single line with all the other lines passing through no more
than a single point.

Exercise 24 Let (P,L, I ) be a binary relation assumed only to satisfy condi-
tions (43) and (44). Show that it satisfies nondegeneracy condition (45) if and
only it satisfies the dual condition

there exist three distinct lines l, l′, l′′ ∈ L

such that I l ∩I l′ ∩I l′′ = ∅ ,
(47)

Exercise 25 Let (P,L, I ) be a binary relation assumed only to satisfy condi-
tions (43) and (44). Show that if two distinct lines pass through at least 2 points,
then condition (45) is automatically satisfied.

Exercise 26 Let (P,L, I ) be a binary relation assumed only to satisfy condi-
tions (43) and (44). Show that if two distinct lines pass through at least 3 points,
then (P,L, I ) is a projective plane.
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2.8.14

It follows that the only line geometry satisfying the first 3 conditions
defining a projective plane but failing condition (46) has all but one points
lying on a single line l with all the other lines passing through exactly 2

points: the unique point not on l and a point on l .
The above considerations explain that while conditions (43) and (44)

are fundamentally important, the other two conditions exclude just a few
degenerate cases.

Exercise 27 Show that there is a natural bijective correspondence between the
pencil of lines PI passing through a point P and the set of points I l on a line
not passing through P.

2.8.15 Finite projective planes

Exercise 28 Show that the number of points |P| of a projective plane is finite if
and only if the number of lines |L| is finite. Show that in that case the projective
plane is a nr -configuration where r = q + 1 and n = q2 + q + 1 for an integer
q > 1 .

2.8.16 The order of a finite projective plane

The number q = r− 1 is called the order of the finite projective plane. Any
power of prime q = pd occurs as the order and it is conjectured that the
order is always a power of prime. Already for the smallest composite
number q = 2 · 3 proving that no projective plane of order 6 exists is quite
difficult. Excluding the next case q = 2 · 5 involved computers. General
case is still open.

2.9 Mappings
2.9.1 Mappings of n variables

An (n + 1)-ary relation R between elements of X1, . . . , Xn and Y is called
a mapping of n variables if for every x1 ∈ X1, . . . , xn ∈ Xn , there exists
precisely one y ∈ Y such that R(x1, . . . , xn, y) . We shall refer to sets
X1, . . . , Xn as sources and to Y as the target of the mapping.
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2.9.2 Surjective mappings

A mapping is surjective if for any y ∈ Y , there exist x1 ∈ X1, . . . , xn ∈ Xn
such that R(x1, . . . , xn, y) . Surjective mappings are also called surjections.

2.9.3

In the special case of n = 1, the single source, denoted simply X , is also
referred to as the domain of the mapping.

2.9.4 Injective mappings

We then say that the mapping is injective if for any y ∈ Y , there is no more
than a single x ∈ X such that R(x, y) .

2.9.5 Bijective mappings

We also say that the mapping is bijective if for any y ∈ Y , there is exactly
one x ∈ X such that R(x, y) . Bijective mappings are also called bijections.

Exercise 29 Show that R is a bijection if and only if both R and Rop are
mappings.

2.9.6 Functional notation for mappings

The single element y ∈ Y such that R(x1, . . . , xn, y) will be denoted

fR(x1, . . . , xn) (48)

or f (x1, . . . , xn) , if the relation is clear from the context. We refer to (48)
as the value of the mapping for x1, . . . , xn . The symbol f in this generic
notation may be replaced by many other symbols or by a word like exp,
log, etc, which stands for an abbreviated name of the mapping.

2.9.7 Equality of mappings

We did not say what it means that two relations are equal. For mappings,
however, we shall say that mappings R and S are equal if their sources
and the target coincide and they take the same values, i.e.,

fR(x1, . . . , xn) = fS (x1, . . . , xn)
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for all x1 ∈ X1, . . . , xn ∈ Xn . In other words, mappings R and S are
declared to be equal if and only if they are equipotent as relations, which
happens precisely when their graphs coincide.

2.9.8 The arrow notation

For mappings from X to Y the notation

f : X −→ Y or X
f−→ Y (49)

is commonly used to signal that f is a mapping with the source X and
the target Y . We shall extend it to mappings of n variables by placing the
list of its sources at the tail,

f : X1, . . . , Xn −→ Y or X1, . . . , Xn Yw
f

. (50)

2.9.9

The above should alert you to the fact that even though mappings between
sets form a special kind of binary relations, they come with their own
notational and terminological conventions.

From now on the word mapping means mapping of a single variable
unless stated otherwise.

2.9.10 Composition of mappings

Since binary relations can be composed, mappings can be composed too.

Exercise 30 Show that if R and S are mappings, then R ◦S is a mapping.

Note that in the functional notation the composition order is reversed:

fS ◦ fR = fR◦S

This is due to the fact that we denote the value of f on x as f (x) and not
(x) f .
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2.9.11 Composition of mappings of n variables

Mappings of n variables can be composed too but their composition is
more elaborate. Given

X1, . . . , Xm Yiw
g

and Y1, . . . , Yn Zw
f

,

the mapping

Y1, . . . , Yi−1, X1, . . . , Xm, Yi+1, . . . , Yn Zw
f ◦ig (51)

is defined by

f ◦i g (y1, . . . , yi−1, x1, . . . , xm, yi+1, . . . , yn)

˜ f (y1, . . . , yi−1, g(x1, . . . , xm), yi+1, . . . , yn). (52)

Note that the source list of f ◦i g is obtained by inserting the source list of
g into the source list of f in place of the target of g .

2.9.12 The canonical inclusion maps

With any subset A ⊆ X , there is an associated the mapping

ιA⊂X : A −→ X, x 7−→ x (x ∈ A).

When X is clear from the context, this mapping can be denoted ιA , or
simply ι .

2.9.13

Note that this mapping is defined also when A is empty. The inclusion of
the empty set into a set X is the unique mapping from ∅ to X .

2.9.14 Retractions

Given a set X and a subset A , a mapping f : X−→X is said to be a
retraction onto A if f (X) = A and f restricted to A is the inclusion ιA .
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2.9.15 The image of a mapping

The set
{y ∈ Y | y = f (x) for some x ∈ X}

is called the image of a mapping f : X−→Y . The image is usually denoted
f (X) where X denotes the source of f .

Exercise 31 Show that a mapping f : X−→X is a retraction onto A ⊆ X if
and only if f ◦ f = f and f (X) = A.

2.9.16 The inverse mapping

The opposite relation for a mapping may not be a mapping. According
to Exercise 29, it is if and only if the mapping is a bijection. In functional
notation the opposite relation is then denoted f−1 and is referred to as
the inverse mapping.

2.10 Indexed families
2.10.1 Families of elements of a set indexed by a set

A family of elements of a set X indexed by a set I is the same as an
arbitrary mapping I−→X . The only difference is the notation used, (xi)i∈I
and

i 7−→ xi (i ∈ I),

instead of, say, f : I−→X and f (i) . This terminology is traditionally
employed when the focus is on xi themselves as members of X while
the indexing set I plays an auxiliary role. We typically encounter this
situation when talking about sequences of elements of a set. In this case, it
is of secondary importance whether we label terms of a sequence by the
set of natural numbers N , by the set of positive integers Z+ , or by the set
of positive even integers.

2.10.2 I -tuples

Families (xi)i∈I of elements of a set X are also referred to as I -tuples.
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2.11 Operations involving indexed families of sets
2.11.1 Families of sets indexed by a set

A family of sets indexed by a set I , is defined provided it is understood
that all Xi are subsets of some common set, say A . It is the same as a
family of elements of P(A) indexed by I .

2.11.2 The union of an indexed family of sets

For any family of sets, one can take A to be the union of all Xi ,⋃
i∈I

Xi ˜ {a ∈ A | a ∈ Xi for some i ∈ I}. (53)

Note that the set defined in (53) does not depend on A as long as A
contains every Xi .

2.11.3 The intersection of an indexed family of sets

For any family of sets, one can take A to be the union of all Xi ,⋂
i∈I

Xi ˜ {a ∈ A | a ∈ Xi for some i ∈ I}. (54)

Note that the set defined in (53) does not depend on A as long as A
contains at least a single Xi .

2.11.4 The disjoint union of a family of sets indexed by a set

The following subset of
(⋃

i∈I Xi
)
×I ,

ä
i∈I

Xi ˜
{
(x, i) ∈

⋃
i∈I

Xi×I
∣∣ x ∈ Xi

}
(55)

is called the disjoint union of (Xi)i∈I . The difference with the ordinary
union is that every element of

⋃
i∈I Xi rememberes what Xi does it come

from.
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Exercise 32 Show that the canonical mapping

ä
i∈I

Xi−→
⋃
i∈I

Xi, (x, i) 7−→ x, (56)

is surjective. Show that it is injective if and only if all Xi are disjoint, i.e.,

Xi ∩ Xj 6= ∅ implies that i = j.

2.11.5 The canonical inclusions into the disjoint union

For any j ∈ I , the mapping

ιj : Xj−→ä
i∈I

Xi, x 7−→ (x, j), (57)

will be called the canonical inclusion of Xj into the disjoint union.

2.11.6 The universal property of the disjoint union

The family of canonical inclusions (ιj)j∈I has the property that, for any
set Y and any family of mappings ( f j)j∈I ,

f j : Xj−→Y (j ∈ I),

there exists a unique mapping f : äi∈I Xi−→Y such that

f j = f ◦ ιj (j ∈ I).

Indeed, let
f
(
(x, i)

)
˜ fi(x) (i ∈ I).

2.11.7 The Cartesian product of an indexed family of sets

The product of (Xi)i∈I is defined as the set of I -tuples (xi)i∈I in

A =
⋃
i∈I

Xi

such that each xi is a member of Xi ,

∏
i∈I

Xi ˜
{
(xi)i∈I | xi ∈ Xi for each i ∈ I

}
. (58)
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2.11.8 The canonical projections from the Cartesian product

For any j ∈ I , ‘evaluation at j ’ defines a mapping that sends an I -tuple to
its j-th component,

πj : ∏
i∈I

Xi−→Xj (59)

that will be called the canonical projection onto Xj .

2.11.9 The universal property of the Cartesian product

The family of canonical projections (πj)j∈I has the property that, for any
set W and any family of mappings (gj)j∈I ,

gj : W−→Xj (j ∈ I),

there exists a unique mapping g : W−→∏i∈I Xi such that

gj = πj ◦ g (j ∈ I).

Indeed, let g(w) be an I -tuple whose j-th component equals

g(w)j ˜ gj(w) (j ∈ I).

2.11.10 The duality between disjoint union and Cartesian product

The universal properties enjoyed by disjoint union and Cartesian product
are dual to each other. They can be also expressed as natural bijective
correspondences{(

f j : Xj−→Y
)

j∈I

}
←→

{
f : ä

i∈I
Xi−→Y

}
(60)

and {(
gj : W−→Xj

)
j∈I

}
←→

{
g : W−→∏

i∈I
Xi

}
. (61)
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2.11.11 Some special cases

When I = {1, . . . , n} , we often use notation

X1 t · · · t Xn

instead of

ä
i∈{1,...,n}

Xi or
n

ä
i=1

Xi,

and
X1× · · · ×Xn

instead of

∏
i∈{1,...,n}

Xi or
n

∏
i=1

Xi.

2.11.12

When Xi = X for all i ∈ I , we employ the notation X I instead of

∏
i∈I

X.

2.11.13 Mappings of several versus mappings of a single variable

The Cartesian product allows one to convert a mapping f of n vari-
ables from X1, . . . , Xn to Y into a mapping of a single variable from
X1× · · · ×Xn to Y ,

f̄
(
(x1, . . . , xn)

)
˜ f (x1, . . . , xn).

Vice versa, any mapping from X1× · · · ×Xn to Y , arises this way from a
unique mapping of n variables. From the notational point of view the
difference is cosmetic, from the point of view of concepts the difference is,
however, enormous. The above remark allows to represent mappings of
several variables as mappings of a single variable.
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2.11.14 The Cartesian product of a family of mappings

With a family of mappings fi : Xi−→Yi , one can naturally associate a
mapping

∏
i∈I

fi : ∏
i∈I

Xi−→∏
i∈I

Yi (xi)i∈I 7−→
(

fi(xi)
)

i∈I . (62)

Note that its source and its target are the products of the sources and,
respectively, of the targets of the component mappings fi .

2.11.15

For I = {1, . . . , n} we use the notation

f1× · · · × fn : X1× · · · ×Xn −→ Y1× · · · ×Yn.

2.12 Operations involving indexed families of relations
2.12.1 Alternative and conjunction

Given a family (Ri)i∈I of n-ary relations between elements of sets X1, . . . , Xn ,
the statement

∨
i∈I Ri(x1, . . . , xn) reads

Ri(x1, . . . , xn) for some i ∈ I , (63)

while
∧

i∈I Ri(x1, . . . , xn) reads

Ri(x1, . . . , xn) for all i ∈ I . (64)

The relations
∨

i∈I Ri and
∧

i∈I Ri are called the alternative and, respec-
tively, the conjunction of the family of n-ary relations (Ri)i∈I .

2.12.2

The alternative is a weakest relation stronger than every relation of the family
(Ri)i∈I . The conjunction is a strongest relation weaker than every relation of
that family.
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2.13 The kernel equivalence
2.13.1

Let R be a binary relation between elements of sets X and Y .

Exercise 33 Show that R ◦Rop is symmetric.

Exercise 34 Show that R ◦Rop is reflexive if and only if xR is not empty for
any x ∈ X.

2.13.2 Transitive families of sets

We shall say that a family (Xi)i∈I of sets is transitive if

Xi ∩ Xj 6= ∅ and Xj ∩ Xk 6= ∅ implies Xi ∩ Xk 6= ∅. (65)

Exercise 35 Show that R ◦Rop is transitive if and only if the family (xR)x∈X
of subsets of Y is transitive.

2.13.3

Any family of sets having no more than one element is obviously transitive,
hence R ◦Rop is an equivalence relation on X when R is a mapping from
X to Y . It is called the kernel equivalence associated with the mapping. The
equivalence classes of this relation are called the fibers of the mapping.

3 Algebraic operations

3.1 n-ary operations
3.1.1

A mapping
µ : Xn −→ X

is called an n-ary operation on a set X . The result of applying the
operation to n elements x1, . . . , xn , i.e., the value µ(x1, . . . , xn) , is referred
to as the product of x1, . . . , xn and the operation os often referred as the
multiplication.
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3.1.2 n-ary operations as (n + 1)-ary relations

An n-ary operation on a set X determines an (n + 1)-ary relation, Rµ ,
where

Rµ(x1, . . . , xn, xn+1)

is the statement
µ(x1, . . . , xn) = xn+1.

Vice-versa, any (n + 1)-ary relation R on a set X such that, for any ele-
ments x1, . . . , xn ∈ X , there is a unique xn+1 such that R(x1, . . . , xn, xn+1)
holds, is obtained in this way.

3.1.3 0-ary operations

Since X0 has exactly one element (namely ι∅⊂X ), a 0-ary operation on a
set X amounts to making one element of X a distinguished element.

3.1.4

For the values of n =0, 1, 2, 3, or 4, we refer to n-ary operations as nullary,
unary, binary, ternary, quaternary operations.

3.1.5 Prefix notation

If one denotes the product by

µx1 . . . xn (66)

then one can dispose of the need to use parentheses even for iterated
applications of the product. For example, for a ternary operation, denoted
. ,

. . .xyzxyxy

parses as .(.(.(x, y, z), x, y), x, y) while

.x . y . zxyxy

parses as .(x, .(y, .(z, x, y), x), y) .
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3.1.6 Postfix notation

This prefix notation was introduced around 1924 by Polish logician Jan
Łukasiewicz. By symmetry, one can also employ the postfix notation

x1 . . . xnµ (67)

Both prefix and postfix notation are well suited to stack manipulation of
data in computers. The latter is more popular than the former, the reason
being probably that in languages written left-to-right it is easier to parse
expressions from left-to-right. It is often referred to as the Reverse Polish
Notation.

Exercise 36 Parse the following expression in the postfix notation where / de-
note a binary operation

xyz/yx/// (68)

(Hint. You should be parsing from left to right, each time you encounter sym-
bol / , you should perform the corresponding operation and replace the involved
symbols by the result and start the parsing process again.)

Exercise 37 Parse the following expression in the postfix notation where / de-
note a binary operation

xxx/y/z/xx/x/z/// (69)

3.2 n-ary structures
3.2.1

A set equipped with an n-ary operation is often referred to as an n-ary
structure.

3.2.2 Substructures

A subset X′ ⊆ X is said to be closed under the operation if

µ(x1, . . . , xn) ∈ X′ whenever x1, . . . , xn ∈ X′.

In that case restricting µ to (X′)n and narrowing its target to X′ defines an
n-ary structure on X′ . The obtained operation will be called the restriction
of µ to X′ .
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Exercise 38 Let (X′i)i∈I be a family of subsets of X such that each X′i is closed
under µ . Show that their intersection⋂

i∈I
X′i (70)

is closed under µ too.

3.2.3 The substructure generated by a subset

For any subset A ⊆ X of an n-ary structure (X, µ) , the family of subsets
X′ ⊆ X containing A and closed under µ is nonempty: it contains, for
example X itself. By Exercise 38, their intersection is closed under µ . The
intersection is the smallest subset of X containing A with this property. It
will be denoted 〈A〉 henceforth. The corresponding substructure of (X, µ)
is called the substructure of (X, µ) generated by a subset A ⊆ X .

Exercise 39 Given a family of subsets Xi ⊆ X closed under µ , their intersec-
tion (70) is the largest subset of X , closed under µ , which is contained in each
Xi . What is the smallest subset of X which is closed under µ and contains
every Xi ?

3.2.4 Sets of generators

We say that a subset A ⊆ X generates (X, µ) if 〈A〉 = X . We refer to such
A as a set of generators for (X, µ) .

