Notes on Category Theory

Mariusz Wodzicki

May 5, 2015
1 Preliminaries

1.1 Initial, terminal and zero objects

1.1.1 Initial objects

An object *i* of a category *C* is said to be initial, if the set of morphisms from *i* to any object *c* consists of a single morphism. We are generally not assuming that all objects in a category are equipped with the identity object, so the single endomorphism

\[\iota: i \to i \]

is not necessary the identity id*i*.

Exercise 1 Show that (1) is a right identity.

1.1.2

Note that any morphism *ε* that is a onesided identity is automatically idempotent.

\[\epsilon \circ \epsilon = \epsilon \].

Exercise 2 Show that any two initial objects *i* and *i*′ whose endomorphisms are the identity morphisms, are isomorphic.

1.1.3

In particular, in a unital category any two initial objects are isomorphic.

1.1.4 Terminal objects

Terminal objects are defined dually: an object *t* is said to be terminal, if the set of morphisms from any object *c* to *t* consists of a single morphism. The single endomorphism of *t* is a left identity.

1.1.5

Any two terminal objects *t* and *t*′ whose endomorphisms are the identity morphisms, are isomorphic. In particular, in a unital category any two terminal objects are isomorphic.
1.1.6 Zero objects

An object \(z \) that is simultaneously an initial and a terminal object is called a zero object. The unique endomorphism of a zero object is \(\text{id}_z \). In view of this, any two zero objects are always isomorphic.

1.1.7 Null morphisms

A null morphism is a morphism that factorizes through a zero object.

Exercise 3 Let \(z \) and \(z' \) be zero objects and \(\alpha \) be a morphism that factorizes through \(z \). Show that it factorizes also through \(z' \).

Exercise 4 Show that, for any pair of objects \(c \) and \(c' \), there exists a unique null morphism \(c \rightarrow c' \).

1.1.8

This unique null morphism will be denoted \(c \xrightarrow{0} c' \).

1.2 Natural transformations

1.2.1 \(\text{id}_F \)

For any functor \(F: \mathcal{C} \rightarrow \mathcal{D} \), the identity transformation is defined as

\[
(\text{id}_F)_c := \text{id}_{Fc} \quad (c \in \text{Ob } \mathcal{C}).
\]

(2)

Note that \(\text{id}_F \) exists precisely when the “range” of \(F \) has identity morphisms. This is in contrast with the identity functor \(\text{id}_\mathcal{C} \) that is defined as the identity correspondence both on the class of objects and on the class of arrows of \(\mathcal{C} \).

Thus, the identity functor \(\text{id}_\mathcal{C} \) is defined for any category, irrespective of whether \(\mathcal{C} \) has or has not identity morphisms but, for example, the natural transformation \(\text{id}_{\text{id}_\mathcal{C}} \) is defined precisely when all objects in \(\mathcal{C} \) have identity morphisms.
1.2.2 The biaction of functors on natural transformations

Given a natural transformation

\[
\begin{array}{c}
\mathcal{D} \xleftarrow{F} \mathcal{C} \\
\phi \\
\mathcal{D} \xleftarrow{F'} \mathcal{C}
\end{array}
\]

and a pair of functors

\[
\begin{array}{c}
\mathcal{E} \xleftarrow{E} \mathcal{D} \\
\mathcal{C} \xleftarrow{G} \mathcal{B}
\end{array}
\]

let

\[
(E\phi)_c := E(\phi_c) \quad \text{and} \quad (\phi G)_b := \phi_{Gb}.
\]

(Note that \(G\) in \(\phi G\) is “applied” to objects in its source category while \(E\) in \(E\phi\) is “applied” to morphisms in its source category.)

Exercise 5 Show that

\[
E\phi := \left((E\phi)_c \right)_{c \in \text{Ob}\mathcal{C}}
\]

is a natural transformation from \(E \circ F\) to \(E \circ F'\) and

\[
\phi G := \left((\phi G)_b \right)_{b \in \text{Ob}\mathcal{B}}
\]

is a natural transformation from \(F \circ G\) to \(F' \circ G\).

Exercise 6 Show that

\[
id_{\mathcal{D}} \phi = \phi = \phi id_{\mathcal{C}}
\]

and

\[(E\phi) G = E(\phi G).
\]

Exercise 7 Given composable pairs of functors,

\[
\begin{array}{c}
\mathcal{F} \xrightarrow{D} \mathcal{E} \xrightarrow{E} \mathcal{D} \\
\mathcal{C} \xrightarrow{G} \mathcal{B} \xrightarrow{H} \mathcal{A}
\end{array}
\]

show that

\[
(D \circ E)\phi = D(E\phi) \quad \text{and} \quad \phi(G \circ H) = (\phi G)H,
\]

\(5\)
1.3

Identities (5) can be interpreted as meaning that the class of functors acts on the class of natural transformations both on the left and on the right while identity (4) means that the two actions commute. We shall refer to this as the canonical \textit{bi'action} of functors on natural transformations.

1.3.1 The “diamond” composition of natural transformations

Consider a pair of functors F and F' from \mathcal{C} to \mathcal{D} and a natural transformation $F \xrightarrow{\phi} F'$. Consider a second pair of functors G and G' from \mathcal{B} to \mathcal{C} and a natural transformation $G \xrightarrow{\psi} G'$.

\textbf{Exercise 8} Show that the following “diamond” diagram of natural transformations

\begin{equation}
\begin{array}{c}
F' \circ G' \\
\downarrow \phi G' \\
F' \circ G \\
\downarrow \phi G \\
F \circ G' \\
\downarrow F \psi \\
F \circ G \\
\downarrow F \psi
\end{array}
\end{equation}

commutes.

1.3.2

The above diagram can be expressed intrinsically in terms of the pair of natural transformations by utilizing the source and target correspondences from natural transformations to functors:

\begin{equation}
\begin{array}{c}
t\phi \circ s\psi \\
\downarrow t\phi \circ t\psi \\
t\phi \circ t\psi \\
\downarrow \phi t\psi \\
s\phi \circ t\psi \\
\downarrow s\phi \circ t\psi
\end{array}
\end{equation}
We define $\phi \diamond \psi$ to be the natural transformation from $F \circ G$ to $F' \circ G'$ obtained by composing the natural transformations in diagram (6)

$$\phi \diamond \psi := \phi G' \circ F \psi = F' \psi \circ \phi G$$ \hfill (8)

or, in notation intrinsic to natural transformations,

$$\phi \diamond \psi := \phi t \circ s \psi = t \phi \psi \circ s \phi \psi.$$ \hfill (9)

Exercise 9 Show that the operation \diamond is associative. (Hint. Draw the corresponding diagram consisting of 4 "diamonds" like (6) and explain why all 4 commute.)

1.3.4 The Interchange Identity

Exercise 10 Given composable pairs of natural transformations

$$\begin{align*}
\begin{array}{c}
\mathcal{D} \xleftarrow{F} \mathcal{C} \\
\downarrow \phi \\
\mathcal{D} \xleftarrow{F'} \mathcal{C}
\end{array}
&
\begin{array}{c}
\mathcal{C} \xleftarrow{G} \mathcal{B} \\
\downarrow \psi \\
\mathcal{C} \xleftarrow{G'} \mathcal{B}
\end{array}
\quad
\begin{array}{c}
\mathcal{D} \xleftarrow{F''} \mathcal{C} \\
\downarrow \phi' \\
\mathcal{D} \xleftarrow{F'} \mathcal{C}
\end{array}
\quad
\begin{array}{c}
\mathcal{C} \xleftarrow{G''} \mathcal{B} \\
\downarrow \psi' \\
\mathcal{C} \xleftarrow{G'} \mathcal{B}
\end{array}
\end{align*}$$

show that

$$(\phi' \circ \psi') \circ (\phi \circ \psi) = (\phi' \circ \phi) \circ (\psi' \circ \psi).$$ \hfill (10)

Identity (10) is known as the *Interchange Identity*.

1.3.5 Notation and terminology

There is no standard notation for this “diamond” composition of natural transformations. It is often referred to as the *horizontal* composition reflecting the habit of drawing natural transformations as vertical arrows (in that case, the original composition of natural transformations occurs in vertical direction).
Exercise 11 Show that
\[\phi G = \phi \circ \text{id}_G \]
when \(\mathcal{C} \) (i.e., the target category of \(G \)) has identity morphisms, and
\[E\phi = \text{id}_E \circ \phi \]
when \(\mathcal{E} \) (i.e., the target category of \(E \)) has identity morphisms.

Under the same hypotheses show that
\[\text{id}_{id_D} \circ \phi = \phi = \phi \circ \text{id}_{id_C} \quad \text{(11)} \]

1.4 The tautological natural transformation

1.4.1 The category of arrows

For any category \(\mathcal{C} \), its category of arrows \(\text{Arr} \mathcal{C} \) has the class of arrows as its objects and commutative squares \(\varphi \):

\[
\begin{array}{c}
\bullet \\
\varphi_t \\
\bullet
\end{array}
\xleftarrow{\alpha}
\begin{array}{c}
\bullet \\
\varphi_s \\
\bullet
\end{array}
\xrightarrow{\alpha'}
\begin{array}{c}
\bullet \\
\end{array}
\]

as morphisms from \(\alpha \) to \(\alpha' \).