3.2.5 The n-ary structure of words

Consider the set of finite sequences of elements of a set A ,

A<∞
˜ A ∪ A×A ∪ A×A×A ∪ · · · (71)

Note that all the summands are disjoint.2 We shall refer to elements of
A<∞ as words in alphabet A . Concatenation of n words of lengths l1, . . . , ln
produces a word of length l1 + · · ·+ ln ,(

(a11, . . . , a1l1), . . . , (an1, . . . , anln)
)
7−→ (a11, . . . , a1l1 , . . . , an1, . . . , anln).

2A student voiced an objection whether we can be certain that the summands in (71)
are indeed disjoint. The answer is immediately seen to be yes, if we view A<∞ as the
union

A1 ∪ A2 ∪ A3 ∪ · · · ,
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This produces a bijective mapping

Al1× · · · ×Aln −→ Al1+···+ln

and, since
(

A<∞)n is a disjoint union of the family of n-tuple products

Al1× · · · ×Aln

indexed by n-tuples (l1, . . . , ln) ∈ Zn
+ , we obtain an operation

concn :
(

A<∞)n −→ A<∞ (72)

called concatenation of n words.

3.2.6 Notation

When possible we shall omit commas separating terms in a finite sequence,
thus

a1, a2, . . . , al

becomes
a1a2 . . . al.

This is where the ‘words’ terminology comes from.

Exercise 40 Under which conditions A generates the n-ary structure of words?

3.2.7

Among all n-ary structures containg a given set A and generated by A ,
there is one that is fundamentally important. We shall give its construction
now.
since each An is the set of mappings from n to A and the sets of different cardinalities
are different, hence Am 6= An for m 6= n . But also the set A itself must be disjoint
from each An : otherwise it would contain a mapping α : n−→A . Such a mapping is
defined only if A is defined. In other words, all its elements must be determined prior
to considering any mappings into A . So α must be defined before one can define any
mappings into A . But α is a mapping into A so it was defined only after all elements
of A have been determined. This difficulty indicates that one cannot accept as valid
sets that could contain mappings into themselves as their own elements. In other words,
A must be considered disjoint with each An , including A1 . Of course, it is a common
practice to identify A with A1 even though the two sets are not equal.
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3.2.8 The free n-ary structure generated by a set

Given a set A , let us adjoin to it an element, denoted ∗ , that does not
belong to it (e.g., we can take ∗ to be the unique element of A0 which, by
definition, does not belong to A). Let Ã˜ A ∪ {∗} .

Consider the following n-ary operation on Ã<∞ obtained by concate-
nating n + 1 words in alphabet Ã with ∗ placed as the first word,

(w1, . . . , wn) 7−→ concn+1(∗, w1, . . . , wn). (73)

We shall refer to (73) as free n-ary multiplication.
If we consider the n-ary structure on Ã<∞ given by free n-ary multi-

plication, then the substructure generated by A ⊆ Ã<∞ is called the free
n-ary structure on A . We shall denote it Fn(A) . When A = {a1, . . . , an}
(with all ai different), then Fn(A) will be also denoted Fn(a1, . . . , an) .

3.3 Congruences
3.3.1 The induced operation on the power set

An n-ary operation µ on a set X , induces an n-ary operation on the set of
all subsets P(X) ,

(A1, . . . , An) 7−→ µ(A1, . . . , An)

where µ(A1, . . . , An) is defined as the subset of X formed by all n-
ary products µ(a1, . . . , an) where aq, . . . , an run through the elements
of A1, . . . , An ,

{x ∈ X | x = µ(a1, . . . , an) for some a1 ∈ A1, . . . , an ∈ An}. (74)

3.3.2

Since AB 6= ∅ when both A and B are nonempty, the set of nonempty
subsets P∗(X) is closed under µ and (P∗(X), µ) becomes a substracture
of (P(X), µ) .
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3.3.3

An equivalence relation ∼ on a set X equipped with an n-ary operation
µ is said to be a congruence if

x1 ∼ x′1, . . . , xn ∼ x′n implies µ(x1, . . . , xn) ∼ µ(x′1, . . . , x′n) (75)

for any x1, . . . , xn, x′1, . . . , x′n ∈ X .

Exercise 41 Prove that, for any congruence relation, the product of the equiv-
alence classes of x1, . . . , xn (in the sense of Section 3.3.1) is contained in the
equivalence class of µ(x1, . . . , xn) ,

µ(x̄1, . . . , x̄n) ⊆ µ(x1, . . . , xn) (x1, . . . , xn ∈ X). (76)

3.3.4 Quotient structures

The n-ary operation induces on the quotient set X/∼ the operation by
setting

µ̄(C1, . . . , Cn) (77)

to be the unique equivalence class containing the product µ(C1, . . . , Cn)
of equivalence classes C1, . . . , Cn . We refer to (X/∼ , µ̄) as the quotient
structure.

3.3.5 Product structures

Given a pair of n-ary structures (X, µ) and (X,′ , µ′) , we obtain a canonical
n-ary structure on X×X′ ,

µ×µ′ : (X×X′)n−→X×X′

where

µ×µ′
(
(x1, x′1), . . . , (xn, x′n)

)
˜
(
µ(x1, . . . , xn), µ′(x′1, . . . , x′n)

)
. (78)

Exercise 42 Prove that an equivalence relation ∼ on X is a congruence if and
only if Γ∼ ⊆ X×X is closed under µ×µ .
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3.3.6

In other words, ∼ is a congruence precisely when its graph is a sub-
structure of (X×X, µ×µ) . For this reason, we shall be also talking of the
quotients of (X, µ) by substructures of (X×X, µ×µ) .

3.3.7 Products of arbitrary families of structures

Given any family of n-ary structures
(
(Xi, µi)

)
i∈I

, the product set ∏i∈I Xi

is naturally equipped with the n-ary operation(
∏
i∈I

Xi

)n
−→∏

i∈I
Xn

i −→∏
i∈I

Xi (79)

where the second arrow is the product of mappings µi , cf. (62), while the

first arrow identifies
(

∏i∈I Xi

)n
with ∏i∈I Xn

i by viewing both of these
repeated products as the single product of the family

(i, j) 7−→ Xi (i ∈ I; 1 ≤ j ≤ n),

of sets indexed by I×{1, . . . , n} . Explicitly,(
(xi1)i∈I , . . . , (xin)i∈I

)
7−→

(
µi(xi1, . . . , xin)

)
i∈I

. (80)

We shall refer to operation (80) on ∏i∈I Xi as the product of operations µi ,
i ∈ I .

4 Binary structures

4.1 Binary operations
4.1.1 Infix notation

In the case of a binary operation, the product µ(x, y) is usually denoted

x · y or xy.

There are situations when instead of · a different symbol is used, e.g., + ,
× , etc. The infix notation is both traditional and is particularly useful in
expressions with iterated applications of the operation.
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Exercise 43 Rewrite expression (68) in infix notation.

Exercise 44 Rewrite expression (69) in infix notation.

4.1.2 The induced binary operation on the power set

If the notation x · y or xy is employed to denote the product of two
elements, then the notation for the product of two subsets is A · B or AB .

A notable special case occurs when one of the two sets has just one
element. In this case we employ a simplified notation

aB˜ {a}B and Ab˜ A{b}. (81)

4.1.3 Example: webs

Let A be a set equipped with 3 equivalence relations ∼ , ∼′ and ∼′′ . Its
elements will be referred to as “points”. The associated partitions will
be denoted L , L′ and L′′ , and its elements will be referred to as “lines”.
Lines belonging to the same partition will be said to be “parallel”. Such a
structure is called a web if

any two lines that are not parallel intersect in exactly one point. (82)

Define the following mapping

L′×L′′ −→ L, (l′, l′′) 7−→ l′ ∗ l′′ (83)

where l′ ∗ l′′ is the unique line of L passing through the point of intersec-
tion of lines l′ ∈ L′ and l′′ ∈ L′′ .

Fix three lines e ∈ L , e′ ∈ L′ and e′′ ∈ L′′ which intersect at a single
point.

Exercise 45 Show that the correspondences L−→L′ and L−→L′′ given by

l 7−→ m′ and l 7−→ m′′

are bijective where m′ ∈ L′ denotes the unique line passing through the point of
intersection of l with e′′ and m′′ ∈ L′′ denotes the unique line passing through
the point of intersection of l with e′ .
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Exercise 46 Show that
e′ ∗m′′ = l = m′ ∗ e′′. (84)

It follows that all three families of lines have the same cardinality. For
any set Q and any choice of bijections between Q and sets L , L′ , L′′ , the
operation (83) induces a binary operation on set Q ,

(q, r) 7−→ q · r (q, r ∈ Q). (85)

Exercise 47 Show that, for any q, r, s ∈ Q, the equations

q · x = s and x · r = s

have a unique solution x ∈ Q.

4.1.4 Quasigroups

Any binary structure having the above property is said to be a quasigroup.
The quasigroup Q defined above is referred as the coordinate quasigroup of
the web (A,∼,∼′,∼′′) . Its definition involves a choice of identifications
of families L , L′ and L′′ with a given set Q .

Exercise 48 Show that a quasigroup structure on a set X is the same as a
ternary relation R on X such that Rσ is a mapping X×X−→X for any per-
mutation σ of 1, 2 and 3.

4.1.5 The web associated with a quasigroup

Given a quasigroup (Q, ·) , let A˜Q2 . Consider the equivalence relations
on A ,

(q′, q′′) ∼′ (r′, r′′) if q′ = r′, (q′, q′′) ∼′′ (r′, r′′) if q′′ = r′′

and
(q′, q′′) ∼ (r′, r′′) if q′ · q′′ = r · r′′.

Exercise 49 Show that (Q2,∼,∼′,∼′′) is a web whose coordinate quasigroup
is (Q, ·) .
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4.1.6 Example: cubic plane curves

Let C be the set of points in k2 where k is a field, satisfying a given cubic
equation

p(X, Y) = 0. (86)

For any distinct points a and b on C , the unique line passing through
them intersects C in a unique third point or is tangent to C at a or b .
Indeed, if we substitute the parametric equation of the line

x(t) = a + t(b− a),

into (86), then we obtain a cubic equation in t with roots t = 0 and t = 1.
Such an equation then has also a third root τ in k . Denote x(τ) by a · b .
If t = 0 is a double root, then we set a · b = a , if t = 1 is a double root,
then we set a · b = b .

We define a · a by replacing the line connecting a and b by the line
tangent to C at point a .

This is the so called chordal addition of points on a cubic curve. Note
that it defines on the set of points of C a structure of a quasigroup for
which all 6 ternary relations R coincide. In other words, if a · b = c , then

b · c = a, c · a = b and b · a = c.

Such quasigroups are said to be totally symmetric.

4.1.7 Involutions

Totally symmetric quasigroups are analogs, for n = 3, of involutions, i.e.,
unary operations f : X−→X such that f = f−1 .

4.1.8 Power associative structures

Let us define the powers of an element in a binary structure (X, ·) induc-
tively by

x1
˜ x, xn+1

˜ x · xn (n ∈ Z+). (87)

We say that the multiplication is power associative if

xm · xn = xm+n (m, n ∈ Z+). (88)

43



4.1.9 Semigroups

We say that the multiplication is associative if it satisfies the identity

(x · x′) · x′′ = x · (x′ · x′′) (x, x′, x′′ ∈ X). (89)

The binary structure (X, ·) with associative multiplication is called a
semigroup

4.1.10 Example: Jordan multiplication of square matrices

The following binary operation on the set of rational square matrices of
size n

A · B ˜ AB + BA
2

, (90)

is power associative but not associative.

4.1.11 Example: Map X

Composition of mappings makes the set Map X of self-mappings f : X−→X
into a semigroup with the identity mapping idX as its identity element.

4.1.12 Example: the semigroup of words

Concatenation of of a pair of words

conc2 : A<∞×A<∞−→A<∞

is associative and makes (A<∞, conc2) into a semigroup. Concatenation
of n words, cf. (72) is obtained by iterating binary concatenation n− 1
times.

4.1.13 Subsemigroups

Any substracture of a semigroup is automatically a semigroup.

4.2 Idempotents
4.2.1

Let (X, ·) be a binary structure.

Definition 4.1 An element e ∈ X is an idempotent if e · e = e .

44



4.2.2 Semilattices

A commutative semigroup (S, ·) is called a semilattice if every element
s ∈ S is an idempotent.

4.2.3 The canonical order on a semilattice

In a binary structure (X, ·) consider the binary relation R on X where
R(x, y) is the statement

x = xy. (91)

Exercise 50 Show that the relation defined in (91) orders X if (X, ·) is a semi-
lattice. Prove that

inf{x, y} = xy (x, y ∈ X) (92)

and, more generally,

inf{x1, . . . , xn} = x1 · · · xn (x1, . . . , xn ∈ X). (93)

4.2.4

The binary operation of a semilattice not only induces a partial order
such that any nonempty finite subset has infimum but, as identity (92)
demonstrates, one can recover the binary operation from the ordering
relation.

Exercise 51 Suppose that (X,≤) is a partially ordered set with the property
that any nonempty finite subset of X has infimum. Show that the binary opera-
tion

(x, y) 7−→ xy˜ inf{x, y} (x, y ∈ X),

is associative and every element x ∈ X is an idempotent.

4.2.5 Example

Both (P(A),∪) and (P(A),∩) are semilattices.
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4.2.6 Absorption identities

We say that a pair of binary operations ∧ and ∨ on a set X satisfies
Absorption Identities if

x = x∧(x ∨ y) and x ∨ (x∧y) (x, y ∈ X). (94)

Exercise 52 Prove that any element of X is an idempotent with respect to a
binary operation ∨ if there exists another operation ∧ on X such that ∧ and ∨
satisfy Absorption Identities (94).

Note that the second Absorption Idetity is obtained from the first one
if we exchange ∧ and ∨ .

4.2.7 Lattices

Suppose that (X,≤) is a partially ordered set with the property that any
nonempty finite subset of X has infimum and supremum. It follows from
Exercise 51 that (X,∧) and (X,∨) , where

x∧y˜ inf{x, y} and x ∨ y˜ sup{x, y}, (95)

are semilattices.

Exercise 53 Show that the the two operations (95) satisfy Absorption Identities.

4.2.8

A set X equipped with two associative and commutative binary relations
∧ and ∨ satisfying Absorption Idnetities is called a lattice.

Exercise 54 Given a lattice (X,∧,∨) , let R be the relation defined for ∧ in
Section 4.2.3. Show that sup{x, y} exists, for any x, y ∈ X, and equals

sup{x, y} = x ∨ y.
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4.2.9

We observe that a structure of a lattice on any set induces a structure of a
partially ordered set whose finite nonempty subsets have both infima and
suprema and vice-versa, any such pratially ordered set is of this form for
a unique lattice structure on X .

This is the reason why the same term, a lattice, is used interchangably
for the corresponding algebraic structure and for a partially oredered set.

Exercise 55 Prove that, for any congruence ∼ on the binary structure (X, ·)
and any idempotent e ∈ X, the equivalence class ē is closed under multiplica-
tion, i.e. defines a substructure of (X, ·) .

4.3 Identity elements, zeros, nilpotents
4.3.1

Definition 4.2 An element e ∈ X is a left identity if e · x = x for any x ∈ X.
Right identities are defined similarly.

4.3.2 Example

Let X be any set. Consider the projection onto the second factor

π2 : X×X−→X, (x1, x2) 7−→ x2, (96)

as a binary operation on X . Any element of X is a left identity. Binary
structure (96) possesses no right identity except when X is a one-element
set. Note that (96) is associative, i.e., (X, π2 : X×X−→X) is a semigroup.

4.3.3 The semigroup of retractions

The subset RetrA(X) of retractions X−→X onto A ⊆ X is a sub-semigroup
of the semigroup Map X of all self-mappings X−→X .

Exercise 56 Show that for any two f , g ∈ RetrA(X) , one has

f ◦ g = g,

i.e., every element in RetrA(X) is a left identity.
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4.3.4

The above examples emphatically demonstrate that one-sided identities
are generally far from unique. However, if e is any left identity and e′ is
any right identity, then they are equal:

e = ee′ = e′.

4.3.5 Unital binary structures

It follows that in any binary structure with at least one left and at least one
right identity, the two coincide, thus there exists a two-sided identity and it
is necessary unique. In this case we say that the binary structure is unital.

Exercise 57 Consider the bijections L−→L′ and L−→L′′ introduced in Exer-
cise 45 and the associated multiplication on the set of lines L,

L×L −→ L, (l1, l2) 7−→ l1 · l2˜m′1 ∗m′′2 .

Show that
e · l = l = l · e. (97)

4.3.6 Loops

A quasigroup with a two-sided identity is called a loop. Exercise 57

demonstrates that among the coordinate quasigroups of a web, there is
always a loop.

4.3.7 Monoids

A semigroup with a two-sided identity is called a monoid.

4.3.8 Submonoids

Any substracture of a monoid M is automatically a semigroup. It is a
monoid if it has an identity element. That element may not be, however,
the identity element of M as the following example illustrates.
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4.3.9 Example

Let M be the set of 2×2 matrices (with integer coefficients)(
a11 a12
a21 a22

)
equipped with the matrix multiplication. It is a monoid with the identity
element (

1 0
0 1

)
Consider the set of matrices M′ (

a 0
0 0

)
It is closed under multiplication and the matrix(

1 0
0 0

)
is its identity element that is not the identity element of M .

If one considers the identity element to be a part of monoid structure,
then it is natural to call a subsemigroup M′ of a monoid M a submonoid
if the identity element of M belongs to M′ .

4.3.10 Example: P(X×X)

Composition introduced in Section 2.4.7 makes (P(X2), ◦) into a monoid
with the identity element being the diagonal subset ∆X .

4.3.11 Example: Map X

The identity mapping idX as an identity element of Map X .