1.4.2 The source and the target functors

Exercise 12 Show that the correspondences
\[S(\alpha) := s(\alpha) \quad (\alpha \in \text{Ob} \text{ Arr } \mathcal{C}) \]
and
\[S(\varphi) = \varphi_s \quad (\varphi \in \text{Hom}_{\text{Arr } \mathcal{C}}(\alpha, \alpha')) \]
define a functor from \(\text{Arr } \mathcal{C} \) to \(\mathcal{C} \).

We shall refer to it as the source functor.

Exercise 13 Define, by analogy, the “target” functor \(T : \text{Arr } \mathcal{C} \rightarrow \mathcal{C} \).
1.4.3 The tautological natural transformation

The class of objects of $\text{Arr} \mathcal{C}$ is identical to the class of morphisms of \mathcal{C}. Let

$$\tau(\alpha) := \alpha \quad (\alpha \in \text{Ob} \text{ Arr} \mathcal{C})$$

be the identity correspondence between $\text{Ob Arr} \mathcal{C}$ and $\text{Mor} \mathcal{C}$.

Exercise 14 Show that τ is a natural transformation

$$\begin{array}{ccc}
\text{Arr} \mathcal{C} & \xleftarrow{S} & \mathcal{C} \\
\downarrow\tau & & \\
\text{Arr} \mathcal{C} & \xleftarrow{T} & \mathcal{C}
\end{array}$$

from the source to the target functors.

1.4.4 The universal property of the tautological transformation

Let

$$\begin{array}{ccc}
\mathcal{D} & \xleftarrow{F} & \mathcal{C} \\
\downarrow\phi & & \\
\mathcal{D} & \xleftarrow{F'} & \mathcal{C}
\end{array}$$

be a natural transformation between a pair of functors. By definition it is a correspondence between the class of objects of \mathcal{C} and the class of morphisms of \mathcal{D}. We shall extend it by assigning to each morphism $c \xrightarrow{\alpha} c'$ in \mathcal{C}, the commutative square

$$\begin{array}{ccc}
F'c & \xleftarrow{\phi_c} & Fc \\
F\alpha & & F\alpha \\
F'c' & \xleftarrow{\phi_{c'}} & Fc'
\end{array}$$

Exercise 15 Show that the correspondences assigning ϕ_c to any object c of \mathcal{C} and the commutative square (15) to every morphism α of \mathcal{C}, define a functor Φ from \mathcal{C} to $\text{Arr} \mathcal{D}$ such that

$$S \circ \Phi = F \quad \text{and} \quad T \circ \Phi = F'.$$
Exercise 16 Show that
\[\phi = \tau \Phi. \quad (16) \]
Show that if \(\Psi : \mathcal{C} \rightarrow \text{Arr} \mathcal{D} \) is another functor such that \(\phi = \tau \Psi \), then \(\Phi = \Psi \).

1.5
Identity (16) means that every natural transformation (14) is pulled from the tautological transformation on \(\text{Arr} \mathcal{D} \) by a unique functor \(\mathcal{C} \rightarrow \text{Arr} \mathcal{D} \).

1.6 The Arr functor

1.6.1
Assignment \(\mathcal{C} \mapsto \text{Arr} \mathcal{C} \) is natural: for any functor \(F : \mathcal{C} \rightarrow \mathcal{D} \), there is an induced functor
\[\text{Arr} F : \text{Arr} \mathcal{C} \rightarrow \text{Arr} \mathcal{D}. \]
It sends \(\alpha \in \text{Mor} \mathcal{C} \) to \(F\alpha \) and the commutative square (12) to the commutative square
\[\begin{array}{ccc}
& & F\alpha \\
& F\varphi_t & \downarrow \\
\bullet & \downarrow F\varphi_s & \bullet \\
& F\alpha' & \downarrow \\
& & \bullet
\end{array} \]
This defines an endomorphism of the category of (small) categories
\[\text{Arr} : \text{Cat} \rightarrow \text{Cat}. \]

Exercise 17 Show that the correspondences
\[S : \mathcal{C} \mapsto S_\mathcal{C} \quad \text{and} \quad T : \mathcal{C} \mapsto T_\mathcal{C} \quad (17) \]
that assign to a category \(\mathcal{C} \) its source and target functors define natural transformations \(\text{Arr} \rightarrow \text{id}_{\text{Cat}} \).

1.7 Natural transformations from the \(\text{Hom}(c, \) \)-functor

1.7.1 Yoneda natural transformation
Given a unital functor \(F : \mathcal{C} \rightarrow \text{Set} \) from a unital category \(\mathcal{C} \) to the category of sets, and given an element \(u \in Fc \), let
\[\theta_\chi : \text{Hom}_\mathcal{C}(c, x) \rightarrow Fx, \quad \chi \mapsto (F\chi)(u), \quad (\chi \in \text{Hom}_\mathcal{C}(c, x)) \quad (18) \]
Exercise 18 Show that family $\theta = (\theta_x)_{x \in \text{Ob} \mathcal{C}}$ is a natural transformation from $\text{Hom}_{\mathcal{C}}(c, \)$ to F.

1.7.2

We shall refer to θ as the Yoneda transformation associated with $u \in Fc$.

1.7.3 Yoneda correspondence

Noting that $u = \theta_c(\text{id}_c)$, we infer that any natural transformation is a Yoneda transformation $\text{Hom}_{\mathcal{C}}(c, \) \to F$ for at most one element of Fc. In particular, the correspondence

$$Fc \to \text{Nat tr}(\text{Hom}_{\mathcal{C}}(c,), F), \quad u \mapsto \theta,$$ \hspace{1cm} (19)$$
is injective.

1.7.4

Given any natural transformation

$$\vartheta: \text{Hom}_{\mathcal{C}}(c, \) \to F$$ \hspace{1cm} (20)$$
and a morphism $c \xrightarrow{\chi} x$, let us consider the commutative diagram

$$\begin{array}{c}
\text{Hom}_{\mathcal{C}}(c,x) \xrightarrow{\vartheta_x} FX \\
\downarrow \chi \circ (\) \quad \downarrow F\chi \\
\text{Hom}_{\mathcal{C}}(c,c) \xrightarrow{\vartheta_c} Fc
\end{array}.$$ \hspace{1cm} (21)$$

The element $\text{id}_c \in \text{Hom}_{\mathcal{C}}(c,c)$ is sent by $\chi \circ (\)$ to $\chi \in \text{Hom}_{\mathcal{C}}(c,x)$ and by ϑ_c to $u_\theta := \vartheta_c(\text{id}_c)$. \hspace{1cm} (22)

Hence

$$\vartheta_x(\chi) = (F\chi)(u_\theta).$$

This demonstrates that ϑ is a Yoneda transformation associated with the element u_θ defined in (22). We shall refer to it as the Yoneda element of ϑ.

11
1.7.5

It follows that

the Yoneda correspondence, (19), between natural
tranformations (20) and elements of set Fc is bijective. (23)

It depends naturally on c, F, and also C.

1.7.6 **Representable functors**

We say that a functor $F: C \rightarrow \text{Set}$ is *representable* by an object $c \in C$, if there exists a natural isomorphism

$$\text{Hom}_C(c, \) \xrightarrow{\cong} F .$$

1.7.7 **Universal property of u_θ**

Exercise 19 Show that F is representable by an object $c \in C$ if and only if there exists an element

$$u \in Fc$$

such that, for any $x \in C$ and any element $v \in Fx$, there exists a unique morphism

$$c \xrightarrow{\chi} x$$

such that

$$v = (F\chi)(u).$$
2 Limits

2.1 Two arrow categories

2.1.1 The category of arrows from F to D

Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. The objects of category $F \to \mathcal{D}$ are the families of arrows indexed by objects of \mathcal{C}

$$\xi = (Fc \xrightarrow{\xi c} x)_{c \in \text{Ob} \mathcal{C}} \quad (x \in \text{Ob} \mathcal{D}),$$

such that for all arrows in \mathcal{C}, the diagram

$$\begin{array}{c}
Fc' \\
\downarrow F\alpha \\
Fc
\end{array} \xymatrix{ & x \\
& x' \\
F\alpha \ar[ur]_{\xi_{c'}} & \ar[u]_{\xi_{c}}}
$$

(25)

commutes.

2.1.2

Morphisms $\beta: \xi \to \xi'$ are arrows $\beta \in \text{Hom}_{\mathcal{D}}(x, x')$ such that family ξ' is produced from family ξ by postcomposing it with β,

$$\xi'_{c} = \beta \circ \xi_{c} \quad (c \in \text{Ob} \mathcal{C}),$$

i.e., the diagrams

$$\begin{array}{c}
Fc \\
\downarrow \xi_{c} \\
x
\end{array} \xymatrix{ & x' \\
& x' \\
F \alpha \ar[ur]_{\xi'_{c}} & \ar[u]_{\beta}}$$

(26)

commute.

2.1.3 Inductive (direct) limits

Initial objects of $F \to \mathcal{D}$ are called inductive (or, direct) limits of F.
2.1.4 The category of arrows from D to F

The objects of category $D\to F$ are the families of arrows

$$\xi = (x \xrightarrow{\xi_c} Fc)_{c \in \text{Ob } C} \quad (x \in \text{Ob } D),$$

(27)

such that for all arrows in C, the diagram

$$\begin{array}{ccc}
 x & \xrightarrow{\xi_c} & Fc' \\
 \downarrow{\zeta_c} & & \downarrow{Fa} \\
 Fc & \xrightarrow{\alpha} & Fc'
\end{array}$$

(28)

commutes.

2.1.5

Morphisms $\beta: \xi \to \xi'$ are arrows $\beta \in \text{Hom}_D(x,x')$ such that family ξ is produced from family ξ' by precomposing it with β,

$$\xi_c = \xi'_c \circ \beta \quad (c \in \text{Ob } C),$$

i.e., the diagrams

$$\begin{array}{ccc}
 x' & \xrightarrow{\xi'_c} & Fc' \\
 \downarrow{\beta} & & \downarrow{Fa} \\
 x & \xrightarrow{\xi_c} & Fc
\end{array}$$

(29)

commute.

2.1.6 Projective (inverse) limits

Terminal objects of $F\to D$ are called projective (or, inverse) limits of F.

2.1.7

If D is unital, then both $F\to D$ and $D\to F$ are unital. In this case any two inductive limits are isomorphic by a unique isomorphism. Similarly for projective limits.
2.1.8 Notation and terminology

An inductive limit of \(F \) is often denoted \(\lim_{\to} F \) and a projective limit is denoted \(\lim_{\leftarrow} F \).

2.1.9 Caveat

In early days Category Theory was used and developed particularly vigorously by algebraic topologists. Many of their habits as well as their terminological jargon left a trace in modern practice. For them limit means “projective limit”, while colimit is used in place of “inductive limit”. This terminology was reflected in notation: \(\lim \) in place of \(\lim_{\leftarrow} \), and colim in place of \(\lim_{\to} \).

2.1.10 Limits in a full subcategory

Suppose that \(\mathcal{D} \) is a full subcategory of \(\mathcal{D}' \). Denote by \(\iota \) the inclusion functor \(\mathcal{D} \hookrightarrow \mathcal{D}' \). Suppose that

\[
(Fc \to d)_{c \in \text{Ob} \mathcal{C}}
\]

is an inductive limit of \(\iota \circ F \). If \(d \in \text{Ob} \mathcal{D} \), then (30) is automatically an initial object of category \(\mathcal{F} \to \mathcal{D} \). And dually, if

\[
(d \to Fc)_{c \in \text{Ob} \mathcal{C}}
\]

is a projective limit of \(\iota \circ F \), then (31) is automatically a terminal object of category \(\mathcal{D} \to \mathcal{F} \) provided \(d \in \text{Ob} \mathcal{D} \). This useful observation is frequently invoked.

2.2 Special cases and examples

2.2.1 Suprema and infima of subcategories

Consider the case when \(\mathcal{C} \) is a subcategory of \(\mathcal{D} \). An inductive limit of the inclusion functor \(\mathcal{C} \hookrightarrow \mathcal{C} \) is a supremum of \(\mathcal{C} \) in \(\mathcal{D} \) while its projective limit is an infimum of \(\mathcal{C} \) in \(\mathcal{D} \). In the case when \(\mathcal{D} \) is a partially ordered set, we obtain precisely the supremum and the infimum as they are defined in theory of partially ordered sets.
2.2.2 Initial and terminal objects as limits

A supremum in \mathcal{D} of the empty subcategory \emptyset is an initial object of \mathcal{D}. Dually, an infimum of \emptyset in \mathcal{D} is a terminal object of \mathcal{D}.

2.2.3 Inductive limit of the $\text{Hom}_C(a, \cdot)$ functor

Suppose an object $a \in \text{Ob} \ C$ has a right identity ι. Given any object $\xi = (\text{Hom}_C(a, c) \rightarrow X)_{c \in \text{Ob} \ C}$ of the category of arrows from $\text{Hom}_C(a, \cdot)$ to Set, and any $\alpha \in \text{Hom}_C(a, c)$, one has a commutative triangle

$$
\begin{array}{ccc}
\text{Hom}_C(a, c) & \xrightarrow{\xi_c} & X \\
\downarrow{\alpha} & & \downarrow{\xi_a} \\
\text{Hom}_C(a, a) & &
\end{array}
$$

which shows that $\xi_c(\alpha) = \xi_a(\iota)$. Thus, the maps ξ_c all have the single element subset $X_1 = \{\xi_a(\iota)\}$ as their target. It follows that, for any single element set $\{\ast\}$, the unique family of mappings into $\{\ast\}$

$$
\kappa = (\text{Hom}_C(a, c) \rightarrow \{\ast\})_{c \in \text{Ob} \ C}
$$

is an initial object of the category of arrows from $\text{Hom}_C(a, \cdot)$ to Set, i.e., it is an inductive limit of $\text{Hom}_C(a, \cdot)$.

2.2.4 Fixed point sets and the sets of orbits

A semigroup (G, \cdot) is the same as a category with a single object \bullet. A functor $F: G \rightarrow \mathcal{D}$ is the same as an action of (G, \cdot),

$$
\lambda: G \rightarrow \text{End}_\mathcal{D}(d),
$$
on an object $d = F(\bullet)$ of \mathcal{D}.

2.2.5

In the case of $\mathcal{D} = \text{Set}$, we speak of G-sets. In the case of $\mathcal{D} = k\text{-mod}$, the category of (left) modules over an associative ring k, we speak of k-linear representations of G.

16
2.2.6

For a G-set X, let

$$X^G := \{ x \in X \mid gx = x \text{ for all } g \in G \}$$

(alternatively denoted $\text{Fix}_G X$), and let

$$X_G := X/\sim$$

where \sim is a weakest equivalence relation on X such that

$$x \sim gx \quad (x \in X, g \in G).$$

Exercise 20 Show that the quotient mapping

$$X \longrightarrow X_G$$

is an injective limit while the inclusion mapping

$$X_G \hookrightarrow X$$

is a projective limit of the functor $F : G \longrightarrow \text{Set}$

$$F(\bullet) := X, \quad Fg := \lambda_g \quad (g \in G).$$

2.2.7

In the case when X is equipped with a structure of a (left) k-module and the action is by k-linear endomorphisms, X^G is called the module of G-invariants, while X_G is defined as X/\sim where \sim is a weakest k-module congruence such that (34) holds. In this case X_G is called the module of G-coinvariants. These two k-modules supply projective and inductive limits of (35) when the target category of F is the category of k-modules.

2.3 Coproducts and products

2.3.1

Consider a set I as a category with objects being elements of I and the empty class of morphisms. Functors $I \longrightarrow \mathcal{D}$ are the same as I-indexed families of objects

$$(d_i)_{i \in I}.$$
Inductive limits of such functors are called \textit{coproducts}. The corresponding objects that are usually denoted
\[
\coprod_{i \in I} d_i
\]
are equipped with the arrows
\[
\iota_j: d_j \rightarrow \coprod_{i \in I} d_i
\]
that are part of their structure.

\subsection*{2.3.2}

Projective limits are called \textit{products}. The corresponding objects that are denoted
\[
\prod_{i \in I} d_i \quad \text{or} \quad \times_{i \in I} d_i
\]
are equipped with the arrows
\[
\pi_j: \prod_{i \in I} d_i \rightarrow d_j
\]
that are referred as the \textit{product projections}.

\subsection*{2.3.3}

Binary coproducts and products are denoted
\[
d \sqcup d' \quad \text{and} \quad d \times d',
\]
respectively. Coproducts and products of a finite family \(d_1, \ldots, d_n\) are denoted
\[
d_1 \sqcup \cdots \sqcup d_n \quad \text{and} \quad d_1 \times \cdots \times d_n,
\]
respectively.

\subsection*{2.3.4 Coproducts and products in Set}

For a family of sets
\[
(X_i)_{i \in I},
\]
let
\[
X := \bigcup_{i \in I} X_i.
\]
Exercise 21 Show that the set
\[C := \{(x, i) \in X \times I \mid x \in X_i\} \]
together with the family of embeddings
\[t_j : X_j \hookrightarrow C, \quad x \mapsto (x, j) \quad (j \in I), \]
is a coproduct of (37) in the category of sets.