4.3.12 Zeros

Definition 4.3 An element e ∈ X is a left zero (also called a left sink), if
z · x = z for any x ∈ X. Right zeros are defined similarly.
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One-sided zeros need not be unique. In Example 4.3.2 every element is
a right zero. If X is not a singleton set, then no element is a left zero in
semigroup (4.3.2).

However, if z ∈ X is a left zero, and z′ ∈ X is a right zero, then they
must be equal:

z = zz′ = z′.

Thus, like in the case of one-sided identities, in a binary structure with at
least one left zero and at least one right zero, the two coincide, thus there
exists a two-sided zero, and it is necessarily unique.

Exercise 58 For each of the semigroups (P(S),∪) and (P(S),∩) , determine
which element is the identity and which is the zero element.

4.3.13 Nilpotents

An element x ∈ X of a power associative structure with zero is said to be
nilpotent if xn = 0 for some positive integer n .

4.3.14 Example: strictly upper triangular matrices

Any strictly upper triangular n×n-matrix

A =


0 a12 . . . a1n

. . . ...
0 an−1,n

0


with whatever coefficients satisfies An = 0.

4.3.15 Inverse elements

Definition 4.4 If a pair of elements x, x′ in a monoid satisfies equality xx′ = e ,
then x′ is said to be a right inverse of x and x is said to be a left inverse of x′ .

A given element x may have many right inverses or left inverse. If x′
is a right inverse and x′′ is a left inverse of the same element x , then they
coincide, however:

x′ = ex′ = (x′′x)x′ = x′′(xx′) = x′′e = x′′.
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In particular, any right inverse in that situation is also a right inverse and
vice-versa. That unique two-sided inverse is then denoted x−1 .

4.3.16 Invertible elements

Elements possessing an inverse are referred to as invertible elements.

4.3.17 Groups

If every element is invertible, the monoid is called a group.

Exercise 59 For a monoid (M, ·) , let G(M) denote the subset of invertible
elements in M. Show, that (G(M), ·) is a group.

Thus, M is a group if and only if G(M) = M .

4.3.18 Example: Bij X

Invertible self-mappings f : X−→X are precisely self-bijections of X . Thus
(Bij X, ◦) = G(Map X, ◦) .

4.3.19 Subgroups

A substracture of a group is a semigroup and nothing more in general.
Take, for example, the additive group of integers and consider the set of
positive even integers. In a marked contrast to the situation with monoids,
however, if a substracture G′ of a group G is a monoid itself, then the
identity element of G belongs to G′ . This is due to the fact that the only
idempotent in a group is its identity element.

Exercise 60 Show that the identity element in a group is its only idempotent.

In particular, if a substructure G′ of a group is a group itself, then the
inverse of every element g′ in G′ is also the inverse if we consider g′ as
an element of G . Thus, a subgroup is substructure of G which is a group
itself.

Exercise 61 Show that, if z is a left (or right) zero element of a group G, then
G = {z} .
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4.4 Central elements
4.4.1

Let again (X, ·) be an arbitrary binary structure.

Definition 4.5 An element c ∈ X is central if it commutes with every element
of X,

cx = xc (x ∈ X).

4.4.2 Normal subsets

A subset N ⊆ X of a binary structure is normal if

aN = Na (98)

for each a ∈ X .

Exercise 62 Show that a subset N ⊆ X is normal if and only if N is a central
element of (P(X), ·) .

4.4.3 Center

The set of all central elements is called the center of (X, ·) . We will denote
it Z(X, ·) , or simply Z(X) , when the binary operation is clear from the
context.

Exercise 63 Prove that the center of a semigroup is closed under multiplication
and thus is a sub-semigroup.

4.4.4 Commutative binary structures

If Z(X, ·) = X , i.e., if any two elements commute, then we say that the
binary structure is commutative. Thus, we have commutative semigroups,
commutative monoids. Instead of ‘commutative’ groups, however, we
talk of abelian groups. This terminology was in use before the term
‘commutative’ was applied to general binary operations. It honors the
Norwegian mathematician Niels Hendrik Abel (1802-1828).
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4.4.5 Additive notation for commutative semigroups and abelian groups

In theory of abelian groups (and, to a lesser extent, in theory of commu-
tative semigroups) it is a common practice to denote the result of the
binary operation applied to elements x and y as x + y . Accordingly, the
identity element in additive notation is denoted 0 and is referred to as zero.
Confusing this element with the zero elements of Section 4.3.12 is rarely
possible in view of the fact that the only group that has a zero element in
the sense of Section 4.3.12 is the so called trivial group, i.e., the group with
one element, and that single element is simultaneously the identity and
the zero element in the sense of Section 4.3.12.

4.4.6

The n-th power of an element in additive notation becomes

nx˜ x + · · ·+ x (n times) (99)

while the 0-th power becomes 0x = 0. For n < 0, we set nx˜ (−n)x .

Exercise 64 Show that in an abelian group (A,+) , one has

(m + n)a = ma + na

for any a ∈ A and for any integers m and n.

4.5 Coset relations in groups
4.5.1 Characterization of subgroups

Let (G, ·) be a group and H ⊆ G be a subset. By H−1 we shall denote the
set of inverses of elements of H ,

H−1
˜ {h−1 | h ∈ H}. (100)

Exercise 65 Prove that H is a subgroup if and only if H · H−1 = H.
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4.5.2 Cosets

Given a subset H ⊆ G , consider the family of subsets

{gH | g ∈ G}. (101)

Its memebers are called left cosets of H in G .3

Exercise 66 Prove that (101) is a partition of set G if and only if the coset aH
which contains the identity element, e , is a subgroup of G.

4.5.3 Coset relations

Consider the following relation on set G :

a ∼H b if a ∈ bH. (102)

Exercise 67 Prove that

1. ∼H is reflexive if and only if H contains the identity element of G;

2. the inverse relation, (∼H)
−1 , coincides with ∼H−1 ; in particular, ∼H is

symmetric if and only if H = H−1 ;

3. ∼H is transitive if and only if H · H ⊆ H;

4. ∼H is an equivalence relation if and only if H is a subgroup of G;

5. ∼H is a congruence if and only if H is a normal subgroup of G.

4.5.4 Order of a group

The cardinality of a group G is denoted |G| and referred to as the order of
G .

4.5.5 Index of a subgroup

When H is a subgroup of G , the cardinality of the quotient set G/∼H is
denoted G/H and its cardinality is denoted

|G : H| (103)

and referred to as the index of H in G .
3Subsets Hg , where g ∈ G , are called right cosets.
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4.5.6 Leibniz Theorem

Exercise 68 Prove that for a finite group G and any subgroup H ⊆ G, one has

|G| = |G : H| |H|. (104)

4.5.7 Congruences on groups

Every congruence ∼ on a group G is the coset relation ∼H for the subset
H˜ ē , i.e., the equivalence class of the identity element ( H in this case
must be a normal subgroup of G ).

Exercise 69 Prove that any congruence ∼ on a group G is of the form ∼N for
some normal subgroup N ⊆ G.

4.5.8 Notation for normal subgroups

The fact that N is a normal subgroup of a group G is often expressed
using the notation

N / G or G . N. (105)

5 Rings

5.1 Binary rings
5.1.1

Definition 5.1 A set R equipped with two binary operations, + and · , which
are customarily referred to as addition and multiplication, is called a ring, if:

(R,+) is an abelian group (106)

and the two operations are compatible in the following natural sense:

a(b + c) = ab + ac (left distributivity) (107)

and
(b + c)a = ba + ca (right distributivity) (108)

for any a, b, c ∈ R.
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Exercise 70 Prove that 0 is indeed a zero of the multiplicative structure, (R, ·) ,
i.e., that

0 · a = a · 0 = 0

for any a ∈ R.

5.1.2 The additive group of a ring

The group (R,+) is called the additive group of the ring, and its identity
element is called zero and denoted 0. For any positive integer n we use
the notation

nr˜ r + · · ·+ r (n times).

5.1.3 The characteristic of a ring

The smallest positive integer n such that nr = 0 for all r ∈ R , is called
the characteristic of R . If no such n exists, we say that R is of characteristic
zero.

Exercise 71 Explain why (P(S),∪,∩) is not a ring according to Definition
5.1. Slightly modify one of the two operations so that the power set becomes an
associative and commutative ring with identity.

5.1.4

In the context of rings such terms as associative, commutative, unital, idempo-
tent, central element, the center, nilpotent, etc, are always meant with respect
to the binary operation of multiplication.

5.1.5 Zero divisors

A nonzero element r ∈ R is a left zero divisor, if rs = 0 for some nonzero
s ∈ R . Right zero divisiors are defined similarly.

5.1.6 Domains

Rings without zero divisiors are called domains. The set of nonzero ele-
ments R∗˜ R \ {0} in a domain is a substracture of (R, ·) .
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5.1.7 Division rings

Domains such that (R∗, ·) is a quasigroup are called division rings.

5.1.8 Fields

Commutative division rings are called fields.

5.1.9 Boolean rings

Associative rings in which every element is an idempotent are called
Boolean rings. In other words, an associative ring is Boolean if its multi-
plicative semigroup is a semilattice.

Exercise 72 Show that any Boolean ring has characteristic 2 and is commuta-
tive.

5.1.10 Lie rings

A binary ring (R,+, ·) satisfying the Jacobi Identity

(ab)c + (bc)a + (ca)b = 0 (a, b, c ∈ R) (109)

and such that
a2 = 0 (a ∈ R), (110)

is called a Lie ring. In theory of such rings the binary multiplication is
almost always denoted [a, b] (with the comma separating the arguments
occasionally dropped. For this reason, the “multiplication” in a Lie ring is
often referred to as the bracket.

5.1.11 The commutator operation in a binary ring

For any binary ring, the formula

(a, b) 7−→ [a, b]˜ ab− ba (111)

defines what is called the (ring) commutator of elements a and b .
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5.1.12 The associator operation in a binary ring

For any binary ring, the formula

(a, b, c) 7−→ [a, b, c]˜ (ab)c− a(bc) (112)

defines what is called the associator of elements a and b .

Exercise 73 Show that the left hand side of the Jacobi identity for the commuta-
tor operation in a binary ring is the antisymmetrization of the associator,

[[a1, a2], a3] + [[a2, a3], a1]] + [[a3, a1], a2] = ∑
σ

(−1)σ̃
[
aσ(1), aσ(2), aσ(3)

]
,

(113)
where the summation is over all permutations σ of {1, 2, 3} and σ̃ is the parity
of the permutation: σ̃ = 0 for the identity permutation and two cycles of length
3, (2 3 1) and (3 1 2) , and σ̃ = 1 for each of the three transpositions.

Exercise 74 Prove the following commutator-associator identity

a[b, c]− [ab, c] + [a, c]b = [a, c, b]− [a, b, c]− [c, a, b] . (114)

Exercise 75 Prove the following associator identity

a[b, c, d]− [ab, c, d] + [a, bc, d]− [a, b, cd] + [a, b, c]d = 0 . (115)

5.1.13 The associated Lie ring of an associative ring

It follows that the commutator operation in an associative binary ring
satisfies the Jacobi identity. The Lie ring (R,+; [ , ]) is called the associated
Lie ring.

5.1.14 Cross-product

Exercise 76 Show that the cross-product of vectors in R3 satisfies both proper-
ties of the Lie bracket.

The Lie ring (R3,+,×) plays a special role not only in Multivariable
Calculus.
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5.1.15 Alternative rings

A binary ring is alternative if

[a, a, b] = 0 (116)

and
[a, b, b] = 0 (117)

for any pair of elements of R .

Exercise 77 Show that in any alternating ring the associator is an alternating
function of its arguments, i.e., for any permutation σ of {1, 2, 3} , one has[

aσ(1), aσ(2), aσ(3)
]
= (−1)σ̃[a1, a2, a3] (a1, a2, a3 ∈ R). (118)

Show that in any binary ring satisfying identities (118) one has

2[a, a, b] = 2[a, b, b] = 0 (a, b ∈ R).

5.1.16 Complex numbers

A complex number is a formal expresion z = a + bi with a, b ∈ R and
i being a reserved symbol. The multiplication of such expressions is
dictated by the desire that multiplication by i is a linear transformation
of the corresponding 2-dimensional vector space with basis consisting
of 1 and i subject to the requirement that i supplies the missing square
root of −1, i.e., i2 = 1. The real numbers a and b are called the real and,
respectively, the imaginary parts of z .

5.1.17 Quaternions

A quaternion is a formal expression α = z + wi with the “real” and “imagi-
nary” parts being complex numbers. In order not to confuse the imaginary
unit i with the internal imaginary units of z and w , we shall denote the lat-
ter by j . Multiplication is subjet to the same conditions as before, namely,
multiplication by i must be a linear transformation of the corresponding
2 · 2 = 4 dimensional real vector space with basis {1, i, j, ij} , with i2 , j2 ,
and also (ij)2 , all being equal to -1. The latter condition implies that
symbols i and j anticommute.
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Exercise 78 Show that the requirement (ij)2 = −1 is equivalent, assuming
that the multiplication is associative, to

ij = −ji.

5.1.18

The product ij is denoted k . The resulting ring of quaternions is denoted
H and is an example of an associative noncommutative division ring.

5.1.19 The quaternion group

The set
{±1,±i,±j,±k} (119)

is closed under the multiplication and forms a group which is usually
referred to as the quaternion group (of order 8). It is denoted either Q or
Q8 .

5.1.20 Octonions

An octonion is a formal expression ζ = α + βi with the “real” and “imagi-
nary” parts being quaternions. In order not to confuse the imaginary unit i
with the internal imaginary units i , j and k of α and β , we shall denote it
by l .

5.1.21 Imaginary units

Multiplication by l is subject to the standard requirements that it is a
linear transformation of the 2 · 4 = 8 dimensional real vector space with
the basis consisting of 1 and the seven imaginary units,

{i, j, k, l, il, jl, kl}, (120)

and that the square of any of them equals −1.
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5.1.22 Embedded copies of the ring of quaternions

Assuming that multiplication in the subring generated by any two imag-
inary units is associative, this implies, in view of Exercise 78, that any
two distinct imaginary units anticommute and the subring they generate
is a copy of the ring of quaternions. There are (7

2) = 21 such pairs and
each embedded copy of quaternions contains exactly three such units.
Choosing any two of them generates the same subring. Hence we get
21/3 = 7 embedded copies of the ring of quaternions. (Notice that the
subring generated by a single imaginary unit is an embedded copy of the
ring of complex numbers C .)

5.1.23 The 73 -configuration of copies of C and H

Those seven embedded copies of C form the points while the seven
embedded copies of H form the lines of the smallest projective plane that
happens also to be the smallest n3 -configuration.

Exercise 79 Let i1 and i2 be any two distinct imaginary units in the ring of
octonions. Show that they satisfy the identity

i1i2i1 = i2.

5.1.24 Twisted associativity

The above still does not completely determine the multiplication table of
octonions. The remaining requirements are: the set

{±1,±i,±j,±k,±l,±il,±jl,±kl} (121)

is closed under multiplication, and

(i1i2)i3 = ε(i1, i2, i3) i1(i2i3) (122)

where
ε(i1, i2, i3)˜

{
1 if i1, i2, i3 are collinear
−1 if they are not . (123)

Collinearity of i1 , i2 , i3 means that they generate a copy of H . This
happens if either two of the three units coincide, or that one is, up to a
sign, the product of the other two.
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5.1.25

The above considerations completely determine the multiplication table
of octonions if one requires that multiplication is linear in each argument.
For example,

(jl)(il) = −j(lil) = −ji = k

since i , j , l are not collinear.

Exercise 80 Calculate (kl)(jl) .

5.1.26

The corresponding ring of octonions is today most often denoted O and
is an example of a nonassociative alternating division ring.

5.1.27 Moufang loops

A loop (L, ·) satisfying the Moufang identity,

(lm)(nl) =
(
l(mn)

)
l (l, m, n ∈ L), (124)

is called a Moufang loop.

Exercise 81 Show that (121) is a Moufang loop.

5.1.28 Complex numbers with real and imaginary parts being octo-
nions?

Such expressions form a real 2 · 8 = 16 dimensional vector space with
basis provided by 1, seven imaginary units in octonions and their eight
products with “external” imaginary unit. This yields 7+ 8 = 15 imaginary
units. It is clear that any single unit should generate a copy of C , any
pair of distinct units should generate a copy of H , and any triple of non-
collinear units should generate a copy of O . The resulting ring, if it exists,
contains 15 embedded copies of C and O each, and 35 embedded copies
of H .

The resulting configuration of points (copies of C), lines (copies of H),
and planes (copies of O), forms the smallest 3-dimensional projective space
(and one of the simplest examples of the incidence geometry of points,
lines and planes).
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5.2 Congruences on binary rings
5.2.1 Ideals

A subgroup I of the additive group of a ring R is said to be a left ideal if

ra ∈ I (r ∈ R, a ∈ I). (125)

Right ideals are defined similarly. If I is both a left and a right ideal, it is
called a twosided ideal or, simply an ideal.

5.2.2

Since a congruence ∼ of the ring structure (R,+, ·) is also a congruence of
the additive structure (R,+) , any ring congruence is the coset equivalence
∼I where I is the equivalence class 0̄ of 0. Mind that the coset of r
is written r + I (not rI ), since the group operation is (R,+) is written
additively as r + s (not rs).

Exercise 82 Given a congruence ∼ on a binary ring (R,+, ·) show that the
equivalence class 0̄ of 0 is an ideal. Vice-versa, show that the coset relation ∼I
is a ring congruence if I is an ideal.

6 Algebraic structures (in the strict sense)

6.1 ν-ary structures
6.1.1 Arity functions

Given a function

ν : J−→N, j 7−→ ν(j)˜ the arity of µj (126)

we call a set X equipped with a family of operations M = (µj)j∈J) on X
a ν-ary structure

6.1.2 Universal Algebra

A branch of Mathematics studying general ν-ary structures and properties
of various classes of such structures is called Universal Algebra. In Univer-
sal Algebra what we call here a ν-ary structures is referred to as algebras.
This is one of the several uses of the term “algebra” in Mathematics.
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6.1.3

When the arity function ν is injective, then there is no need to use an
auxiliary indexing set J , or one can say that the family of operations is
naturally indexed by the arity, µj being the unique operation of arity i .

6.2 Substructures
6.2.1

If a subset X′ ⊆ X is closed under every operation µj , j ∈ J , then by
restricting each µj to (X′)ν(j) and narrowing its target to X′ , we obtain a
ν-substructure of

(
X, (µj)j∈J

)
.

6.2.2 The lattice of substructures

The set of all substructures Substr
(
X, (µj)j∈J

)
corresponds to the subset

of P(X) consisting of all subsets of X closed under every operation µj .
That set is partially ordered by containment. In what follows we do not
distinguish between a substructure of

(
X, (µj)j∈J

)
and a subset of X that

is closed under every opereation µj .

6.2.3

By definition, the largest substructure is (X, (µj)j∈J
)

itself.

6.2.4 The infimum of a family of substructures

According to Exercise 38, the intersection of any family S of substructures
is a substructure. It is obviously the largest substructure contained in each
member of S . It is called the infimum of family S . Thus,

inf S =
⋂

S. (127)

6.2.5 The supremum of a family of substructures

In any partially ordered set (A,≤) , the existence of infima of arbitrary
subsets guarantees also the existence of their suprema: one can show that
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the supremum of a subset B coincides with the infimum of the set of all
upper bounds of B .

Accordingly, the supremum of a family S of substructures is the inter-
section of the substructures containing their union

sup S =
⋂

X′⊇⋃ S

X′. (128)

6.2.6 The substructure generated by a subset

For any subset A ⊆ X we define the substructure generated by A as the
infimum of the family A of substructures of (X, (µj)j∈J

)
which contain

A . We shall denote it 〈A〉 . Note that

sup S =
〈⋃

S
〉

.

6.2.7 The smallest substructure

The smallest substructure is 〈∅〉 . It is the intersection of all substructuresof
(X, (µj)j∈J

)
. It is empty precisely when none of the operations µj is nullary

and it contains all the elements of X that correspond to those operations
among µj which are nullary.

6.2.8 Sets of generators

A subset A ⊆ X is said to generate (X, M) if 〈A〉 = X .

6.2.9 The free ν-ary structure generated by a set

Given a set A , let us adjoin to it elements, denoted ∗i , not belonging to
it and all distinct (e.g., we can take ∗i = (∗, i) ∈ äi∈I A0 where ∗ is the
unique element of A0 ). Let

Ã˜ A ∪ {∗i | i ∈ I}.

(Alternatively, we could take Ã to be the disjoint union A t I of A and
I .) For each i ∈ I , consider the following ν(i)-ary operation on Ã<∞
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obtained by concatenating ν(i) + 1 words in alphabet Ã with ∗i placed
as the first word,(

w1, . . . , wν(i)
)
7−→ concν(i)+1

(
∗i, w1, . . . , wν(i)

)
. (129)

If we consider the ν-ary structure on Ã<∞ given by the family of free
multiplications (129), indexed by I , then the substructure generated by
A ⊆ Ã<∞ is called the free ν-ary structure on A . We shall denote it Fν(A) .
When A = {a1, . . . , an} (with all ai different), then Fν(A) will be also
denoted Fν(a1, . . . , an) .

6.2.10 Product structures

Products of ν-ary structures are formed exactly like the corresponding
products of n-ary structures for a single n-ary operation, see Sections
3.3.5 and 3.3.7, the j-th operation on ∏i∈I Xi being the product of the
corresponding j-th operations on the component sets Xi , i ∈ I .

6.3 Quotient structures
6.3.1 Congruences

If an equivalence relation ∼ is given which is a congruence for every oper-
ation µj , j ∈ J , then X/∼ inherits the ν-ary structure from

(
X, (µj)j∈J

)
.

6.3.2

According to Execrcise 42, an equivalence relation ∼ is a congruence
if and only if its graph Γ∼ is a substructure of the product structure(

X×X, (µj×µj)j∈J
)

.

6.3.3 A weakest congruence stronger than a given binary relation

Let R be a binary relation on X . Considers the class CR of congruences
on

(
X×X, (µj×µj)j∈J

)
that are stronger than R . It is not empty, since

X×X is a relation with x ∼ x′ for all x, x′ ∈ is a congruence.
The intersection of the family of the graphs ΓC of congruences C

that are stronger than R is the graph of the conjunction of a family
of equivalence relations on X , hence is the graph of an equivalence
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relation itself. It is also the infimum of a family of substructures of(
X×X, (µj×µj)j∈J

)
, hence a substructure itself. By combining these two

observations, we infer that it is the graph of a congruence, and this
congruence is weaker than any congruence stronger than R .

6.4 Equationally defined classes
6.4.1

Alegebraic structures (in the strict sense) are generally considered to be
subclasses of the class of algebras of a certain type ν . The structures that
we have so far encountered are all of this type.

6.4.2 Example: Sets

Sets are ν-ary structures for I = ∅ and ν being the inclusion of the empty
set into N . In other words, sets correspond to the case when no operations
are given.

6.4.3 Example: G -sets

Let G be a semigroup. A G-set is a set X equipped with a family of unary
operations (λg)g∈G satisfying the following identities

λg′
(
λg′′(x)

)
= λg′g′′(x) (g′, g′′ ∈ G; x ∈ X). (130)

6.4.4

We say in this case that the semigroup G acts on a set X .

6.4.5

If G is a monoid with the identity element e , then one requires also the
following identity to hold

λe(x) = x (x ∈ X). (131)
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6.4.6

We say in this case that the monoid G acts on a set X .

Exercise 83 Prove that when G is a group acting on a set X, then

λg−1 =
(
λg
)−1

(g ∈ G; x ∈ X).

6.4.7 Right G -sets

The structure defined above is of a left G -set. A right G-set is a set
equipped with a family of unary operations (ρg)g∈G satisfying the follow-
ing identities

ρg′
(
ρg′′(x)

)
= ρg′′g′(x) (g′, g′′ ∈ G; x ∈ X). (132)

6.4.8 Example: R-modules

Let R be a binary ring. An R-module is an abelian group (M,+) which is
simultaneously a G -set for G = (R, ·) , the multiplicative semigroup of a
ring R , such that the following distributivity identities hold

λr(m + m′) = λr(m) + λr(m′) (133)

and
λr+r′m = λr(m) + λr′(m). (134)

6.4.9 Right modules

The structure defined above is of a left R-module. The definition of a right
R-module is obtained by replacing left by right action of the multiplicative
semigroup of R .

6.4.10 Unitary R-modules

When R has identity and the identity element in R acts on M as the
identity map idM , then we say that the module structure is unitary.
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6.4.11 Example: (R, S)-bimodules

Given two rings R and S , an (R, S)-bimodule is a an abelian group (M,+)
equipped with a left R-module structure, a right S-module structure such
that the two structures commute, i.e.,[

λr, ρs
]
= 0 (r ∈ R, s ∈ S). (135)

6.4.12

When R = S , we speak of R-bimodules.

6.4.13 Example: the bimodule of m×n matrices

Let k be a ring. Let R = Mm(k) and S = Mn(k) be the rings of m×m
and n×n matrices with coefficients in k and, finally, let M = Mmn(k) be
the additive group of m×n matrices with coefficients in k . Multiplication
on the left by m×m matrices and on the right by n×n matrices defines a
(Mm(k), Mn(k))-bimodule structure on Mmn(k) .

6.4.14

Semigroups and G -sets when G is a given semigroup or monoid are
examples of equationally defined classes of algebraic structures. Among all
structures of given arity they are defined exclusively in terms of certain
identities.

6.4.15

On the other hand, monoids, groups, division rings, fields, etc, are defined
in terms of identities and conditions expressed in terms of quantifiers like the
condition

for any r ∈ R, if r 6= 0 , then there exists s ∈ R such that rs = sr = 1,

which is encountered in the definition of division rings.
This simple observation distinguishes equationally defined classes of

algebraic structures among all algebraic structures.
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6.4.16 Identities in ν-ary structures

General identities involving l elements of a ν-ary structure are of the form

w1 = w2 (136)

where w1 and w2 are elements of the free ν-ary structure Fν(t1, . . . , tl) on
the alphabet consisting of l independent variables t1, . . . , tl .

We say that identity (136) is satisfied in a ν-ary structure (X, M) if
equality in (136) holds when we perform the operations prescribed by w1
and w2 on l arbitrarily chosen elements x1, . . . , xl of X .

6.4.17 Example: the associativity identity

Consider the words

w1˜ ∗ ∗ t1t2t3 and w2˜ ∗t1 ∗ t2t3

in the free binary structure on the alphabet {t1, t2, t3} .
Performing the operations prescribed by w1 and w2 on a triple of

arbitrary elements x1, x2, x3 in a binary structure (X, µ) yields

µµx1x2x3 = µx1µx2x3

(in prefix notation), or

µ(µ(x1, x2)x3) = µ(x1, µ(x2, x3))

(using functional notation with parentheses), or

(x1 · x2) · x3 = x1 · (x2 · x3)

(using infix notation).

6.4.18 Equational classes on ν-ary structures

Any set I of identities of the form (136) defines the corresponding equa-
tional class. We shall say that a ν-ary structure (X, M) is of the equational
class I if all the identities in I are satisfied in (X, M) .
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6.4.19

Any substructure, quotient structure, and any product of ν-ary structures
satisfying a certain identy will automatically satisfy the same identity. It
follows that substructures, quotient structures and arbitrary products of
ν-structures of equational class I belongs to the same class.

6.4.20 The congruence ∼I

Given a set of identities I , calculate the left-hand-sides and the right-hand-
sides of all identities I in I by substituting under variables t1, t2, . . . , all
possible elements of X . The corresponding pairs

(
LHSI , RHSI

)
form

a subset of X×X . Denote the associated binary relation on X by RI . A
weakest congruence stronger than RI is also a weakest congruence such
that the quotient structure

(
X/∼, (µ̄j)j∈J

)
satisfies all identities form I .

6.4.21

Passing from a structure
(
X, (µj)j∈J

)
to
(
X/∼, (µ̄j)j∈J

)
is often referred to

as enforcing a given set of identities.

6.4.22 Free ν-ary structure satifying identities I

The quotient structure obtained by enforcing identities I on a free ν-
ary structure Fν(A) will be denoted Fν,I and called the ν-ary structure
satisfying identities I freely generated by a set A . Structures of this kind
are fundamentally important.

6.5 Redefining a structure to make it equational
6.5.1

Various structures that are not equationally defined can be often redefined
as equational structures of different arity.

6.5.2 Case study: monoids

A monoid can be defined as a structure consisting of a single nullary
operation, i.e., a distinguished element e , and a single binary operation
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that satisfies the following three identies

(xy)z = x(yz), ex = x and xe = x (x, y, z ∈ X). (137)

6.5.3 Case study: groups

A group can be defined as a structure consisting of a single nullary opera-
tion e , a single unary operation, written

x 7−→ x−1,

and a single binary operation that satisfies the monoid identities (137) and
the following two identities involving the pasing-to-the-inverse operation

xx−1 = e and x−1x = e (x ∈ X). (138)

6.5.4

Define a new binary operation on a group

x/y ˜ xy−1 (139)

or, in prefix notation, /xy .

Exercise 84 Show that operation (139) satisfies the identity that, in postfix no-
tation, is written as

xxx/y/z/xx/x/z/// = y. (140)

Note that the left hand side of (140) is the expresssion (69).

Exercise 85 Define the nullary, unary and binary operations of the group in
terms of the operation / .

6.5.5

One can show that if the operation / satisfies identity (69), then the
corresponding nullary, unary and binary operations satisfy identities (137)
and (138). In particular, the group structure can be defined using a single
binary operation that satisfies a single identity.
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6.6 Example: Implicational structures
6.6.1

Consider a binary structure (X,⊃) satisfying the following two identities

(x⊃y)⊃x = x (141)

and
(x⊃y)⊃y = (y⊃x)⊃x. (142)

Exercise 86 Show that the identity

x⊃(x⊃y) = x⊃y (143)

is a consequence of identity (141).

Exercise 87 Show that the identity

x⊃x = (x⊃y)⊃(x⊃y) (144)

is a consequence of identities (141)–(143).

Exercise 88 Show that the identity

x⊃x = y⊃y (145)

is a consequence of identities (144) and (142).

6.6.2 The “truth” element

Let us denote by t the element x⊃x of X which, according to Exercise 88,
does not depend on x ∈ X .

Exercise 89 Show that the identities

(x⊃x)⊃x = x and x⊃(x⊃x) = x⊃x, (146)

are consequences of identities (141) and (143), respectively.

Thus the truth element t is a left but not right identity, and a right but
not left zero.
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6.6.3 Implication algebras

A binary structure (X,⊃) satisfying identities (141), (142) and the identity

x⊃(y⊃z) = y⊃(x⊃z) (147)

is sometimes called an implication algebra.

6.6.4 An example: the power set as an implication algebra

Given a set A , define an operation ⊃ on P(A) by

X⊃Y ˜ (A \ X) ∪Y. (148)

Exercise 90 Show that

X⊃Y = Y if and only if X ∪Y = A

and
X⊃Y = X if and only if X = Y = A.

Exercise 91 Verify that (P(A),⊃) satisfies identities (141), (142) and (147),
i.e, is an implication algebra.

7 Morphisms

7.1 Morphism between relations
7.1.1

Let (X1, . . . , Xn, R) and (X′1, . . . , X′n, R ′) be two n-ary relations.

Definition 7.1 A collection of maps φ = (φ1, . . . , φn) , where φi : Xi−→Yi , is
called a morphism from R to R ′ if

R(x1, . . . , xn) implies R ′
(
φ1(x1), . . . , φn(xn)

)
. (149)

We shall extend the arrow notation from maps between sets to mor-
phisms between relations and other structures:

φ : R−→R ′.
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7.1.2 The identity morphism

In the case when Xi = X′i , for all i = 1, . . . , n , and R = R ′ , we can
consider the identity morphism

idR : R−→R (150)

where each φi is the identity map Xi−→Xi .

7.1.3 Composition of morphisms

If (X′′1 , . . . , X′′n , R ′′) is a third n-ary relation and υ : R ′−→R ′′ is a mor-
phism,

υ = (υ1, . . . , υn),

then the composite υ ◦ φ is defined as:

υ ◦ φ˜ (υ1 ◦ φ1, . . . , υn ◦ φn).

Note that υ ◦ φ is a morphism from R to R ′′ .

7.1.4 Isomorphisms

If, for a morphism φ : R−→R ′ , there exists a morphism ψ : R ′−→R such
that φ ◦ ψ = id′R and ψ ◦ φ = idR , then we say that φ is an isomorphism
between R and R ′ , and ψ is the inverse of φ .

7.1.5 Endomorphisms and automorphisms

A morphism φ : R−→R is often called an endomorphism of R . If, ad-
ditionally, φ is an isomorphism, we say that φ is an automorphism of
R .

7.2 Morphisms between mappings
7.2.1

In the case of mappings of n variables we have the following simple
characterization of isomorphisms.
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Exercise 92 Prove that a morphism φ = (φ1, . . . , φn, φn+1) between mappings
is an isomorphism if and only if each φi : Xi−→X′i and φn+1 : Y−→Y′ are bi-
jections.

A morphism φ from a map f : X1−→X2 to a map g : X′1−→X′2 is the
same as a pair of maps φi : Xi−→X′i , where i = 1 or 2, such that the
following diagram commutes:

X1 X2

X′1 X′2
u

φ1

w
f

u
φ2

wg

,

i.e., φ2 ◦ f = g ◦ φ1 .

7.2.2

In the special case when some Xi is assumed to coincide with some Xj ,
one can require from morphisms between such relations to satisfy φi = φj .
We shall refer to such morphisms as strict morphisms. An example of this
situation arises in the case of n-ary operations on sets.

7.3 Morphisms between operations
7.3.1 Homotopisms

Given two sets equipped with n-ary operations

µ : X× · · · ×X−→X

and
µ′ : X′× · · · ×X′−→X′

one can consider morphisms between them to be the morphisms between
the corresponding (n + 1)-ary relations, i.e., the (n + 1)-tuples of maps
(φ1, . . . , φn+1) from X to X′ such that, for any x1, . . . , xn ∈ X ,

µ′
(
φ1(x1), . . . , φn(xn)

)
= φn+1

(
µ(x1, . . . , xn)

)
. (151)

This is what we call a homotopism (or, homotopy) from (X, µ) to (X′, µ′) .
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7.3.2 Homomorphisms

When φi are all equal we obtain the definition of a homomorphism from
(X, µ) to (X′, µ′) . Thus, a homomorphism (X, µ)−→(X′, µ′) is a mapping
φ : X−→X′ such that

µ′
(
φ(x1), . . . , φ(xn)

)
= φ

(
µ(x1, . . . , xn)

)
. (152)

Exercise 93 Show that a mapping φ : X−→X′ is a homomorphism of n-ary
structures if and only if the graph Γφ is a substructure of the product structure
on X×X′ .

Exercise 94 Given three n-ary structures (X, µ) , (X′, µ′) , and (X′′, µ′′) , and
substructures E of the product structure on X×X′ , and F of the product struc-
ture on X′×X′′ , show that E ◦ F is a substructure of the product structure on
X×X′′ .

7.3.3 Correspondences between n-ary structures

Exercises 93 and 94 indicate that substructures of the product structure
on X×X′ can be composed like homotopisms and homomorphisms. We
shall refer to them as correspondences between (X, µ) and (X′, µ′) .

7.3.4 Isotopisms and isomorphisms

Invertible homotopisms are called isotopisms (or isotopies), while invertible
homomorphisms are called isomorphisms of n-ary structures.