Exercise 22 Show that the set
\[P := \{x : I \to X \mid x(i) \in X_i\} \quad (38) \]
together with the family of evaluation-at- \(j \) mappings
\[\pi_j : P \to X_j, \quad x \mapsto x(j) \quad (j \in I), \]
is a product of (37) in the category of sets.

2.3.5 Notation and terminology

The \textit{values} of functions \(x : I \to X \) forming the product are usually written as \(x_i \) and are referred to as \(i \)-components of \(x \).

2.3.6

An observation that, in the category of sets,
\[\text{Hom}_{\text{Set}}(X, Y) = \prod_{x \in X} Y \quad (39) \]
has numerous consequences for functors \(\mathcal{C} \to \text{Set} \).

2.3.7

Exercise 23 Given a family (36) of objects in a category \(\mathcal{D} \), show that there exists a natural bijection
\[\text{Hom}_\mathcal{D}\left(\bigsqcup_{i \in I} d_i, d'\right) \leftrightarrow \prod_{i \in I} \text{Hom}_\mathcal{D}(d_i, d'). \quad (40) \]

Note that the coproduct on the left-hand-side of (40) is formed in \(\mathcal{D} \) while the product of the Hom-sets is formed in the category of sets.
Exercise 24 Given a family \((d_i)_{i \in I}\) of objects in a category \(D\), show that there exists a natural bijection

\[
\text{Hom}_D(d', \prod_{i \in I} d_i) \leftrightarrow \prod_{i \in I} \text{Hom}_D(d', d_i).
\]

(41)

Note that the product on the left-hand-side of (41) is formed in \(D\) while the product of the \(\text{Hom}\)-sets is formed in the category of sets.

2.3.8 Products in the category of \(\nu\)-ary structures

Given a family \(((X_i, (\mu_{il}))_{l \in L})_{i \in I}\) of \(\nu\)-ary structures of \(\nu\)-arity \(\nu: L \rightarrow \mathbb{N}\), equip the product of the underlying sets (38) with the product operations

\[
\mu_i^\text{prod} := \prod_{l \in L} \mu_{il} \quad (l \in L).
\]

(42)

In order to view (42) as mappings

\[
P \times \cdots \times P \rightarrow P \quad (\nu(l) \text{ times}),
\]

one needs to identify \(P^{\nu(l)}\) with

\[
\prod_{i \in I} X_i^{\nu(l)}.
\]

If we consider elements of \(P\) as functions on \(I\), then each product operation \(\mu_i^\text{prod}\) is performed “pointwise”, the operation

\[
\mu_{il}: X_i \times \cdots \times X_i \rightarrow X_i \quad (\nu(l) \text{ times})
\]

being used at “point” \(i \in I\).

2.3.9

Since \(\nu\)-ary structures on a set \(X\) are defined in terms of mappings from products of \(X\) to \(X\), the set theoretic product of homomorphisms is a homomorphism and the set theoretic product of structures is a product in the category of \(\nu\)-ary structures.

2.3.10

The same will be true also for any subcategory of such structures that is closed under formation of product structures. Thus, the set theoretic product of semigroups, monoids, groups, abelian groups, associative rings, \(k\)-modules — is a product in the category of, respectively, semigroups, monoids, groups, abelian groups, associative rings, \(k\)-modules.
2.3.11

The product of fields (in the category of rings) is not a field, however. In fact, the category of fields lacks even binary products.

Exercise 25 Show that in the category of fields, a product of fields E and F that have 2 and 3 elements does not exist.

Exercise 26 Show that \mathbb{Q} with $\pi_1 = \pi_2 = \text{id}_\mathbb{Q}$ is a product of \mathbb{Q} with \mathbb{Q} in the category of fields. What is a product of \mathbb{Q} with any field F?

2.3.12 **Coproducts in the category of commutative monoids**

For a family $(M_i)_{i \in I}$ of commutative monoids denote by

$$\bigoplus_{i \in I} M_i := \{m \in \prod_{i \in I} M_i \mid \text{supp } m \text{ is finite}\} \quad (43)$$

where the support of m is the set of i where m does not vanish,

$$\text{supp } m := \{i \in I \mid m_i \neq 0\}. \quad (44)$$

We employ additive notation for the binary operation in a commutative monoid, hence the identity element is referred as “zero” and denoted 0.

Consider the embeddings

$$\iota_j: M_j \hookrightarrow \bigoplus_{i \in I} M_i, \quad m \mapsto \delta_j(m), \quad (45)$$

where

$$\delta_j(m): I \rightarrow \bigcup_{i \in I} M_i, \quad \delta_j(m)(i) := \begin{cases} m & \text{when } i = j \\ 0 & \text{when } i \neq j \end{cases}$$

is the element of the product whose j-th component equals m and all the other components are zero.

Exercise 27 Show that (43) equipped with the family of embeddings (45) is a coproduct of $(M_i)_{i \in I}$ in the category of commutative monoids.
2.3.13 Terminology and notation

We refer to (43) as the direct sum of a family \((M_i)_{i \in I} \). This explains why the notation

\[
\sum_{i \in I} m_i
\]

(46)

is used to denote elements of (43) instead of \((m_i)_{i \in I} \) or functional notation. The summation symbol in (46) is employed purely formally. In this notation \(\delta_j(m) \) becomes the formal sum (46) for which all \(m_i \) but \(m_j \) are zero and \(m_j = m \).

2.3.14

For \(m_1 \in M_{i_1}, \ldots, m_n \in M_{i_n} \) we simply write

\[
m_1 + \cdots + m_n
\]

(47)

and consider it as an element of the direct sum. This corresponds to the function \(m: I \rightarrow \bigcup_{i \in I} M_i \),

\[
m(i) = \begin{cases} m_k & \text{when } i = i_k \\ 0 & \text{otherwise} \end{cases}
\]

2.3.15 Coproducts in the category of abelian groups

The category of abelian groups is a full subcategory of the category of commutative monoids and the direct sum (43) is an abelian group if each \(M_i \) is an abelian group. In view of the observation made in Section 2.1.10, the direct sum of abelian groups is automatically a coproduct in the category of abelian groups.

2.3.16 Coproducts in the category of \(k \)-modules

The direct sum \(\bigoplus_{i \in I} M_i \) of a family of \(k \)-modules \((M_i)_{i \in I} \) is a \(k \)-submodule of the direct product \(\prod_{i \in I} M_i \). The same argument as in the case of the category of commutative monoids shows that the direct sum provides a construction of a coproduct in the category of abelian groups, applies also to the category of \(k \)-modules.
2.3.17
Similarly for \((A, B)\)-bimodules and the unitary variants of the categories of modules and bimodules.

2.3.18 Coproducts in the category of commutative semigroups

If we express the elements of (43) as formal sums (46), then a small modification allows to describe the coproduct of a family \((M_i)_{i \in I}\) of commutative semigroups as the set of formal sums

\[
\sum_{i \in J} m_i
\]

over all finite nonempty subsets \(J \subseteq I\). Addition of such sums is performed in an obvious manner:

\[
\left(\sum_{i \in J} m_i \right) + \left(\sum_{i \in J'} m'_i \right) := \sum_{i \in J \cup J'} m''_i
\]

where

\[
m''_i = \begin{cases}
m_i + m'_i & \text{if } i \in J \cap J' \\
m_i & \text{if } i \in J \setminus J' \\
m'_i & \text{if } i \in J' \setminus J
\end{cases}
\]

2.3.19
As a set such formal sums can be realized as members of the disjoint union of Cartesian products of finite nonempty subfamilies \((M_i)_{i \in I}\),

\[
\bigsqcup_{J \in \mathcal{P}^*_{\text{fin}}(I)} \prod_{i \in J} M_i.
\]

where \(\mathcal{P}^*_{\text{fin}}(I)\) denotes the set of finite nonempty subsets of \(I\).

2.3.20
For \(I = \{1, 2\}\), this becomes

\[
M_1 \sqcup M_2 \sqcup M_1 \times M_2.
\]

Exercise 28 Describe \(x + y\) when \(x\) and \(y\) are in each of the following subsets of (50):

\[
M_1, \quad M_2 \quad \text{and} \quad M_1 \times M_2.
\]
2.4 Coproducts in the category of semigroups

2.4.1 Semigroups of words

For a set X, consider the disjoint union of Cartesian powers of X,

$$WX := X \sqcup X \times X \sqcup X \times X \times X \sqcup \cdots$$

(51)
equipped with the concatenation multiplication:

$$(x_1, \ldots, x_q) \cdot (x'_1, \ldots, x'_r) := (x_1, \ldots, x_q, x'_1, \ldots, x'_r)$$

(52)

Multiplication defined by (52) is associative, and WX equipped with it will be referred as the **semigroup of words on an alphabet X**.

2.4.2

Note that

$$(x_1, \ldots, x_q) = x_1 \cdots x_q.$$

(53)

In particular, every “word” (x_1, \ldots, x_q) of length k is a product of k words of length 1 and such a representation is **unique**.