Exercise 95 Suppose that E ⊆ X×X′ is an invertible correspondence, i.e., there
exists a correspondence F ⊆ X′×X such that

E ◦ F = ∆X and F ◦ E = ∆X′ .

Show that E = Γ f and F = Γ f−1 for an isomorphism f : (X, µ)−→(X′, µ) .

7.3.5

Thus, invertible correspondences are necessarily the graphs of isomor-
phisms or, since we identify mappings between sets with their graphs, we
can say that any invertible correspondence is an isomorphism.
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Exercise 96 Prove that any quasigroup, (Q, ·) , is isotopic to a loop. (Hint:
Find two bijections, f1 and f2 , of set Q onto itself such that Q equipped with
the operation

(q1, q2) 7−→ q1 ◦ q2˜ ( f1)
−1(q1) · ( f2)

−1(q2)

is a loop.)

7.3.6 Example: Steiner systems

A set (X, .) equipped with a totally symmetric ternary relation satisfying
the property that, for any distict x, y ∈ X , there exists a unique z ∈ X ,
which is distinct from both x and y , such that

.(x, y, z), (153)

is called a Steiner triple system. For any Steiner system, there is an associ-
ated quasigroup operation on X ,

x · y ˜
{

the unique z such that .(x, y, z) if x 6= y
x if x = y

.

Exercise 97 Prove that any totally symmetric quasigroup (Q, ·) , in which every
element is an idempotent is associated with a Steiner triple system.

7.3.7

There is a unique Steiner triple system structure on a set of cardinality
3. If we denote the elements of this set by {0, 1, 2} , then the associated
operation is, using the integer arithmetic modulo 3,

(x, y) 7−→ x · y˜−x− y.

The corrsponding quasigroup is isotopic but not isomorphic to the group
({0, 1, 2},+) , where + denotes addition modulo 3, via the isotopism

(id, id,− id).

Exercise 98 Prove that any self-bijection f ∈ Bij{0, 1, 2} is an automorphism
of the quasigroup ({0, 1, 2}, ·) associated with the unique Steiner triple system
on {0, 1, 2} .
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7.3.8 Isotopisms from a semigroup to a structure with identity

Let φ = ( f ′, f ′′, f ) be an isotopism from a semigroup (S, ◦) to a binary
structure (X, ·) with an identity element e .

Denote the inverse mapping f−1 : X−→S by g . The identities

f ((s ◦ t) ◦ u) = f ′(s ◦ t) · f ′′(u) = f ′g
(

f ′(s) · f ′′(t)
)
· f ′′(u)

and

f (s ◦ (t ◦ u)) = f ′(s) · f ′′(t ◦ u) = f ′(s) · f ′′g
(

f ′(t)) · f ′′(u)
)
,

combined with the identity (s ◦ t) ◦ u = s ◦ (t ◦ u) , imply that

f ′g
(

f ′(s) · f ′′(t)
)
· f ′′(u) = f ′(s) · f ′′g

(
f ′(t)) · f ′′(u)

)
. (154)

If we adopt the simplified notation by omitting parentheses around the
arguments where possible, identity (154) becomes

f ′g( f ′s · f ′′t) · f ′′u = f ′s · f ′′g( f ′t · f ′′u) (s, t, u ∈ S). (155)

Exercise 99 Under hypothesis that (X, ·) has an identity element, deduce from
identity (155) the following three identities

f ′g f ′′t · f ′′u = f ′′g( f ′t · f ′′u) (156)

f ′g( f ′s · f ′′t) = f ′s · f ′′g f ′t (157)

f ′g f ′′ = f ′′g f ′ (158)

where s, t and u denote arbitrary elements of S.

Exercise 100 Deduce from identities (156)–(158) the following two identities

f ′′gx · y = f ′′g(x · y) (159)

f ′g(x · y) = x · f ′gy (160)

where x and y denote arbitrary elements of X.
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7.3.9

Let
φ̄ ˜ f ′g f ′′ = f ′′g f ′.

For any s and t in S , we have

φ̄(s ◦ t) = φ̄g( f ′s · f ′′t) = f ′g f ′′g( f ′s · f ′′t)

= f ′g( f ′′g f ′s · f ′′t) = f ′′g f ′s · f ′g f ′′t

= φ̄s · φ̄t.

The third equality follows from identity (159), the fourth equality follows
from identity (160).

7.3.10

We proved above that the mapping

φ = ( f ′, f ′′, f ) 7−→ φ̄˜ f ′ f−1 f ′′

is a retraction of the set of isotopisms φ from a semigroup (S, ◦) to a binary
structure with identity (X, ·) onto the set of isomorphisms from (S, ◦) to
(X, ·) .

7.3.11

In particular, we discovered that a semigroup isotopic to a structure with
identity has an identity itself. In particular, it is a monoid. Vice-versa,
a structure with identity isotopic to a semigroup is associative itself. In
particular, it is a monoid.

7.3.12 Autotopisms and automorphisms

Isotopisms whose source and target coincide are called autotopisms. Sim-
ilarly, isomorphisms with the source and the target coincide are called
automorphisms.

Autotopisms of (X, µ) form a group (cf. Exercise 92) which we will
denote A(X, µ) . The latter contains two subgroups: the group of automor-
phisms, Aut(X, µ) , and the group of principal autotopisms, A0(X, µ) , i.e.,
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autotopisms of the form:

(φ1, . . . , φn, idX). (161)

Exercise 101 Prove that any isotopism

(X, µ)
φ=(φ1,...,φn+1)−−−−−−−−−−−→ (Y, ν)

canonically factorizes as the composition of a principal autotopism and an iso-
morphism:

.

(X, µ) (Y, ν)

(X, µ′)

w
φ=(φ1,...,φn+1)

’’’)
(ψ1,...,ψn, idX) [

[[]
φn+1

for some n-ary operation µ′ on X. (Hint: First find µ′ .)

Exercise 102 Prove that the group of principal autotopisms, A0(X, µ) , is a
normal subgroup of the group of all autotopisms, A(X, µ) .

Exercise 103 Let (X, ·) be a binary structure. Consider a binary relation on set
X:

x ∼ y if φ(x) = φ(y) for any homomorphism φ into any semigroup. (162)

Show that ∼ is a congruence on (X, ·) and that, for any homomorphism φ : X−→S
into a semigroup S, there exists a unique homomorphism φ̃ : X/∼−→S such
that φ = φ̃ ◦ π where π : X−→X/∼ is the canonical epimorphism.

7.3.13 Homomorphisms and antihomomorphisms of binary structures

In the case of binary structures, a homomorphism from (G, ·) to (G′, ·) is
a map φ : G−→G′ such that

φ(gh) = φ(g)φ(h) (163)

for any g, h ∈ G .
If a map φ satisfies instead the identity

φ(gh) = φ(h)φ(g) (g, h ∈ G), (164)

then we say that φ is an antihomomorphism.
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7.3.14

Composition of a homomorphism with an antihomomorphism is an anti-
homomorphism. Composition of two antihomomorphisms is a homomor-
phism.

7.3.15 The opposite binary structure

For any binary structure, (G, ·) we define the opposite binary structure,
(G, ·)op = (Gop, ·op) , by setting Gop to be the set G whose elements, how-
ever, will be denoted gop in order to clearly indicate which structure are
we considering, and multiplication given by

gophop
˜ (hg)op. (165)

Then
( )

op
G : (G, ·)−→(Gop, ·op), g 7−→ gop, (166)

can be thought of as a canonical antiisomorphism of (G, ·) onto (Gop, ·op) .

7.3.16

One has (G, ·)op = (G, ·) if and only if (G, ·) is commutative.

7.3.17

Note that ((G, ·)op)op = (G, ·) , and

( )
op
Gop ◦ ( )op

G = idG. (167)

7.3.18 Functoriality of the opposite structure

Any homomorphism φ : G−→G′ induces a homomorphism of the corre-
sponding opposite structures, φop : Gop−→(G′)op ,

φop
˜ ( )

op
G′ ◦ φ ◦ ( )op

Gop . (168)
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7.3.19

If φ : G−→G′ is an antihomomorphism, then both

φ ◦ ( )op
Gop : Gop−→G′

and
( )

op
G′ ◦ φ : G−→(G′)op

are homomorphisms, and vice-versa.
This allows us to view antihomomorphisms as homomorphisms, except

that the source, or the target, has to be replaced by the opposite structure.

7.4 Morphisms between ν-structures
7.4.1 Homomorphisms between ν-structures

A homomorphism between ν-structures (X, M) and (X′, M′) is a map-
ping f : X−→X′ that is compatible with all operations, i.e., for each i ∈ I ,
the identity

µ′j

(
f
(
x1
)
, . . . , f

(
xν(j)

))
= f

(
µj
(
x1, . . . , xν(j)

)) (
x1, . . . , xν(j)

)
(169)

holds.

7.4.2

It follows from Exercise 93 that a mapping f : X−→X′ is a homomorphism
if and only if its graph Γ f is a substracture of the product structure on
X×X′ .

7.4.3 Correspondences between ν-ary structures

Subsets of X×X′ which are substructures of the product of structures
(X, M) and (X′, M′) will be referred to as correspondences between (X, M)
and (X′, M′) .

Composition of such correspondences is again a correspondence be-
tween ν-ary stuctures. An invertible correspondence is automatically a
homomorphism.
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7.4.4

In the case of sets, i.e., ν-ary structures with ν being the inclusion of the
empty set into N , we obtain the original definition of a correspondence
on sets, cf. Section 2.4.6

8 Group Theory

8.1 ∗-semigroups
8.1.1

Any semigroup G is antiisomorphic to Gop , cf. (166). Some semigroups
are also isomorphic to their opposites or, what is the same, antiisomorphic
to themselves.

This happens, for example, when G admits an antiinvolution, i.e. an
antiisomorphism ∗ : G−→G such that

∗(∗g)) = g (g ∈ G).

Such semigroups are called ∗-semigroups. They form an important class
of ∗-semigroups.

8.1.2

Every group is equipped with a canonical antiinvolution that sends an
element to its inverse,

g 7−→ g−1.

8.2 Cyclic groups
8.2.1 The order of an element

The smallest positive integer n such that gn = e is denoted |g| and called
the order of an element g of a group G . If no such integer exists we say
that g is an element of infinite order.

Exercise 104 Let φ : G−→G′ be a group homomorphism. Show that, for any
element g ∈ G, the order of φ(g) divides the order of g.

84



Exercise 105 Prove that any subgroup of a cyclic group is cyclic.

Exercise 106 Let C be a cyclic group of order n. Prove that for any positive
divisor d of n, there exists a unique subgroup D ⊆ C of that order.

For any two such sungroups D and E, show that D ⊆ E if and only if |D|
divides |E| .

Exercise 107 For any elements a and b in a group G, their commutator is
defined as

[a, b]˜ aba−1b−1. (170)

Let

[G, G]˜ {g ∈ G | g = [a1, b1] · · · [ar, br] for some a1, b1, . . . , ar, br ∈ G}.
(171)

Show that [G, G] is a normal subgroup (this subgroup is called the commutator
subgroup of G). Show that the factor-group G/[G, G] is abelian, and that every
homomorphism φ : G−→A into an abelian group factorizes through G/[G, G] .

Exercise 108 Let G be a group such that g2 = e for each g ∈ G. Show that G
is abelian.

Exercise 109 Let G be a group such that G/Z(G) is cyclic. Show that G is
abelian. (Hint. Let g ∈ G be an element that is sent by the canonical factor-map
G � G/Z(G) to a generator of G/Z(G) . Show that G = Z(G)〈g〉 and use
this fact.)

Exercise 110 Let G be a nonabelian group of order 8. Show that there exists an
element a ∈ G of order 4 and show that, for any element b ∈ G \ 〈a〉 , one has
bab−1 = a−1 .

If every element of G \ 〈a〉 is of order 2, the group is called the dihedral
group of order 8 and denoted D8 or, in older notation, D4 . It is isomorphic to
the group of symmetries of the square.

If, on the other hand, G \ 〈a〉 contains an element of order 4, then show that
it is isomorphic to the multiplicative group of quaternions:

Q˜ {±1,±i,±j,±k} (172)

where i, j, k are the imaginary quaternions. Because of this isomorphism, the
unique up to isomorphism group of order 8 with a pair of noncommuting ele-
ments of order 4 is called the quaternion group and is denoted Q.
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Exercise 111 For both D8 and Q, do the following.
Let a be any element of order 4 and b be any element of G \ 〈a〉 . Show that

the cyclic subgroup, 〈a〉 , is normal, and every element g ∈ G has a representa-
tion,

g = aibj, (173)

for unique i ∈ Z/4Z and j ∈ Z/2Z , in the dihedral case, and j ∈ Z/4Z , in
the quaternion case.

Write down all elements, (173), of order 2 in G.
Find all subgroups of G and draw a diagram that displays which subgroup

is contained in which one. (Do not forget about the trivial subgroups: {e} and
G).

Find the center, Z(G) , of G and its commutator subgroup, [G, G] .

Exercise 112 Determine the structure of the group of automorphisms of cyclic
groups of order 2, 4, 8, 16. Formulate a general hypothesis regarding the group
of automorphisms of a cyclic group of order 2n (and prove it, if you can).

Exercise 113 Determine the structure of the group of automorphisms of cyclic
groups of order 3, 9, 27. Formulate a general hypothesis regarding the group of
automorphisms of a cyclic group of order 3n (and prove it, if you can).

8.3 Group extensions
8.3.1

Definition 8.1 A pair of group homomorphisms

E : G E Nu π u ι (174)

is called an extension of G by N if π is an epimorphism, ι is a monomorphism,
and Ker π = Im ι .

8.3.2 Notation

When dealing with group extensions usually a special notation is em-
ployed:

G E Nu u π u x
ι
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or
1 G E N 1u u u π u x

ι u

Here 1 stands for the trivial, one-element group.

8.3.3 Terminology

By extension, we call the group in the middle, E , an extension of G by N .
Group N is called the kernel of the extension.

8.3.4 Restriction of an extension to a subgroup

Exercise 114 If H is a subgroup of G, show that F˜ π−1(H) is a subgroup
of E.

We speak in this case of

H F Nu u
π|F

u x
ι

as the restriction of extension E to H .

G E Nu u π u x
ι

8.3.5

Exercise 115 If G and N are finite, show that

|E| = |G| |N|.

8.3.6 Split extensions

An extension E is said to be split if there exists a homomorphism σ : G−→E
such that π ◦ σ = idG . Such a homomorphism is called a splitting of ex-
tension E .

Exercise 116 Show that a group extension, (174), is split if and only if there
exists a subgroup G′ ⊆ E such that π|G′ is an isomorphism between G′ and G.

The following theorem is one of the fundamental results of Finite
Group Theory.

Theorem 8.2 (Schur–Zassenhaus) If G and N are finite groups and their
orders are relatively prime, then any extension of G by N is split. �
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8.3.7 Morphisms of extensions

A morphism of an extension E into an extension E ′ consists of three
group homomorphisms f0 : G−→G′ , f1 : E−→E′ and f2 : N−→N′ such
that the squares in the following diagram

E : G E N

E ′ : G′ E′ N′
u

f0

u u π

u
f1

u x
ι

u
f2

u u π′ u x
ι′

commute.

8.3.8 Trivial extensions

An extension E is said to be trivial if it is isomorphic to the extension

G N×G Nu u
p2 u x

i1 (175)

where p2 : N×G−→G is the projection onto the second factor, and

i1 : N−→N×G, n 7−→ (n, e)

is the inclusion of the first factor, N , into G×N .

8.3.9 Central extensions

If the kernel, N , of extension E is contained in the center of E , then we
say that the extension is central.

A central extension is split if and only if it is trivial.

8.3.10

Central extensions play a fundamental role in modern Mathematics and
Mathematical Physics.
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8.4 Solvable groups
8.4.1 Classes of groups closed under extensions

Definition 8.3 We say that some class C of groups is closed under extensions
if in any extension, (174), where G and N belong to class C , also the middle
group, E, belongs to C .

8.4.2 Classes of groups closed under extensions

The class of finite groups is obviously closed under extensions. A less
obvious example is provided by so called torsion groups.

Definition 8.4 We say that a group G is a torsion group if every element
g ∈ G has a finite order.

Exercise 117 Show that the class of torsion groups is closed under extensions.

8.4.3

The class of abelian groups is obviously not closed under extensions. We
shall explicitly construct the smallest class closed under extensions which
contains the class of abelian groups. Denote the latter class by S0 . Groups
E that are extensions of an abelian group G by an abelian group N will
form the larger class that will be denoted S1 . Groups E that are extensions
of an abelian group G by a group N of class S1 will form even the larger
class that will be denoted S2 , and so on: groups E that are extensions of
an abelian group G by a group N of class Sl will form the class denoted
Sl+1 .

Definition 8.5 We say that a group G is solvable if it is of class Sl for some
l ≥ 0 .

Exercise 118 Show that class S1 defined above coincides with the class of
groups E whose commutator subgroup [E, E] is abelian.
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8.4.4 Derived series

For any group G , define inductively the sequence of subgroups

G(0)
˜ G, and G(l+1)

˜ [G(l), G(l)]. (176)

Exercise 119 Prove, by induction on l , that any subgroup F of a group E of
class Sl is of class Sl itself.

Exercise 120 Prove, by induction on l , that class Sl defined above coincides
with the class of groups E such that E(l+1) = 1 or, equivalently, such that E(l)

is abelian. (Hint. Use Exercise 119 and note that [E, E](l) = E(l+1) .)

8.4.5

It follows that the class of solvable groups coincides with the class of
groups for which the derived series terminates after finitely many terms in
the trivial group

E = E(0) . E(1) . · · · . E(l+1) = 1. (177)

9 Actions

9.1 Vocabulary
9.1.1

Definition 9.1 We say that a semigroup G acts on a set X if a map

G×X−→X, (g, x) 7−→ gx (178)

is given such that
(gh)x = g(hx) (179)

for all g, h ∈ G and x ∈ G. The map, (178), satisfying (179) is called an action
of G on X and a set equipped with such an action is referred to as a G -set.
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9.1.2

A G -action on X induces a homomorphism into the monoid of self-maps,
Map(X, X) ,

λ : (G, ·)−→(Map(X, X), ◦), g 7−→ λg, (180)

where
λg(x)˜ gx. (181)

And vice-versa, any homomorphism of G into Map(X, X) . defines a
G -action on X :

(g, x) 7−→ λg(x). (182)

9.1.3 Equivariant maps

Given two G -sets, X and Y , a map f : X−→Y is said to be equivariant (or,
G -equivariant, for added clarity), if

f (gx) = g f (x) (183)

for any g ∈ G and x ∈ X .
Equivariant maps play the role of morphisms in the world of G -sets

when G is fixed.

9.1.4 Orbits

For any element x ∈ X , the subset of X

Gx˜ {gx | g ∈ G} (184)

is called the orbit of x .

9.1.5 Stabilizers

For any element x ∈ X , the subset of G

Gx˜ {g ∈ G | gx = x} (185)

is called the stabilizer of x , or the isotropy semigroup of x .

The stabilizer of any element x ∈ X is indeed a semigroup. The
stabilizer is also sometimes denoted stabG(x) . Remember to never confuse
Gx with Gx !
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9.1.6 Invariant subsets

A subset A ⊆ X of a G -set is said to be invariant (under the action of G )
if gx ∈ A for every x ∈ X′ . More natural would be to call such subsets
G -subsets.

9.1.7 Fixed points

An element x of a G -set is called a fixed point (of the action) if

gx = x for every g ∈ G . (186)

9.1.8 Right actions

What we have defined in Definition 9.1, was, properly speaking, a left
action of a semigroup G on a set X . There is als a related notion of right
action.

Definition 9.2 We say that a semigroup G acts on a set X on the right if a
map

X×G−→X, (x, g) 7−→ xg (187)

is given such that
x(gh) = (xg)h (188)

for all g, h ∈ G and x ∈ G. The map, (178), satisfying (179) is called a right
action of G on X and a set equipped with such an action is referred to as a right
G -set.

9.1.9 An example: the left and the right regular actions

For any semigroup G , the multiplication map

G×G−→G

can be thought as a left action of G on itself as well as a right action
of G on itself. In the first case, we call it the left multiplication action, or
the left regular action of G . In the second case, we refer to it as the right
multiplication action, or the right regular action of G .
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9.1.10

A right G -action on X induces an antihomomorphism into the monoid of
self-maps, Map(X, X) ,

ρ : (G, ·)−→(Map(X, X), ◦), g 7−→ ρg, (189)

where
ρg(x)˜ xg. (190)

And vice-versa, any anti-homomorphism of G into Map(X, X) . defines
a G -action on X :

(x, g) 7−→ ρg(x). (191)

9.1.11

A right action of G is the same as the left action of Gop :

(gop)x˜ xg (g ∈ G, x ∈ X).

If G is a ∗-semigroup, any right action of G can be converted into a
left action with help of the antiinvolution:

gx˜ x(∗g)

For example, in the case of a group,

(G, X)−→X, x 7−→ xg−1,

is a (left) action.

9.1.12 Induced actions

An action on a set X may induce a number of related actions. An example
is provided by the natural action on the set of all subsets, P(X) of X ,

(g, A) 7−→ gA˜ {ga | a ∈ A} (A ⊆ X). (192)

Note that, invariants subsets of X are precisely the fixed points of this
action.
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9.1.13

If S is any set and X is a G -set, then G acts naturally on the set of all
maps from S to X : a map F : S−→X is sent under g ∈ G to the map

(gF)(s)˜ gF(s) (s ∈ S). (193)

9.1.14

Similarly, the formula

(Fg)(x)˜ F(gx) (x ∈ X) (194)

defines a natural right action on the set of all maps from G to S .

9.1.15 Restriction of an action to an invariant subset

Given an invariant subset A ⊆ X one can restrict the action to A to make
A into a G -set.

9.1.16 Product of G -sets

Given two G -sets X and Y , there is a natural action of G on X×Y :

g(x, y)˜ (gx, gy) (g ∈ G, x ∈ X, y ∈ Y). (195)

and similarly for the general case of the product of any family of G -sets.

9.1.17 Equivariant relations

Given G -sets X1, . . . , Xn , we say that an n-ary relation (X1, . . . , Xn, R) is
equivariant if, for any x1 ∈ X1, . . . , xn ∈ Xn , and g ∈ G , one has

R(x1, . . . , xn) implies R(gx1, . . . , gxn). (196)

9.1.18 Quotient G -sets

If G -subsets of a G -set X are just invariant subsets, then the G -quotients
of X are the quotients X/∼ by equivariant equivalence relations. Note that
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the equivalence class [gx] in this case depends only on the equivalence
class [x] . In particular, the formula

g[x]˜ [gx]

defines an induced action of G on X/∼ .

9.2 Group actions
9.2.1

When a group G acts on a set X , then any λg : X−→X is a bijection since

λe = idX and therefore (λg)−1 = λg−1

for any g ∈ G . Hence, a G -action is the same as a homomorphism from
G into the group Bij X of self-bijections, otherwise known as permutations
of X :

λ : G−→Bij X. (197)

9.2.2 Orbital decomposition of a G -set

Exercise 121 Let G be a group acting on a set X. Show that any two orbits O
and O ′ are either equal or disjoint.

In particular, orbits of any group action on X form a partition of
X which must correspond to some equivariant equivalence on X . The
quotient is denoted X/G in this case. It is the largest quotient G -set of X
on which G acts trivially.

The set, X/G , is often called the space of orbits of the G -action, or the
quotient of X by the action of G .

9.2.3 The adjoint action

Besides the left and right multiplication actions, group G acts on G also
by conjugation,

(g, x) 7−→ gx˜ gxg−1 (g, x ∈ G). (198)

For any g ∈ G , the map

adg : x 7−→ gx (x ∈ G) (199)

is an automorphism of group G . Such automorphisms are called inner.
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9.2.4

In literature very often one encounters notation xg˜ g−1xg . Note that,

(x, g) 7−→ xg

is a right action.

Exercise 122 Let α ∈ Aut G be any automorphism of group G. Show that the
group of inner automorpisms,

Inn G˜ {adg | g ∈ G}, (200)

is a normal subgroup of Aut G. (Hint: prove that

α ◦ adg ◦α−1 = adα(g) (201)

for any g ∈ G.)

9.2.5 Outer automorphisms

The quotient group
Out G˜Aut G/ Inn G (202)

is called the group of outer automorphisms of G and denoted Out G . Note
that “outer automorphisms” are not automorphisms of group G but the
cosets in Aut G of the subgroup of inner automorphisms Inn G .

9.2.6 Conjugacy classes

The orbit of an element x ∈ G under the adjoint action is called the
conjugacy class of G .

9.2.7 Centralizers

For any element a ∈ G , the stabilizer of a under the adjoint action of G
coincides with the so called centralizer of a ,

CG(a)˜ {g ∈ G | ga = ag}. (203)

If A ⊆ G is a subset, then its centralizer is the intersection of centralizers
of all of its elements,

CG(A)˜
⋂

a∈A
CG(a). (204)
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Exercise 123 Show that, for any subset A of G, its centralizer CG(A) is a
subgroup of G. Express CG(

gA) in terms of CG(A) and g ∈ G.

9.2.8 Normalizers

If A ⊆ G is a subset, then its normalizer,

NG(A)˜ {g ∈ G | gA = A} (205)

is the stabilizer of A with respect to the action on P(G) induced by the
adjoint action.

Exercise 124 Show that, for any subset A of G, its normalizer NG(A) is a
subgroup of G. Express NG(

gA) in terms of NG(A) and g ∈ G.

Exercise 125 Let G be a group acting on a set X and. Show that, for any
x ∈ X, the stabilizer, Gx is a subgroup of G, and that

Ggx = gGx. (206)

9.2.9

Exercise 126 Consider the action of a group G on itself by left multiplication.
For any subgroup H ⊆ G, show that

x ∼H y if y−1x ∈ H (207)

is an equivariant equivalence on G-set G.
Vice-versa, prove that any equivariant equivalence on G is of the form, (207),

for some subgroup H. (Hint: Find the candidate for H first.)

Note that the the G -quotient, G/∼H , is just the set of the left cosets,
G/H .

Exercise 127 Let G be a group and X be any G-set. Show that for any x ∈ X,
the map

G/H−→Gx, gH 7−→ gx, (208)
where H = Gx , is an isomorphism of G-sets.

In particular, if the orbit of an element x ∈ X is finite, then its cardinal-
ity equals the index of the stabilizer of x in G ,

|Gx| = |G : Gx|. (209)
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9.2.10

By combining (209) with Exercise 121 we obtain the following observation.

Observation 9.3 For any finite G-set X, one has the following identity

|X| = ∑
O

|G : Gx|, (210)

where the summation extends over all distinct orbits O ⊆ X and Gx denotes the
stabilizer of any single element x ∈ O .

Exercise 128 Let H and K be two subgroups of G. Restrict the action of G by
left multiplication on G/K to H. Show that the map

H−→HK/K, h 7−→ hK, (211)

induces an isomorphism of H-sets

H/H ∩ K ' HK/K (212)

where HK/K ⊆ G/K denotes the subset

HK/K˜ {hK ∈ G/K | h ∈ H}. (213)

Exercise 129 Let H and K be two finite subgroups of G. Show that

|HK| = |H| |K||H ∩ K| . (214)

Exercise 130 Let H and K be two subgroups of G. Restrict the action of G by
left multiplication on G/K to H. Show that

stabH(gK) = H ∩ gK. (215)

Exercise 131 Let H a subgroup of G. Show that H = gH is a fixed point of
the H-action on G/H if and only if g ∈ NG(H) . In other words,

FixH(G/H) = NG(H)/H, (216)

and thus the number of fixed points of the H-action on G/H equals the index
of H in its normalizer, NG(H) ,

| FixH(G/H)| = |NG(H) : H|. (217)
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Exercise 132 Let H be a subgroup of G. Consider the set of all the conjugate
subgroups,

X˜ {gH | g ∈ G} (218)
Show that

|X| = |G : NG(H)|. (219)
Group G acts on X by conjugation.

stabG(
gH) = gNG(H). (220)

9.2.11 Restriction of an action to a subgroup

A G -set X can be viewed as an H -set for any subgriup H of G by
restrictiong the action to elements h ∈ H . In this case its orbit structure is
different. Any G -orbit O = Gx is naturally H -invariant but H may not
act on O transitively.

9.2.12

Subgroup H acts on Gx transitively if and only if

G = H · stabG(x). (221)

Note that in this case also G = gH · stabG(x) for any g ∈ G .

Exercise 133 Deduce that that the conjugacy class of a ∈ G in G equals the
conjugacy class of a with respect to H if and only if

G = HCG(a) (222)

9.2.13 Frattini’s Argument

Exercise 134 By looking at the action on the power set P(G) which is induced
by the adjoint action of G, we deduce that the set of G-conjugates of a subset
S ⊆ G coincides with the set of H-conjugates,

GS = HS, (223)

if and only if
G = HNG(S). (224)

(Note that both GS and HS are subsets of P(G) , not of G. In other words, they
are families of subsets of G.)
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The above observation is frequently used in Group Theory and it is
known under the name of Frattini’s Argument.

9.3 p-groups
9.3.1

Proposition 9.4 Let G be a group of order pn , where p is a prime, and X be a
finite G-set. Then

|X| = | FixG(X)| mod p. (225)

Proof. By (210), one has

|X| = ∑
|O |=1

|G : Gx|+ ∑
|O |>1

|G : Gx| = |FixG(X)|+ ∑
|O |>1

|G : Gx|. (226)

Each |O | = |G : Gx| is, by Lagrange’s Teorem, a divisor of |G| = pn , and
thus is a power of p itself. If |O | > 1, then |O | is divisible by p . Hence
the right-hand-side of (226) is the sum of | FixG(X)| and a natural number
divisible by p . �

9.3.2 Cauchy’s Theorem

Theorem 9.5 (Cauchy’s Theorem) If a prime p divides the order of a finite
group G, then

{g ∈ G | |g| = p} = −1 mod p. (227)

In particular, there exists an element of G of order p.

Proof. Consider the action of group Z/pZ by cyclic permutations of
the factors in Gp :

λi : (g1, . . . , gp) 7−→ (gp−i+1, . . . , gp, g1 . . . , gp−i), (i ∈ Z/pZ).

Exercise 135 Show that the subset

X˜ {(g1, . . . , gp) | g1 · · · gp = e} (228)

is invariant under the action of Z/pZ .
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The map

(g1, . . . , gp−1) 7−→ (g1, . . . , gp−1, (g1 · · · gp−1)
−1),

provides a bijection from Gp−1 onto X , hence

|X| = |Gp−1| = |G|p−1

is divisible by p .
A p-tuple (g1, . . . , gp) is a fixed point of the Z/pZ-action on X if and

only if g1, . . . , gp is of the form (g, . . . , g) and gp = e . In other words, the
map

g 7−→ (g, . . . , g)

identifies the set

{g ∈ G | gp = e} = {e} t {g ∈ G | |g| = p}

with the set of fixed points
FixZpZ(X),

and the number of elements in the latter is, in view of Proposition 9.4, and
a remark in the previous paragraph, divisible by p . �

9.3.3

A group G is said to be a p-group (for a prime p), if the order of every
element g ∈ G is a power of p .

Corollary 9.6 A finite group G is a p-group if and only if |G| is a power of p.

Exercise 136 Prove Corollary 9.6.

Exercise 137 Prove that the center, Z(G) , of any finite p-group G is nontriv-
ial, i.e., Z(G) 6= {e} . (Hint: consider the adjoint action of G.

Exercise 138 Let H be a proper subgroup of a finite p-group G. Prove that
there exists an intermediate subgroup H ( H′ ⊆ G such that H / H′ . (Hint:
consider the adjoint action of G.

Exercise 138 leads to a number of facts about the structure of a finite
p-group.
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9.3.4 Maximal subgroups

A proper subgroup M ⊂ G is said to be maximal if any M is not contained
in any proper subgroup of G .

Exercise 139 Let H be a subgroup of prime index in a group G. Show that H
is maximal.

Exercise 140 Let H be a subgroup of index 2 in a group G. Show that H is
normal.

9.3.5 An example

Consider the group of permutations of a 3-element set, Σ3 . All of its
proper subgroups are cyclic:

〈(1 2 3)〉, 〈(1 2)〉, 〈(2 3)〉, 〈(3 1)〉,

and of indices 3 and 2, respectively, hence maximal. All three subgroups
of index 3 are conjugate to each other, therefore they are not normal.

Group Σ3 has order 6=2 ·3 and thus is the smallest non- p-group. For,
in a p-group all maximal subgroups are normal.

Corollary 9.7 Any maximal subgroup M of a finite p-group is normal. �

This is an immediate corollary of Exercise 138.

Lemma 9.8 Let H be a subgroup of index greater than p in a p-group G. Then
there exists an intermediate subgroup

H ( H′ ( G. (229)

Proof. Let H′ be a subgroup of G such that H / H′ . If H is not normal
in G , then H′ is the desired group.

If H is normal, then, in view of Cauchy’s Theorem, there exists a cyclic
subgrup C of order p in G/H . Let H′ be a preimage of C in G under
the canonical quotient map π : G−→G/H , cf. 8.3.4. Its order is |H| |C| , cf.
Exercise 115, and

|H′| = |H| |C| = |H| · p < |H| |G/H|
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since |G/H| = |G : H| > p by hypothesis. �
As an immediate corollary, we obtain that any flag of subgroups in

a group of order p can be extended to a maximal flag of subgroups of
orders dividing the order of G :

1 < p < p2 < · · · .

Corollary 9.9 Any flag of subgroups

Hpi1 ⊂ · · · ⊂ Hpir (230)

in a p-group G of order pn , where Hpik has order pik , is contained in some
maximal flag

1 ⊂ · · · ⊂ Hpi ⊂ · · · ⊂ G (231)

where Hpi has order pi , i = 0, 1, . . . , n. �

9.4 p-subgroups of finite groups
9.4.1

Exercise 141 a Let P be a p-subgroup of a group G. Show that p divides either
the index of P in its normalizer,

|NG(P) : P|,

or the number of subgroups in G which are conjugate to P is congruent to 1
modulo p,

|{gP | g ∈ G}| = 1 mod p. (232)

Hint: prove that
|G : P| = |NG(P) : P| mod p. (233)

9.4.2

Definition 9.10 A maximal p-subgroup P of a finite group G is called a Sylow
p-subgroup.
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9.4.3

Let P be a Sylow p-subgroup and let |P| = pl . If |NG(P) : P| were divisi-
ble by p , then the quotient group NG(P)/P would contain an element a
of order p . This follows from Cauchy’s Theorem, cf. 9.5.

In that case, NG(P) would contain a subgroup, P′ , containing P and
of order pl+1 . Indeed, the preimage π−1(〈a〉) under the canonical epimor-
phism

π : NG(P) � NG(P)/P

would be such a group. That would contradict the maximality of P .
Thus, |N(P) : P| is not divisible by p . By combining this with Exercise

141, we deduce that the number of conjugates of any Sylow p-subgroup
equals 1 modulo p , cf. (232).

9.4.4

By combining the result of Section 9.4.3 with (233), we deduce that the
index, |G : P| , is not divisible by p . In other words, the order of a maximal
p-subgroup in G coicides with the maximum power pe of p which divides
|G| .

If we represent |G| as the product of pe and an integer m not divisible
by p , then we obtain that the number of conjugates of a Sylow p-subgroup,

|G : NG(P)|

divides
m = |G : P|.

.