2.4.3

In view of (53) any mapping $f : X \rightarrow M$ into a semigroup M uniquely extends to a homomorphism of semigroups $\tilde{f} : WX \rightarrow M$,

$$\tilde{f}((x_1, \ldots, x_q)) = \tilde{f}(x_1 \cdots x_q) = f(x_1) \cdots f(x_q).$$

2.4.4 The tautological epimorphism

For any semigroup M, the identity mapping id_M induces a homomorphism $p = \text{id}_M$ from WM onto M. We shall refer to it as the **tautological epimorphism** associated with M.

2.4.5 A construction of a coproduct of a family of semigroups

Given a family of semigroups $(M_i)_{i \in I}$, let us form the semigroup of words on the alphabet

$$M^\sqcup := \coprod_{i \in I} M_i.$$

(54)
Since WM_i is naturally identified with a subsemigroup of $W(M^\uparrow)$, the kernel congruence of the tautological epimorphism $p_i : WM_i \rightarrow M_i$, namely

$$w \sim_i w' \quad \text{if} \quad p_i(w) = p_i(w') \quad (w, w' \in WM_i),$$

(55)
can be considered also to be a binary relation on $W(M^\uparrow)$.

2.4.6 The free product of semigroups

Let \sim be a weakest congruence on $W(M^\uparrow)$ stronger than each \sim_i. The quotient semigroup

$$\bigstar i \in I M_i := W(M^\uparrow)_{/\sim}$$

(56)
is referred to as the free product of the family of semigroups $(M_i)_{i \in I}$.

Exercise 29 Show that the inclusions of sets $M_j \hookrightarrow M^\uparrow$ induce injective homomorphisms of semigroups

$$M_j \rightarrow \bigstar i \in I M_i \quad (j \in I).$$

(57)

2.4.7 The universal property of the free product

A family of semigroup homomorphisms $f_i : M_i \rightarrow N$ gives rise to a single mapping $\bar{f}^\uparrow : M^\uparrow \rightarrow N$ and this, in turn, gives rise to a unique homomorphism of semigroups

$$\bar{f} : W(M^\uparrow) \rightarrow N$$

(58)
such that its restriction to

$$WM_j \subseteq W(M^\uparrow)$$
equals $f_i \circ p_j$ where $p_j : WM_j \rightarrow M_j$ is the corresponding tautological epimorphism. Since

$$p_j(w) = p_j(w') \quad (w, w' \in WM_j)$$
n Precisely when $w \sim_j w'$,

$$\bar{f}(w) = \bar{f}(w')$$

(59)
for all such w and w'. Since \bar{f} is a homomorphism, (59) holds for any $w, w' \in W(M^\uparrow)$ such that $w \sim w'$. Hence \bar{f} passes to the quotient (56), proving at once that the family (57) is a coproduct of $(M_i)_{i \in I}$ in the category of semigroups.

25
2.4.8 The semigroup of alternating words

We shall make the construction of the free product more explicit in the case of two semigroups M and N.

Consider the subset of $W(M \sqcup N)$ consisting of “alternating words” (l_1, \ldots, l_q), i.e., words such that no two consecutive l_i and l_{i+1} belong to M or N. Let us multiply such words according to the rule

$$(l_1, \ldots, l_q) \cdot (l'_1, \ldots, l'_r) = \begin{cases} (l_1, \ldots, lql'_1, \ldots, l'_r) & \text{if } l_q, l'_1 \in M \text{ or } l_q, l'_1 \in N \\ (l_1, \ldots, l_q, l'_1, \ldots, l'_r) & \text{otherwise} \end{cases}$$

(60)

Exercise 30 Inclusions of M and N into the set of alternating words are homomorphisms and therefore induce a homomorphism from $M \ast N$ to the semigroup of alternating words. Show that it is an isomorphism. (Hint. Show that the semigroup of alternating words together with the inclusions of M and N is a coproduct of semigroups M and N.)

2.5 Coproducts in the category of monoids

2.5.1

A coproduct of a family of monoids is a free product of monoids

$$\bigast_{i \in I} M_i := W_{un}(M^{I})_{/\sim}.$$

(61)

The argument parallels the argument for semigroups. The only difference is that instead of the semigroup of words WX, we employ the monoid of words

$$W_{un}X := \coprod_{q \geq 0} X^q.$$

(62)

2.5.2

Note that

$$ww' \sim_i e,$$

whenever both w and w' belong to the same M_i and their product in M_i equals the identity element e_{M_i}.

26
2.5.3

It follows that, if each \(M_i \) is a group, then the equivalence class of each element in \(M^{\ast j} \) is invertible in (61). But every element in (61) is a product of equivalence classes of elements of \(M^{\ast j} \), hence every element in (61) is invertible.

2.5.4 Coproducts in the category of groups

This demonstrates that the free product of a family of monoids \((M_i)_{i \in I}\) is a group if every member of the family is a group. In particular, a coproduct of a family of groups in the category of monoids is a group. Since \textbf{Grp} is a full subcategory of \textbf{Mon}, it follows that (61) is also a coproduct in the category of groups.

2.6 Pushouts

2.6.1

Consider the category \(2_{cs} \) consisting of 2 arrows with the common source

\[
\begin{array}{c}
\bullet \\
\downarrow \\
\bullet \\
\downarrow \\
\bullet
\end{array}
\]

(63)

Functors \(F: 2_{cs} \to \mathcal{D} \) are the same as pairs of arrows in \(\mathcal{D} \)

\[
\begin{array}{c}
d'' \downarrow \\
\alpha'' \downarrow \\
\bullet \\
\downarrow \\
d' \downarrow \\
\alpha' \downarrow \\
\bullet \\
\downarrow \\
d \downarrow \\
\hat{d} \\
\end{array}
\]

(64)
with a common source. Objects of $F \to \mathcal{D}$ are the same as pairs of morphisms

$$
\begin{array}{c}
d'' \\
\downarrow \xi'' \downarrow \xi' \\
x \\
\downarrow \xi' \\
d'
\end{array}
$$

such that the diagram

$$
\begin{array}{c}
ad'' \\
\downarrow \xi'' \downarrow \xi' \\
x \\
\downarrow \xi' \\
d'
\end{array}
$$

commutes.

2.6.2
An initial object of $F \to \mathcal{D}$ is called in this case a pushout of diagram (64).

2.6.3 An example: pushouts in Set
For a pair of mappings with the common source

$$
\begin{array}{c}
f'' \\
\downarrow \xi'' \\
X'' \\
\downarrow \\
X \\
\downarrow f' \\
X'
\end{array}
$$

consider a weakest equivalence relation on the disjoint union $X' \sqcup X''$, such that

$$
x' \sim x'' \text{ if there exists } x \in X \text{ such that } f'(x) = x' \text{ and } f''(x) = x''.
$$
Let $X \sqcup X''$ denote the quotient of $X' \sqcup X''$ by \sim, and let

$$
\begin{array}{ccc}
X'' & \xrightarrow{s''} & X \sqcup X'' \\
\downarrow & & \downarrow \\
X' \sqcup X'' & \xrightarrow{s'} & X
\end{array}
$$

be the mappings obtained by composing the canonical inclusion mappings

$$
l': X' \leftarrow X \sqcup X'' \quad \text{and} \quad l'': X'' \leftarrow X \sqcup X''
$$

with the quotient mapping

$$
q: X' \sqcup X'' \rightarrow X \sqcup X''.
$$

Exercise 31 Show that (67) is a pushout of (65).

2.7 Pullbacks

2.7.1

Consider the category $\mathbf{2}_{\text{ct}}$ consisting of 2 arrows with the common target

$$
\begin{array}{c}
\bullet \\
\downarrow \\
\bullet \\
\downarrow \\
\bullet
\end{array}
$$

Functors $F: \mathbf{2}_{\text{ct}} \rightarrow \mathcal{D}$ are the same as pairs of arrows in \mathcal{D}

$$
\begin{array}{ccc}
d'' & \xrightarrow{a''} & d \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
d' & \xrightarrow{a'} & \bullet
\end{array}
$$
with a common source. Objects of $\mathcal{D} \rightarrow \mathcal{F}$ are the same as pairs of morphisms

$$
\begin{array}{c}
\xi'' \\
\downarrow \\
\xi' \\
\downarrow \\
x \\
\downarrow \\
d' \quad \Quad
This set is called the *fibred product* of X' and X'' over X. Let

\[
\begin{array}{ccc}
\pi'' & \rightarrow & X'' \\
\downarrow & & \\
X' \times_X X'' & \rightarrow & X'
\end{array}
\]

be the mappings obtained by composing the canonical projection mappings

$$\pi': X' \times X'' \rightarrow X' \quad \text{and} \quad \pi'': X' \times X'' \rightarrow X''$$

with the canonical inclusion mapping

$$\iota: X' \times_X X'' \hookrightarrow X' \times X''.$$

Exercise 32 Show that (72) is a pullback of (70).