9.4.5

Let Q be any p-subgroup. It acts on G/P by left multiplication. By
combining the result of Section 9.4.3 with conguence (233) and Proposition
9.4, we deduce that

| FixQ(G/P)| = 1 mod p. (234)

Thus, there exists g ∈ G such that

Q ⊆ stabG(gP) = gP,
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cf. (215).

We arrive at the following fundamental result.

Theorem 9.11 Let G be a group of order pem where p - m. Then:
(i) Any p-group Q is contained in some Sylow p-subgroup P and all Sylow

p-subgroups have order pe .
(ii) Any two Sylow p-subgroups are conjugate.
(iii) The number of Sylow p-subgroups, sp(G) , satisfies the following two

constraints:
sp(G) | m, (235)

and
sp(G) = 1 mod p. (236)

9.4.6

Assertions (i), (ii), and (iii), are usually called the First, the Second, and the
Third Sylow Theorems.

Exercise 142 Show that NG(NG(P)) = NG(P) for any Sylow p-subgroup
P ⊆ G.

9.4.7 Frattini’s Argument (in its original form)

Exercise 143 Let Q be a Sylow p-subgroup of a normal subgroup H /G. Show
that

G = HNG(Q). (237)

Exercise 144 Let P be a Sylow p-subgroup of G and H / G be a normal sub-
group. Show that P ∩ H is a Sylow subgroup of H.

9.5 Nilpotent groups

9.6
In Section 8.4 we introduced the class of sovable groups, S , which is
the smallest class closed under extensions which contains abelian groups.
Now we shall discuss an important subclass N ⊂ S of nilpotent groups.
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9.6.1

Denote the class of abelian groups by N0 . Groups that are central exten-
sions of abelian groups will form the class N1 . Groups that are central
extensions of a group of class N1 will form the class N2 , and so on:
groups that are central extensions of a group of class Nl will form the
class denoted Nl+1 .

Definition 9.12 A group is said to be nilpotent (of level l ) if it belongs to class
Nl .

Exercise 145 Show that, for any group G, the following two conditions are
equivalent:

(a) G is nilpotent of level 1;
(b) [G, G] ⊆ Z(G) .

9.6.2 Upper central series

For any group G , define inductively the sequence of subgroups

Z0(G)˜ 1, and Zl+1(G)˜ {g ∈ G | [g, G] ⊆ Zl(G)}. (238)

9.6.3

It follows directly from the definition that Zl+1(G)/Zl(G) is contained
in the center of G/Zl(G) and thus G/Zl(G) is a central extension of
G/Zl+1(G) by Zl+1(G)/Zl(G) .

Accordingly, if Zl+1(G) = G , then G/Zl(G) is abelian, i.e., nilpotent
of level 0, G/Zl−1(G) is nilpotent of level 1, and so on. In particular,
G = G/Z0(G) is nilpotent of level l .

Exercise 146 Prove that, for any group G and l ∈ N , one has

Zl(G/Z(G)) = Zl+1/Z(G). (239)

9.6.4 Lower central series

For any group G , define inductively the sequence of subgroups

L0(G)˜ G, and Ll+1(G)˜ [Ll(G), G]. (240)
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9.6.5

It follows directly from the respective definitions that, for any group G ,
the following three conditions are equivalent:

(a) Zl+1(G) = G ;
(b) Ll+1(G) = 1;
(c) [. . . [, [g0, g1], g2], . . . , gl] = 1 for any g0, g1, . . . , gl ∈ G .
By combining this with 9.6.3 and with Exercise 146, we see that any of

the above conditions characterizes groups nilpotent of level l .

9.6.6

Exercise 147 Prove that for any proper subgroup H ⊂ G, one has

NG(H) 6= H. (241)

.

9.6.7

Exercise 148 Prove that every Sylow subgroup of a finite nilpotent group G is
normal in G.

9.6.8

Exercise 149 Deduce from Exercise 9.6.7 that a finite group is nilpotent if and
only if G is isomorphic to a product of p-groups.

9.6.9 The Frattini subgroup

For any finite group G we define Frat G as the intersection of all of its
maximal (proper) subgroups.

Exercise 150 Let G = 〈g〉 be a cyclic group of order

n = pe1
1 · · · p

er
r

Prove that 〈gm〉 is a maximal subgroup of G if and only if m is prime. Use this
to prove that Frat G = 〈gp1···pr〉 . In particular,

| Frat G| = n
p1···pr

= pe1−1
1 · · · per−1

r .

It follows that Frat Cn = 1 if and only if n is square-free.
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Exercise 151 Prove that Frat G / G.

Exercise 152 Prove that, for any subgroup H ⊆ G, if

(Frat G)H = G,

then
H = G.

9.6.10

In particular, a subset X ∪ Frat G generates group G if and only if X alone
generates G .

Exercise 153 Prove that the Frattini subgroup of any finite group is nilpotent.
(Hint. Prove that every Sylow subgroup of Frat G is normal in G.)

10 Group structure

10.1 Semidirect products
10.1.1

Given an action of a group G on a group N , which is understood to be
via automorphisms of N :

ϕ : G−→Aut N, (242)

one can construct the so called semidirect product of G and N , denoted
NoϕG , which is set N×G equipped with the multiplication

(m, a)(n, b)˜ (mϕa(n), ab). (243)

10.1.2

Note that
(e,a)(n, e) = (ϕa(n), e).

Thus, the action of G on N is realized in the semidirect product, NoϕG ,
as conjugation of elements of M×1 by elements of 1×G .
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Exercise 154 Prove that (243) is associative; find (n, a)−1 .

Exercise 155 Prove that if in a group G there is a normal subgroup N and a
subgroup H such that

G = NH and N ∩ H = 1, (244)

then G is isomorphic to the semidirect product NoϕH for some ϕ . Find ϕ .

In this case we speak of so called (internal) semidirect product.

10.1.3 Semidirect products and split extensions

Semidirect product, NoϕH , determines a natural extension of H by N ,
cf. 8.3.8:

H NoH Nu u
p2 u x

i1 (245)

This extension is equipped with a canoical splitting:

i2 : H−→NoϕH, h 7−→ (e, h). (246)

Exercise 156 Prove that any split extension of H by N is isomorphic to the
semidirect product extension, (245), for some ϕ : H−→Aut N .

10.1.4 Isomorphisms of semidirect products

Let
f : NoϕH−→N′oϕ′H′ (247)

be a homomorphism of semidirect products such that

f (H) ⊆ H′

and
f identifies N with N′ .

Denote the restriction of f to H by χ and consider it to be a homomor-
phism

χ : H−→H′ (248)

and, similarly, denote the restriction of f to N by ν and consider it to be
an isomorphism

ν : N ∼−→ N′. (249)
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Exercise 157 Show that the following diagram is commutative

H Aut N

H′ Aut N′

w
ϕ

u

χ

u

adν

w
ϕ′

(250)

where adν is the isomorphism induced by ν :

adν : α 7−→ να = ν ◦ α ◦ ν−1 (α ∈ Aut N). (251)

Vice-versa, show that a pair consisting of a homomorphism, (248), and an
isomorphism, (249), defines a homomorphism (247) by setting

f (n, h)˜ (ν(n), χ(h)) (n ∈ N; h ∈ H) (252)

if diagram (250) is commutative.

10.1.5

Above we described a certain class of homomorphisms between semidirect
products. In particular, we described all isomorphisms between NoϕH
and N′oϕ′H′ such that f (N) = N′ and f (H) = H′ .

Exercise 158 Suppose that any two cyclic subgroups of prime order p in Aut N
are conjugate. Show that, for any nontrivial homomorphisms of a cyclic group,
Cp , of order p into Aut N ,

ϕ : Cp−→Aut N and ϕ : Cp−→Aut N,

the corresponding semidirect products are isomorphic:

NoϕH ' Noϕ′H.

10.1.6

An immediate corollary of Exercise 158 is that if a finite group G equals
NCp where N is normal in G and any two cyclic subgroups of Aut N of
order p are conjugate, then G is either isomorphic to the product N×Cp
(case when ϕ is trivial), or is a nontrivial semidirect product NoCp , and
all such semidirect products are isomorphic to each other.
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10.2 The group of automorphisms of a group
10.2.1

In order to be able to take advantage of Sylow’s Theorems in classification
of finite groups of small order one needs to understand better the structure
of the automorphism group Aut of some frequently encountered groups.

10.2.2 The case of an abelian group

The set of all endomorphisms, End A , of an abelian group (A,+) forms a
group under addition. The composition of endomorphisms is distributive
with respect to addition, and thus End A is a ring with identity. Its group
of invertible elements coincides with the group of automorphisms of A :

(End A)∗ = Aut A. (253)

10.2.3 The case of a cyclic group

In particular, for a cyclic group Cn of order

n = pm1
1 · · · p

mr
r ,

one has a canonical isomorphism

End Cn ' Z/nZ, (254)

hence the canonical isomorphism

Aut Cn ' (Z/nZ)∗ (255)

To an element l ∈ (Z/nZ)∗ corresponds an automorphism of Cn which
sends any element x ∈ Cn to xl (we are using multiplicative

Since,
Z/nZ ' Z/pm1

1 Z× · · · ×Z/pmr
r Z,

one has the isomorphism

(Z/nZ)∗ ' (Z/pm1
1 Z)∗× · · · (Z/pmr

r Z)∗,

i.e., the group of automorphisms of Cn is the product

Aut Cn ' Aut Cpm1
1 × · · · ×Aut Cpmr

r .
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Theorem 10.1 The group of automorphisms of the cyclic group of order pm is
cyclic,

C(p−1)pm−1 ' Cp−1×Cpm−1 , (256)

if p is odd, and isomorphic to

{±1}×C2m−2 (257)

when p = 2 and m ≥ 2 .

10.2.4

In the following exercises you are asked to determine Aut P for a few
simplest 2-groups P . First, find the order of Aut P , and then construct
automorphisms of P which generate a subgroup in Aut P of the desired
order.

Exercise 159 Show that Aut(C2×C4) is the dihedral group, D8 , of order 8 .
(Hint: Find two elements of order 4 in A = C2×C4 such that

X = {a, b, a−1, b−1}

is the set of all elements of order 4 in A. Show that the restriction to X of a
nontrivial automorphism of A is a nontrivial permutation of X. This defines an
embedding of Aut A into ΣX . Show that any symmetry of the square

b a

a−1 b−1

extends to an automorphism of A. Finally, find a permutation of X which does
not extend to an automorphism. Deduce from this that Aut A ' D8 .

Exercise 160 Determine the structure of Aut D8 . (Hint. Group D8 has 5
elements of order 2: one element is central and the remaining four belong two
conjugacy classes. ‘Organize’ those four elements into a square and show that
the restriction of any automorphism of D8 to the non-central elements of order 2
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defines an isomorphism of Aut D8 with the group of symmetries of that ‘square’.
The latter is isomorphic to D8 but the canonical map

ad : D8−→Aut D8 (258)

is not an isomorphism. What is its kernel and its image?)

Exercise 161 Find the order, |Aut Q| , of the group of automorphisms of the
quaternion group Q. (Hint. Determine the subgroup of Aut Q which consists
of automorphisms that fix i , and then, for any element q of the set of elements of
order 4 in Q,

{±i,±j,±k},
construct an automorphism of Q which sends i to q.)

Exercise 162 Prove that any group G of order 56 is either a (not necessarily
nontrivial) semidirect product

C7oP2

of a cyclic group of order 7 and a 2-subgroup P2 of order 8, or is a nontrivial
semidirect product

C3
2oC7

of an elementary abelian 2-group of rank 3 and a cyclic group of order 7.

11 The permutation and the alternating groups

11.1 Cyclic decomposition of a permutation
11.1.1 Support of a permutation

Let σ ∈ Bij X be a permutation of a set X . Its support is the set

supp σ˜ {x ∈ X | σ(x) 6= x}. (259)

Exercise 163 Show that:

supp(ρ ◦ σ) ⊆ supp ρ ∪ supp σ (260)

and
supp(σ−1) = supp σ. (261)

Deduce from this that the set of permutations with finite support

ΣX˜ {σ ∈ Bij X | supp σ is finite} (262)

is a normal subgroup of Bij X.
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11.1.2

It is clear that supp σ is the complement in X of the set of fixed points of
the action of the cyclic group 〈σ〉 on X ,

supp σ = X \ Fix〈σ〉(X).

In particular, the support is a 〈σ〉-invariant subset of X .

11.1.3 Cycles

A permutation λ of a set X is called a cycle of length l if supp λ is finite
and consists of a single orbit group 〈λ〉 ,

supp λ = {xj | j ∈ Z/lZ} and λ(xj) = xj+1, (j ∈ Z/lZ). (263)

(Note that since we index elements of O by elements of ring Z/lZ rather
than by integers, l + 1 = 1.)

11.1.4 Cycle notation

When dealing with cycles it is customary to employ a special notation

λ = (x1 . . . xl) (264)

(note the absence of commas).

11.1.5

Cycles of length l will be also called l -cycles. Their order equals l . Cycles
of order 2 are called transpositions.

Exercise 164 Suppose that set X has at least 4 distinct elements u, v, w, and
x. Show that (u v)(w x) and (u v)(v w) can be expressed as products of
3-cycles.

Exercise 165 Suppose that set X has at least l distinct elements x1, . . . , xl
where l > 3 . Show that the 3-cycle, (x1 x2 x3) can be expressed as the product
of 2 l -cycles.

Exercise 166 Suppose that set X has at least l distinct elements x1, . . . , xl .
Show that the l -cycle, (x1 . . . xl) can be expressed as the product of l − 1
transpositions.
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11.1.6

We say that two permutations ρ and σ are disjoint if

supp ρ ∩ supp σ = ∅.

Exercise 167 Show that disjoint permutations commute

ρσ = σρ.

Exercise 168 Let λ be a cycle of length l = mn. Show that λm is the product
of m (mutually) disjoint cycles of length n,

σm = λ1 ◦ · · · ◦ λm.

Proposition 11.1 Any permutation with finite support, σ ∈ ΣX , is the product,

σ = λ1 ◦ · · · ◦ λr, (265)

of disjoint cycles.

Proof. Let
supp σ = O1 ∪ · · · ∪Or (266)

be the decomposition of the support of σ into the disjoint union of orbits
of the 〈σ〉-action on X . For each orbit, Oi , let

Oi = {xi1, . . . , xili}

where
σ(xij) = xi,j+1 (j ∈ Z/liZ).

Let
λi˜ (xi1 . . . xili)

be the cycle of length li = |Oi| which cyclically permutes the elements of
Oi . Since the orbits Oi in (266) are disjoint, the corresponding cycles are
mutually disjoint, and (265) holds. �
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11.1.7

The decomposition of σ into a product of disjoint cycles is unique up to a
rearrangement of terms in (265).

Indeed, for any such decomposition, (265), the support of each λi is
an orbit, call it Oi , of 〈σ〉 on X , and the action of σ on Oi determines λi .
Thus, knowledge of decomposition of X into orbits of 〈σ〉-action, and the
action of σ on each orbit, determine the decompostion of σ into a product
of disjoint cycles uniquely up to the order in which one composes the
cycles.

Exercise 169 Let λ be any cycle of length l . Show that λm is a cycle, necessar-
ily of lengthl , if m relatively prime to l .

11.1.8

The list
(l1, . . . , lr) (267)

is called the cyclic type of permutation σ . The order in (267) is unimportant.
There are other ways to denote the cyclic type of a permutation, e.g., 23327,
23327, 2 + 2 + 2 + 3 + 3 + 7, all can denote cyclic type

(2, 2, 2, 3, 3, 7).

Exercise 170 Show that the order of a permutation σ of (cyclic) type (267) is
the least common multiple of numbers l1, . . . , lr ,

|σ| = lcm(l1, . . . , lr).

11.1.9

Exercise 171 Show that two permutations ρ and σ are conjugate to each other
if and only if they have the same cyclic type.

Exercise 172 Show that for any σ ∈ ΣX , its inverse, σ−1 , is conjugate to σ in
ΣX .
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11.1.10 Parity of a permutation

For a permutation σ of type (267), its parity is defined as

σ̃˜ (l1 − 1) + · · ·+ (lr − 1) mod 2. (268)

It is an element of Z/2Z . Permutations of parity 0 are called even, and
those of parity 1 – are called odd. Parity is sometimes written multiplica-
tively as +1, for even, and −1, for odd permutations.

11.1.11

It follows from Exercise 166 that an even permutation can be expressed as
a product of even number of transpositions, and an odd permutation can
be expressed as a product of even number of transpositions.

Exercise 173 Let τ = (x y) be a transposition, and σ be any permutation with
finite support. Show that σ ◦ τ has parity σ̃ + 1 . In other words, composition
with a transposition reverses the parity. (Hint. Consider separately four cases:

σ = λ1 ◦ λ2 ◦ · · · ◦ λr, x ∈ supp λ1 and y ∈ supp λ2, (269)

σ = λ1 ◦ · · · ◦ λr, {x, y} ⊆ supp λ1, (270)

supp σ ∩ {x, y} = {x}, (271)

and
supp σ ∩ {x, y} = ∅.) (272)

11.1.12

It follows from Exercise 173 and remark 11.1.11 that the product of m
transpositions has parity m modulo 2.

Exercise 174 Prove the above statement by induction on m.
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11.1.13 The alternating group AX

Denote by AX the set of all permutations

AX˜ {σ ∈ ΣX | σ̃ = 0} (273)

Exercise 175 Show that AX coincides with the set of permutations that can be
expressed as a product of an even number of transpositions, and that all permu-
tations that can be expressed as a product of an odd number of transpositions
form a single coset of AX in ΣX . In particular, AX is a subgroup of index 2 in
ΣX .

Exercise 176 Show that AX is generated by 3-cycles.

Exercise 177 Show that
[ΣX, ΣX] = AX. (274)

11.2 Combinatorics of permutations
11.2.1

For any element a of a group G , we shall denote by 〈〈a〉〉G , or by 〈〈a〉〉 —
if G is clear from the context, the smallest normal subgroup of G which
contains a .