2.7.4 Cartesian and co-Cartesian squares

A commutative diagram in a category \mathcal{D}

\[
\begin{array}{ccc}
\alpha'' & \rightarrow & \beta'' \\
\downarrow & & \downarrow \\
\alpha' & \leftarrow & \beta'
\end{array}
\]

is said to be *Cartesian square* if

\[
\begin{array}{ccc}
\alpha'' & \rightarrow & \\
\downarrow & & \\
\alpha' & \leftarrow &
\end{array}
\]

(73)
is a pullback of

\[
\begin{array}{ccc}
\bullet & \xrightarrow{\beta''} & \bullet \\
\downarrow & & \downarrow \\
\bullet & \xrightarrow{\beta'} & \bullet
\end{array}
\]

(74)

and it is said to be a co-Cartesian square if (74) is a pushout of (73).

Exercise 33 For any sets \(X'\) and \(X''\), show that

\[
\begin{array}{ccc}
\bullet & \xrightarrow{i''} & \bullet \\
\downarrow & & \downarrow \\
X' \cap X'' & \xrightarrow{\kappa''} & X' \cup X'' \\
\downarrow & & \downarrow \\
X' & \xrightarrow{i'} & \bullet
\end{array}
\]

(75)

is a Cartesian and a co-Cartesian square where \(i', i'', \kappa', \kappa''\) are the canonical inclusion mappings.

2.7.5

Any Cartesian and co-Cartesian square in the category of sets is isomorphic to (75).

2.8 Equalizers and coequalizers

2.8.1

Consider the category \(2 \rightarrow \) consisting of 2 arrows

\[
\begin{array}{ccc}
\bullet & \xrightarrow{\alpha} & \bullet \\
\downarrow_{\beta} & & \downarrow \\
\bullet & \xrightarrow{\beta'} & \bullet
\end{array}
\]

with the common source and the common target. Functors \(F: 2 \rightarrow \mathcal{D}\) are the same as pairs of arrows in \(\mathcal{D}\)

\[
d \xrightarrow{\alpha} d', \quad \beta \xrightarrow{\beta'}
\]

(76)
Objects of $F \to D$ are the same as morphisms $d' \xrightarrow{\xi'} x$ such that

$$\xi' \circ \alpha = \xi' \circ \beta$$

while objects of $D \to F$ are the same as morphisms $x \xrightarrow{\zeta} d$ such that

$$\alpha \circ \zeta = \beta \circ \zeta.$$

2.9

An initial object of $F \to D$ is called in this case a coequalizer of a parallel pair of arrows (76), while a terminal object of $D \to F$ is called an equalizer of (76).

2.10 Kernels and cokernels

In a category with zero, an equalizer of the parallel pair

$$d \xrightarrow{\alpha} d'$$

is called a kernel of α, while its coequalizer is called a cokernel of α.

33
3 Reflections

3.1 Two arrow categories

3.1.1 Let $F : C \to D$ be a functor and d let be an object of the target category D.

3.1.2 The category of arrows from d to FC

The objects of category $d \to FC$ are pairs $(c, d \xrightarrow{\delta} FC)$ and morphisms

$$(c, d \xrightarrow{\delta} FC) \longrightarrow (c, d \xrightarrow{\delta'} FC')$$

are the arrows $c \xrightarrow{\alpha} c'$ in the source category C such that the following diagram commutes

$$(78)$$

3.1.3 A reflection of d along F

An initial object of $d \to FC$ will be called a reflection of d along functor F.

3.1.4 The category of arrows from FC to d

The objects of category $FC \to d$ are pairs $(c, Fc \xrightarrow{\delta} d)$ and morphisms

$$(c, Fc \xrightarrow{\delta} d) \longrightarrow (c, Fc' \xrightarrow{\delta'} d)$$

are the arrows $c \xrightarrow{\alpha} c'$ in the source category C such that the mirror reflection of diagram (78) commutes

$$(79)$$

34
3.1.5 A coreflection of d along F

A terminal object of $F\mathcal{C}\rightarrow d$ will be called a coreflection of d along functor F.

3.1.6 Terminology

More appropriate would be perhaps to talk of source and target reflections instead of reflections and coreflections, depending on whether d is the source of arrows into $F\mathcal{C}$ or the target of arrows from $F\mathcal{C}$.

3.1.7 Transitivity of reflections

Given a pair of composable functors

$$
\mathcal{B} \xrightarrow{G} \mathcal{C} \xrightarrow{F} \mathcal{D},
$$

suppose

$$(\tilde{d}, d \xrightarrow{\delta} F\tilde{d})$$

is a reflection of $d \in \text{Ob} \mathcal{D}$ along F and

$$(\tilde{d}', \tilde{d} \xrightarrow{\delta'} G\tilde{d}')$$

is a reflection of \tilde{d} along G.

Exercise 34 Show that

$$(\tilde{d}, d \xrightarrow{\delta} (F \circ G)\tilde{d})$$

is a reflection of d along $F \circ G$.

3.2 Automatic naturality of reflections

3.2.1

Given two objects d and d' of \mathcal{D}, and their reflections

$$(\tilde{d}, d \xrightarrow{\delta} F\tilde{d}) \quad \text{and} \quad (\tilde{d}', d' \xrightarrow{\delta'} F\tilde{d}')$$

35
for any morphism \(d \xrightarrow{\beta} d' \), there exists a unique morphism \(\bar{d} \xrightarrow{\bar{\beta}} \bar{d}' \) such that the diagram
\[
\begin{array}{ccc}
d' & \xrightarrow{\beta'} & F\bar{d}' \\
\downarrow & & \downarrow \bar{F} \bar{\beta} \\
d & \xrightarrow{\delta} & F\bar{d}
\end{array}
\]
commutes (\(\delta' \circ \beta : d \rightarrow F\bar{d}' \) uniquely factorizes through \(\delta \)).

3.2.2

Given another morphism \(d'' \xrightarrow{\beta''} d''' \) and a reflection
\[
(\bar{d}'', d'' \xrightarrow{\delta''} F\bar{d}''),
\]
we obtain the morphism \(\bar{d} \xrightarrow{\bar{\beta}'} \bar{d}' \) such that
\[
\begin{array}{ccc}
d'' & \xrightarrow{\beta''} & F\bar{d}'' \\
\downarrow & & \downarrow \bar{F} \bar{\beta}' \\
d' & \xrightarrow{\delta''} & F\bar{d}'
\end{array}
\]
commutes. It follows that the diagram
\[
\begin{array}{ccc}
d'' & \xrightarrow{\beta''} & F\bar{d}'' \\
\downarrow \beta' \circ \beta & & \downarrow \bar{F} \beta' \circ F\bar{\beta} \\
d & \xrightarrow{\delta} & F\bar{d}
\end{array}
\]
does that as well. But
\[
F\beta' \circ F\bar{\beta} = F(\beta' \circ \bar{\beta}).
\]
Uniqueness of an arrow \(\bar{\beta}' \circ \bar{\beta} : \bar{d} \rightarrow \bar{d}'' \) such that \(F\bar{\beta}' \circ F\bar{\beta} \) closes up (82) to a commutative diagram means that
\[
\bar{\beta}' \circ \bar{\beta} = \beta' \circ \bar{\beta}.
\]
3.2.3

Denote by \mathcal{D}' the full subcategory of \mathcal{D} consisting of objects d that have a coreflection along F. We demonstrated that *any* assignment of a coreflection

$$d \mapsto (\bar{d}, d \xrightarrow{\delta} F\bar{d}) \quad (d \in \text{Ob} \mathcal{D'}),$$

to every object of \mathcal{D}' produces *in a unique manner* a functor

$$G: \mathcal{D}' \longrightarrow \mathcal{C} \quad \text{where} \quad Gd := \bar{d} \quad \text{and} \quad G\beta := \bar{\beta},$$
equipped with a natural transformation

$$\eta: \iota_{\mathcal{D}'} \longrightarrow F \circ G \quad \text{where} \quad \eta_d := \bar{\delta},$$
from the inclusion functor $\mathcal{D}' \hookrightarrow \mathcal{D}$ to $F \circ G$.

3.2.4

We shall refer to (G, η) as a left adjoint pair for F, while G will be referred to as a left adjoint to functor F. It is essential to understand, however, that whenever we talk of a left adjoint functor then the natural transformation η is understood to be a part of its structure.

3.2.5 Terminological comments

Normally one talks of left adjoint functors under the hypothesis that $\mathcal{D}' = \mathcal{D}$, i.e., assuming that every object of \mathcal{D} has a coreflection along F. In literature you will encounter only the case when categories and functors are assumed to be unital.

Exercise 35 Show that the mapping

$$\text{Hom}_C(Gd, c) \longrightarrow \text{Hom}_D(d, Fc) \quad (c \in \text{Ob} \mathcal{C}, \ d \in \text{Ob} \mathcal{D}')$$ (83)
sending $Gd \xrightarrow{\kappa} c$ to $F\kappa \circ \bar{\delta}$ is a bijection.