Exercise 178 Show that 〈〈a〉〉 coincides with the subgroup generated by the con-
jugacy class of a

〈〈a〉〉 =
〈Ga
〉
. (275)

11.2.2

It follows from Proposition 11.1 combined with Exercise 166 that

〈〈τ〉〉 = ΣX (276)

for any transposition τ .

Exercise 179 Show that
〈〈λ〉〉 = AX (277)

where λ is any 3-cycle. (Hint. Use Exercise 164.)
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11.2.3

Suppose that σ ∈ ΣX is a product of disjoint cycles (265), and λ1 has an
odd length. The permutation,

σ′˜ λ1 ◦ λ−1
2 ◦ · · · ◦ λ−1

r

has the same cyclic type and thus is conjugate to σ . Note that

σ ◦ σ′ = λ2
1

and since the order of λ1 is odd, is a cycle of the same length. In view of
Exercise 169, the subgroup 〈〈σ〉〉 of ΣX contains 〈〈λ〉〉 where λ is a cycle
of an odd length.

By combining this with Exercise 165, we deduce that

〈〈λ〉〉 ⊆ 〈〈σ〉〉 (278)

for some 3-cycle λ and, in view of (277),

AX ⊆ 〈〈σ〉〉. (279)

.

11.2.4

Suppose that the order of σ ∈ ΣX equals 2em where m > 1 is odd. Then,
σ2e having order m , is a product of disjoint cycles of odd length. By
previous argument, 11.2.3,

AX ⊆ 〈〈σm〉〉 ⊆ 〈〈σ〉〉.

11.2.5

Suppose that the order of σ ∈ ΣX equals 2e where e > 0. Then, σ2e−1 has
order 2.

Exercise 180 Show that a permutation σ ∈ ΣX of order 2 is a product of disjoint
transpositions

σ = τ1 ◦ · · · ◦ τr. (280)
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11.2.6

If σ is a single transposition then 〈〈τ〉〉 = ΣX , cf. (276). If σ is a product of
at least 2 disjoint transpositions,

σ = τ1 ◦ τ2 ◦ · · · ◦ τr,

where τ1 = (u v) and τ2 = (w x) , then

σ′ = (u w)(v x) ◦ τ3 ◦ · · · ◦ τr,

has the same cyclic type as σ and is thus conjugate to σ , and σ ◦ σ′ is the
product of 2 disjoint cycles,

σ ◦ σ′ = (u x)(v w).

11.2.7

If X has at least 5 elements, u , v , w , x , and y , then the subgroup
〈〈(u x)(v w)〉〉 contains the 3-cycle

(u x)(v w) ◦ (x y)(v w) = (u x y)

and hence contains 〈〈(u x y)〉〉 = AX .

11.2.8

By combining everything together, we conclude that, for any non-identity
permutation σ ∈ ΣX , the smallest normal subgroup 〈〈σ〉〉 which contains
σ contains AX – provided X has at least 5 elements. When |X| = 4 this
is false: The subgroup

〈〈(u x)(v w)〉〉
in this case has order 4 and is normal in ΣX and is strictly contained in
AX .

11.2.9

When σ is even, then 〈〈σ〉〉 ⊆ AX , hence

〈〈σ〉〉 = AX (281)

in this case.
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11.2.10

When σ is odd, then σ /∈ AX , hence 〈〈σ〉〉 is strictly bigger than AX . Since
ΣX : AX| = 2, Langrange’s Theorem implies that

〈〈σ〉〉 = ΣX (282)

in this case.

Thus we proved the following theorem.

Theorem 11.2 For any set X of cardinality different from 4, the group of per-
mutations withh finite support, ΣX , has a unique nontrivial normal subgroup,
namely AX .

11.2.11

The above theorem implies that no nontrivial normal subgroup H of AX
can be normal in ΣX . Since NΣX(H) = AX and |ΣX : AX| = 2, any such
subgroup would have only 2 conjugacy classes in ΣX ,

H and ρH

where ρ is any odd permutation.
Below we shall demonstrate, however, that AX has no nontrivial

normal subgroups if X has at least 5 elements.

11.2.12

When h is an element of a subgroup H of G , then 〈〈h〉〉H usually differs
from 〈〈h〉〉G . For example,

〈〈(1 2)〉〉Σn = Σn (n ≥ 2).

The two subgroups coincide, however, when Hh = Gh . This happens
often for elements of H = AX viewed as a subgroup in G = ΣX .

Exercise 181 Show that, for σ ∈ AX ,
AXσ = ΣXσ (283)

if and only if there exists ρ ∈ ΣX \ AX such that

ρσ = σρ.
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Exercise 182 Show that (283) holds, for σ ∈ AX , if

supp σ 6= X.

In particular,
〈〈σ〉〉AX = 〈〈σ〉〉ΣX = AX (284)

in this case.

Exercise 183 Show that (283) holds, for σ ∈ AX , if σ is a product of disjoint
cycles

σ = λ1 ◦ · · · ◦ λr

with at least one cycle having even length. In particular, (284) holds in this case
as well.

Exercise 184 Show that (283) holds, for σ ∈ AX , if σ is a product of disjoint
cycles

σ = λ1 ◦ λ2 ◦ · · · ◦ λr

with λ1 and λ2 being cycles of the same odd length l :

λ1 = (u1 . . . ul)

and
λ2 = (v1 . . . vl)

In particular, (284) holds in this case as well.

11.2.13

The above exercises demonstrate that the conjugacy classes in AX and
in ΣX coincide for many even permutations. In particular, the normal
subgroups they generate are all equal to AX . For some even permutations
however, AXσ is indeed different from ΣXσ , and we need another method
to show that 〈〈σ〉〉AX = AX also in this case.
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11.2.14

Suppose that h ∈ H ⊆ G , then

[a, h] = aha−1h−1 ∈ 〈〈h〉〉H

for any a H . In particular,

〈〈[a, h]〉〉H ⊆ 〈〈h〉〉H. (285)

Exercise 185 Calculate

[(1 2 3), (1 . . . l)] (l ≥ 2).

Use your calculation combined with remark 11.2.14 to show that (284) holds if
σ ∈ AX is a product of disjoint cycles

σ = λ1 ◦ λ2 ◦ · · · ◦ λr

with at least one cycle having length greater or equal 4.

11.2.15

The above sequence of remarks and exercises shows that

〈〈σ〉〉AX = 〈〈σ〉〉ΣX = AX

for any even permutation σ 6= idX in AX .

We have proved the following important theorem.

Theorem 11.3 The alternating group AX has no nontrivial normal subgroups
if set X has at least 5 elements.

11.2.16

Note that AX has non nontrivial normal subgroups also when X has
fewer than 4 elements, so Theorem 11.3 excludes only the case |X| = 4.
In that case AX contains unique nontrivial normal subgroup, namely its
Sylow 2-subgroup

〈〈σ〉〉AX

where σ is any element of order 2 in AX .
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11.3 Simple groups
11.3.1

Definition 11.4 A simple group is a group with no nontrivial normal sub-
groups.

11.3.2

An abelian simple group A has no nontrivial subgroups since every
subgroup in an abelian group is normal. Such a group is cyclic of prime
order. Indeed, if g ∈ A \ 1 = {a ∈ A | a 6= 1} does not generate A , then
1 6= 〈g〉 6= A is a nontrivial subgroup.

11.3.3

The center of a non-abelian simple group G is trivial

Z(G) = 1

and the commutator subgroup is the whole G

[G, G] = G. (286)

Definition 11.5 Groups satisfying (286) are called perfect.

11.3.4

Since the kernel of any homomorphism f : G−→G′ is normal, a nontrivial
homomorphism from a simple group into any group is always injective.

11.3.5

Since Z(P) 6= 1 and [P, P 6= P for any nonabelian p-group P , a p-group
is simple if and only if it is cyclic of order p .

Exercise 186 Show that any group of order 42 has a normal subgroup of order
7 .

Exercise 187 Show that any group of order 30 has a normal subgroup of order
3 or 5 .
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Theorem 11.6 If a simple group G acts nontrivially on a set X of cardinality
l , then |G| ≤ l! .

Proof. If G acts nontrivially on X , then there exists at least one element
x ∈ X which is not fixed by G . In this case, the G -action of G on the
orbit, O = Gx , of x defines a nontrivial homomorphism

G−→ΣO .

By remark 11.3.4 this embeds G into the permutation group, ΣO . Thus,
|G| ≤ |ΣO | = l! . �

Corollary 11.7 A simple group G of order less than l! has no subgroup of index
less or equal l .

Proof. For any subgroup H of G the latter acts transitively on the set
of left cosets G/H , cf. Exercise 126. If H 6= G , then G acts nontrivially on
X = G/H and the latter has cardinality l = |G : H| . �

11.3.6 Example: no group of order 24 is simple.

Sylow subgroups of a group G of order 24 have orders 8 and 3. The index
in G of any Sylow 2-group is 3 and 3! = 6 < 24 = |G| . By Corollary 11.7,
G cannot be simple.

Exercise 188 Show that no group of order 36 is simple.

Theorem 11.8 A simple group of order 60 has 5 Sylow 2-subgroups, and is
canonically isomorphic to ASyl2 G . In particular, there is only one simple group
of order 60 up to an isomorphism.

Proof. By the Third Sylow Theorem, the number s5(G) = | Syl5 G|
divides 60/5 = 12 and is congruent to 1 modulo 5. This leaves only two
possibilities:

s5(G) = 6 or 1.

In the case s5(G) = 1, group G would have a normal subgroup of order
5, contradicting the simplicity hypothesis. Thus, s5(G) = 6, and there are
exactly 6 · (5− 1) = 24 elements of order 5.
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By the aforementioned Third Sylow Theorem, the number of Sylow
3-subgroups, s3(G) , divides 60/3 = 20 and is congruent to 1 modulo 3.
This leaves only two possibilities:

s3(G) = 10 or 1.

Again, s3(G) = 1 would contradict the simplicity hypothesis. Thus,
s3(G) = 10, and there are exactly 10 · (3− 1) = 20 elements of order 5.

All the elements of all the Sylow 2-subgroups are contained in the set

{g ∈ G | g3 6= 1 and g5 6= 1}

which has 60− (24 + 20 + 1) = 15 elements.
The number off Sylow 2-subgroups, s2(G) , divides 60/4 = 15. If

s2(G) = 3, then G would act nontrivially on a set of cardinality 3, and
3! = 6 < 60 = |G| . In view of Theorem 11.6 that is impossible.

If s2(G) = 15, then at least two Sylow 2-subgroups, P and Q , must
have a nontrivial element:

a ∈ P ∩Q.

Consider the centralizer, CG(a) . Its order is divisible by |P| = 4 and
greater or equal |P ∪Q| = 6. At the same time, is a divisor of |G| = 60.
This leaves three possibilities:

12 = 3 · 4, 20 = 5 · 4, or 60 = 15 · 4.

In the last case a would belong to the center of G and the center is
trivial since G is obviously nonabelian.

In the second case, the index of CG(a) in G would be 3 and we know
that G has no subgroups of order l such that l! < |G| .

The only possibility left is thus |CG(a)| = 5.
The action of G on the set of left cosets, X = G/CG(a) , then identifies

G with a subgroup of index 2 in ΣX , and there is only one such subgroup:
AX .

We proved that G is isomorphic to A5 . But this contradicts our
assumption that s2(G) = 15 since s2(A5) = 5!.

This proves that s2(G) = 5 after all, and the transitive action of G on
Syl5(G) defines a canonical embedding of G onto ASyl5(G) . �
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11.3.7

It follows from Exercises 162, 186, 187, and 188, in combination with
Section 11.3.6, that no nonabelian group of order less than 60 is simple.
Thus, the alternating group on a 5-element set is the smallest nonabelian
simple group.

11.3.8

The next nonabelian simple group has order 168. It is isomorphic to the
group

Aut C2
3 = GL3(F2)

which is the group of collineations of the Fano plane: the smallest projec-
tive plane which has 7 points and 7 lines.

11.4 Linear groups
11.4.1 General linear group

Let F be a field. The group of automorphisms of the n-dimensional vector
space Fn is identified with the group, GLn(F) , of invertible n×n-matrices
with entries in F : just associate to an automorphism its matrix in the
standard basis of Fn . Group GLn(F) is called the general linear group of F
(of rank n).

11.4.2 General projective group

The center, Z(GLn(F)) , consists of diagonal matrices λ
. . .

λ

 (λ ∈ F∗) (287)

where F∗ denotes the multiplicative group of F . Note that F∗ = GL1(F) .
The quotient by the center, GLn(F)/Z(GLn(F)) , is called the general

projective group. It is a subgroup of the group of all collineations of a
projective n− 1-dimensional space which is coordinatized by field F .
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11.4.3 Special linear group

The general linear group is equipped with the canonical homomorphism

det : GLn(F)−→F∗ (288)

which is called the determinant. Its definition and properties are the subject
of an introductory Linear Algebra course.

The kernel of (288) is denoted SLn(F) and called the special linear group.

11.4.4 Special projective groups

The center of SLn(F) consists of diagonal matrices (287) with λ being the
roots of 1 of degree n . This group is always finite. In fact, it has no more
than n elements since all such roots are zeros of the polynomial

Xn − 1

and any polynomial of degree n has at most n distinct roots.
The quotient by the center, SLn(F)/Z(SLn(F)) , is called the special

projective group.

11.4.5

Note that over a 2-element field F2 , one has

GLn(F2) = GLn(F2) = SLn(F2) = textupPSLn(F2).

Theorem 11.9 With the exception of textupPSL2(F2) and textupPSL2(F3) ,
which have orders 6 and 12, respectively, the special linear group of rank n > 1
of any field F, is simple. �

12 Classification of groups of small order

12.1 Groups of order 12

12.1.1

Sylow subgroups of a group G of order 12 = 22 · 3 have orders 4 and
3. Sylow 2-subgroups are either cyclic, C4 , or elementary abelian, C2

2 =
C2×C2 .
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12.1.2 Case I: G has a normal subgroup of order 3

In this case, G is a semidirect product of C3 and its Sylow 2-subgroup P2 .
If P2 / G , then G is abelian and either is cyclic,

G ' C3×C4 ' C12,

or is isomorphic to the product of two cyclic groups,

G ' C3×C2×C2 ' C6×C2.

Otherwise, the adjoint action of P2 on P3 = C3 defines a nontrivial
homomorphism

P2−→Aut C3 = {±1}. (289)

12.1.3 Subcase: P2 is elementary abelian

There is only one such homomorphism when P2 = C4 . In this case,

G ' C3oC4 = 〈a, b | a4 = b3 = aba−1b = 1〉 (290)

What you see on the righ-hand side of (290) is the often used in Group
Theory notation giving a so called presentation of the group in terms of
some set of generators (here, {a, b}), and defining relations (three in our
case, a4 = 1, b3 = 1, and aba−1 = b−1 ).

12.1.4 Subcase: P2 is elementary abelian

When P2 = C2
2 , there are three nontrivial homomorphisms (289): if

{u, v, w} denotes the set of elements of order 2 in C2
2 , then one element is

sent to 1 and the remaining two are sent to −1. In either case,

G ' (C3oC2)×C2 = Σ3×C2

where the factor C2 is the subgroup of C2
2 generated by the element of

{u, v, w} which acts trivially on C3 .
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12.1.5 Case II: P3 is not normal

In this case there are 4 cyclic subgroups of order 3, and 8 elements of order
3. This leaves room for only 3 elements g ∈ G such that g3 6= 1. Since
P \ 1, for any Sylow 2-subgroup has exactly 3 such elements, we conclude
that there is only one Sylow 2-subgroup in G . In other words, P2 / G , and
therefore

G = P2oC3.

The adjoint action of C3 on P2 defines a nontrivial homomorphism

C3−→Aut P2. (291)

Since Aut C4 = {±1} , there is no such homomorphism if P2 is cyclic.
On the other hand, there are two such homomorphisms if P2 is ele-

mentary abelian C2
2 , since Aut C2

2 = ΣX where X is the set of elements of
order 2 in C2

2 . The corresponding semidirect products

C2
2oC3

are isomorphic: this follows from Exercise 158. Thus, there is only one
group, up to isomorphism, of order 12 without a normal subgroup of
order 3.

Note that the action of G on the set, Syl3 G , of Sylow 3-subgroups
defines a homomorphism

G−→ΣSyl3 G. (292)

Let K denote its kernel and Ḡ ' G/K denote its image. Since Ḡ acts
transitively on Syl3 G , number 4 = | Syl3 G| divides |G| and the latter
divides 12 = |G| . This leaves only two possibilities for |Ḡ| : either 4 or
12. In the former case, K would be a normal subgroup of order 12/4 = 3,
and that would contrardict the fact that G has no such subgroup. Thus,
|Ḡ| = 12 and K = 1. In other words, homomorphism (292) identifies G
with a subgroup of ΣSyl3 G of index 2.

The permutation group, ΣX , of a finite set X has only one subgroup
of index 2, namely the alternating group AX . Thus we proved that

a group of order 12 with no normal subgroup of
order 3 is canonically isomorphic to ASyl3 G . (293)
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12.1.6

To sum up, there are exactly 5 groups of order 12 up to isomorphism, two
of them are abelian, the rest are nonabelian:

C3oC4, Σ3×C2 and A4. (294)

Exercise 189 Show that textupPSL2(F3) is isomorphic to the alternating group,
A4 . Provide two different proofs: one, group-theoretic, by finding a normal sub-
group in textupPSL2(F3) of order 4, or by finding at least two different sub-
groups of order 3, and then using Case II of the above classification of groups
of order 12; another one, using methods of elementary Linear Algebra, by prov-
ing that textupPSL2(F3) acts faithfully on the set of lines in the 2-dimensional
vector space F2

3 which pass through the origin.
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