Exercise 36 Show that the morphism $Gd \xrightarrow{i} Gd$ corresponding to $d \xrightarrow{\eta_d} F\bar{d}$ is a right identity.
Exercise 37 Show that bijections (83) are natural in \(d\) and \(c\), i.e., given morphisms \(d \xrightarrow{\beta} d'\) and \(c \xrightarrow{\alpha} c'\), the following diagrams

\[
\begin{array}{ccc}
\text{Hom}_C(Gd', c) & \longrightarrow & \text{Hom}_D(d', Fc) \\
\downarrow \circ G\beta & & \downarrow \circ G\beta \\
\text{Hom}_C(Gd, c) & \longrightarrow & \text{Hom}_D(d, Fc)
\end{array}
\]

and

\[
\begin{array}{ccc}
\text{Hom}_C(Gd, c) & \longrightarrow & \text{Hom}_D(d, Fc) \\
\downarrow a \circ \ () & & \downarrow F a \circ \ () \\
\text{Hom}_C(Gd, c') & \longrightarrow & \text{Hom}_D(d, Fc')
\end{array}
\]

commute.

Exercise 38 Show that if \(C, D\) and \(F\) are unital, then \(G(id_d) = id_{Gd}\).

3.3 Automatic naturality of coreflections

3.3.1

Given two objects \(d\) and \(d'\) of \(D\), and their coreflections

\[
(d, Fd \xrightarrow{\delta} d) \quad \text{and} \quad (d', Fd' \xrightarrow{\delta'} d').
\]

for any morphism \(d \xrightarrow{\beta} d'\), there exists a unique morphism \(d \xrightarrow{\delta} d'\) and \(Fd \xrightarrow{\delta'} d'\) such that

\[
\begin{array}{ccc}
Fd' & \xrightarrow{\delta'} & d' \\
\downarrow F\beta & & \downarrow \beta \\
Fd & \xrightarrow{\delta} & d
\end{array}
\]

\((\delta' \circ \beta : d \rightarrow Fd'\) uniquely factorizes through \(\delta\)).
3.3.2

Given another morphism \(d' \xrightarrow{\beta'} d'' \) and a coreflection \((d', Fd' \xrightarrow{\delta'} d')\), we obtain the morphism \(d \xrightarrow{\beta} d' \) such that

\[
\begin{array}{c}
Fd'' \xrightarrow{\beta''} d'' \\
\downarrow \quad \downarrow \\
F\delta' \quad \quad \beta' \\
Fd' \xrightarrow{\delta'} \quad \quad d' \\
\end{array}
\]

(85)

commutes. In particular,

\[
\begin{array}{c}
Fd'' \xrightarrow{\beta''} d'' \\
\downarrow \quad \downarrow \\
F\beta' \circ F\delta' \quad \quad \beta' \circ \beta \\
Fd \xrightarrow{\delta} \quad \quad d \\
\end{array}
\]

(86)

commutes. Uniqueness of the arrow

\(\beta' \circ \beta : d \rightarrow d'' \)

making diagram (84) commutative means that,

\(\beta' \circ \beta = \beta' \circ \beta \).

3.3.3

Denote by \(\mathcal{D}'' \) the full subcategory of \(\mathcal{D} \) consisting of objects \(d \) that have a coreflection along \(F \). We demonstrated that any assignment of a coreflection along \(F \) to every object of \(\mathcal{D}'' \) produces in a unique manner a functor

\(G : \mathcal{D}'' \rightarrow \mathcal{C} \) where \(Gd := \tilde{d} \quad \text{and} \quad G\beta := \tilde{\beta} \),

equipped with a natural transformation

\(e : F \circ G \rightarrow \iota_{\mathcal{D}'' \rightarrow \mathcal{D}} \) where \(e_d := \delta \),

from the inclusion functor \(\mathcal{D}'' \hookrightarrow \mathcal{D} \) to \(F \circ G \).
3.3.4

We shall refer to \((G, \epsilon)\) as a right adjoint pair for \(F\), while \(G\) will be referred to as a right adjoint to functor \(F\). It is essential to understand, however, that whenever we talk of a right adjoint functor then the natural transformation \(\epsilon\) is understood to be a part of its structure.

3.3.5 Terminological comments

Normally one talks of right adjoint functors under the hypothesis that \(D' = D\), i.e., assuming that every object of \(D\) has a coreflection along \(F\). In literature you will encounter only the case when categories and functors are assumed to be unital.

Exercise 39 Show that the mapping

\[
\Hom_{\mathcal{C}}(c, Gd) \rightarrow \Hom_{\mathcal{D}}(Fc, d) \quad (c \in \text{Ob } \mathcal{C}, d \in \text{Ob } \mathcal{D}')
\]

sending \(c \xrightarrow{\alpha} Gd\) to \(\delta \circ F\alpha\) is a bijection.

Exercise 40 Show that the morphism \(Gd \xrightarrow{\iota} Gd\) corresponding to \(FGd \xrightarrow{\epsilon_d} d\) is a left identity.

Exercise 41 Show that bijections (87) are natural in \(d\) and \(c\), i.e., given morphisms \(d \xrightarrow{\beta} d'\) and \(c \xrightarrow{\alpha} c'\), the following diagrams

\[
\begin{array}{ccc}
G\beta(\) & \xrightarrow{} & \beta(\) \\
\Hom_{\mathcal{C}}(c, Gd) & \xleftarrow{} & \Hom_{\mathcal{D}}(Fc, d) \\
\Hom_{\mathcal{C}}(c, Gd') & \xleftarrow{} & \Hom_{\mathcal{D}}(Fc, d')
\end{array}
\]

and

\[
\begin{array}{ccc}
(\)\alpha & \xrightarrow{} & (\)F\alpha \\
\Hom_{\mathcal{C}}(c, Gd) & \xleftarrow{} & \Hom_{\mathcal{D}}(Fc, d)
\end{array}
\]

commute.

Exercise 42 Show that if \(F\) is a unital functor (which automatically means that its source and its target are categories with the identity morphisms), then \(G(id_d) = id_{Gd}\).
3.3.6 Left–right adjoint duality

Note that
\[(d \to F \mathcal{C})^{\text{op}} = F^\circ \mathcal{C}^{\text{op}} \to d^{\text{op}}\] (88)

where \(F^\circ : \mathcal{C}^{\text{op}} \to \mathcal{D}^{\text{op}}\) is defined as
\[F^\circ := (\)^{\text{op}} \circ F \circ (\)^{\text{op}}.\] (89)

In particular, \((G, \eta)\) is a left adjoint pair for \(F\) if and only if \((G^\circ, \eta^{\text{op}})\) is a right adjoint pair for \(F^\circ\).

3.4 Adjoint pairs of unital functors

3.4.1

Below we assume that
\[F : \mathcal{C} \to \mathcal{D} \quad \text{and} \quad G : \mathcal{D} \to \mathcal{C}\] (90)
is a pair of unital functors between unital categories.

3.4.2

Suppose that bijections
\[
\begin{array}{ccc}
\text{Hom}_\mathcal{C}(Gd, c) & \xrightarrow{\phi_{dc}} & \text{Hom}_\mathcal{D}(d, Fc) \\
(c \in \text{Ob} \mathcal{C}, \ d \in \text{Ob} \mathcal{D})
\end{array}
\] (91)
are given that are natural in both \(d\) and \(c\).

Exercise 43 Let \(d \xrightarrow{\eta_d} FGd\) be a morphism corresponding under (91) to \(\text{id}_{Gd}\). Show that \(\eta = (\eta_d)_{d \in \text{Ob} \mathcal{D}}\) is a natural transformation \(\text{id}_\mathcal{D} \to F \circ G\) and \((G, \eta)\) is a left adjoint pair to \(F\).

Exercise 44 Let \(GFc \xrightarrow{\epsilon_c} c\) be a morphism corresponding under (91) to \(\text{id}_{Fc}\). Show that \(\epsilon = (\epsilon_c)_{c \in \text{Ob} \mathcal{C}}\) is a natural transformation \(G \circ F \to \text{id}_\mathcal{C}\) and \((F, \epsilon)\) is a right adjoint pair to \(G\).

Exercise 45 Show that
\[\phi_{dc}(\alpha) = F\alpha \circ \eta_d \quad (\alpha \in \text{Hom}_\mathcal{C}(Gd, c))\]
and
\[\phi_{dc}^{-1}(\beta) = \epsilon_c \circ G\beta \quad (\beta \in \text{Hom}_\mathcal{D}(d, Fc)).\]

(A hint to all three exercises: utilize naturality of \(\phi_{dc}\) in \(d\) and \(c\).)
3.4.3

In other words, we have the following identities

\[\alpha = \epsilon_c \circ GF \circ \eta_d \quad (\alpha \in \text{Hom}_C(Gd, c)) \]

and

\[\beta = F \epsilon_c \circ FG \beta \circ \eta_d \quad (\beta \in \text{Hom}_D(d, Fc)). \]

3.4.4

It follows that in the unital case, with the target of one functor being the source of the other functor, and vice-versa, the natural transformations

\[\text{id}_D \xrightarrow{\eta} F \circ G \quad \text{and} \quad G \circ F \xrightarrow{\epsilon} \text{id}_C \]

are already encoded in the structure of natural bijections (91). They are referred to as the unit and, respectively, the counit of adjunction. In that case, it is sufficient to talk about pairs of adjoint functors in which \(G \) is a left adjoint of \(F \) while \(F \) becomes automatically a right adjoint of \(G \).

Exercise 46 Suppose both \(G \) and \(G' \) are left adjoint to \(F \). Show that there exists a unique natural transformation \(G \xrightarrow{\phi} C' \) such that the diagram commutes

\[\begin{array}{ccc}
\eta' & F \circ G' \\
\eta & F \circ G \\
d & F \phi
\end{array} \]

Deduce that, for a unital functor between unital categories, any two left adjoints are isomorphic by a unique isomorphism of functors compatible with the corresponding units of adjunction.

3.4.5

Dually, for a unital functor \(F \) between unital categories, any two right adjoints are isomorphic by a unique isomorphism of functors compatible with the corresponding counits of adjunction

\[\begin{array}{ccc}
\phi F & F' \circ F \\
\epsilon' & \epsilon \\
G \circ F & d
\end{array} \]
The perfect symmetry between left and right adjoint functors in the unital case is to some extent affected by the fact that in modern Mathematics one often is presented with a single functor. The existence and construction of its left and right adjoints are then the question and the task that are addressed.

Exercise 47 Show that
\[F \epsilon \circ \eta F = \text{id}_F \quad \text{and} \quad \epsilon G \circ G \eta = \text{id}_G. \quad (96) \]

Exercise 48 Suppose \(F \) and \(G \) is a pair of unital functors (90) between unital categories, equipped with a pair of natural transformations (94) satisfying the pair of identities (96). Show that \(G \) is left adjoint to \(F \) and \(F \) is right adjoint to \(G \).

3.5 Reflections and projective limits

3.5.1

Suppose that
\[\lambda = (l \xrightarrow{\lambda_b} Gb)_{b \in \text{Ob} \mathcal{B}} \]
is a projective limit of a functor \(G : \mathcal{B} \rightarrow \mathcal{C} \). An object in the category \(\mathcal{D} \rightarrow FG \) is a family of arrows
\[\xi = (x \xrightarrow{\xi_b} FGb)_{b \in \text{Ob} \mathcal{B}} \]
such that for all arrows in \(\mathcal{C} \), the diagram
\[x \xleftarrow{\xi'_b} \xrightarrow{FGb'} \]
\[x \xleftarrow{\xi_b} \xrightarrow{FGb} \]
\[(\beta \in \text{Hom}_\mathcal{C}(b, b')) \quad (97) \]
commutes. If \(x \) has a reflection along \(F \),
\[(\bar{x}, x \xrightarrow{\chi} F\bar{x}), \]
then, for each ξ_b, there exists a unique morphism $\check{x} \xrightarrow{\xi_b} Gb$ such that the diagram

$$
\begin{array}{cccc}
\check{x} & \rightarrow & FGb \\
\downarrow & & \uparrow \\
\check{\xi} & \rightarrow & F\xi_b \\
\downarrow & & \\
F\check{x} & \rightarrow & \\
\end{array}
$$

commutes.

Exercise 49 Show that the diagrams

$$
\begin{array}{cccc}
\check{x} & \rightarrow & Gb' \\
\downarrow & & \downarrow \beta \\
\check{\xi} & \rightarrow & Gb \\
\downarrow & & \\
F\check{x} & \rightarrow & \\
\end{array}
$$

($\beta \in \text{Hom}_C(b, b')$)

commute.

3.5.2

Thus,

$$\check{\xi} = (\check{x} \xrightarrow{\xi_b} Gb)_{b \in \text{Ob}_B} \quad (98)$$

is an object of the category of arrows $C \rightarrow G$, and therefore there exists a unique morphism $\check{\xi} \rightarrow \lambda$. In particular, $F\gamma \circ \chi$ is a morphism in the category of arrows $D \rightarrow FG$ from $\check{\xi}$ to $F\lambda$.

Exercise 50 Show that any morphism from $\check{\xi}$ to $F\lambda$ in the category of arrows $D \rightarrow FG$ can be represented as $F\alpha \circ \chi$ for some morphism α from $\check{\xi}$ to λ in the category of arrows $C \rightarrow G$.

3.5.3

Since λ is terminal in $C \rightarrow G$, we infer that $\alpha = \gamma$. In particular, $F\gamma \circ \chi$ is a unique morphism from $\check{\xi}$ to $F\lambda$ in the category of arrows $D \rightarrow FG$.

3.5.4

If *every* object $x \in \text{Ob}_D$ has a reflection along F, then $F\lambda$ is a terminal object in $D \rightarrow FG$, i.e., $F\lambda$ is a projective limit of $F \circ G$.

44
3.5.5
This fundamental property is usually stated as:

\[\text{functors that have left adjoints preserve all projective limits.}\] (99)

3.5.6
Dually,

\[\text{functors that have right adjoints preserve all inductive limits.}\] (100)
4 Embedding functors

4.1 Inclusion functors

4.1.1 Reflective and coreflective subcategories

Let us consider the canonical inclusion functor of a subcategory $\mathcal{C}' \subseteq \mathcal{C}$. If every object of \mathcal{C} has a reflection in \mathcal{C}', we say that \mathcal{C}' is a reflective subcategory. Similarly defined are coreflective subcategories. The corresponding left and, respectively, right adjoint functors $\mathcal{C} \to \mathcal{C}'$ are often of great importance and there is a multitude of examples in Algebra and Topology.

4.1.2 Unitalization of a binary structure

Given a binary structure (M, \cdot), let \bar{M} be the set

$$\bar{M} := \{e\} \sqcup M$$

(101)

equipped with the multiplication that extends multiplication on M by

$$e \cdot \bar{m} = \bar{m} \cdot e = \bar{m} \quad (\bar{m} \in \bar{M}).$$

(102)

Exercise 51 Show that the correspondence $M \mapsto \bar{M}$ gives rise to a functor

$$\text{Bin} \to \text{Bin}_{\text{un}}$$

(103)

from the category of binary structures Bin to the category of unital binary structures Bin_{un}, and show that this functor is left adjoint to the inclusion functor $\text{Bin}_{\text{un}} \hookrightarrow \text{Bin}$.

4.1.3

Note that \bar{M} is a monoid when M is a semigroup. Restriction of the unitalization functor (103) to semigroups defines a left adjoint functor to the inclusion of the category of monoids into the category of semigroups.

Exercise 52 Show that inclusion $\text{Mon} \hookrightarrow \text{Sgr}$ has no right adjoint functor. (Hint. Compare $\text{Hom}_{\text{Mon}}(M, \)$ and $\text{Hom}_{\text{Sgr}}(M, \)$, for example, when M has a single element.)
4.1.4 The category of groups as a subcategory of the category of monoids

Exercise 53 Show that the correspondence

\[M \mapsto M^* := \{ m \in M \mid m \text{ is invertible} \} \]

gives rise to a functor \(\text{Mon} \rightarrow \text{Grp} \), and show that this functor is right adjoint to the inclusion functor \(\text{Grp} \hookrightarrow \text{Mon} \).

4.1.5 The group completion functor

A left adjoint functor to \(\text{Grp} \hookrightarrow \text{Mon} \) is called a group completion functor. A reflection of a monoid \(M \) in the category of groups can be constructed as the quotient of a coproduct of \(M \) and \(M^{\text{op}} \) in the category of monoids

\[M \sqcup_{\text{Mon}} M^{\text{op}} \quad (104) \]

(which is realized by the free product of monoids \(M \ast_{\text{un}} M^{\text{op}} \)) by a weakest congruence \(\sim \) such that

\[mm^{\text{op}} = e \quad \text{and} \quad m^{\text{op}}m = e \quad (m \in M), \]

where \(e \) is the identity element in (104). Let us denote \((M \sqcup_{\text{Mon}} M^{\text{op}})/\sim \) by \(G(M) \).

Exercise 54 Show that the inverse in the monoid \(G(M) \) of the equivalence class of a word

\[w = l_1 \cdots l_q \]

is the class of the word

\[w' := l'_q \cdots l'_1 \]

where

\[l'_l := \begin{cases} l^{\text{op}} & \text{if } l \in M \\ l & \text{if } l \in M^{\text{op}}. \end{cases} \]

4.1.6

Thus, \(G(M) \) is a group. Any homomorphism of monoids \(f: M \rightarrow G \) induces a homomorphism

\[M^{\text{op}} \xrightarrow{(\)^{-1} \circ f \circ (\)^{\text{op}}} G \quad (105) \]
and the two together give rise to a unique homomorphism of groups

\[G(M) \rightarrow G \]

whose restriction to \(M \subseteq G(M) \) equals \(f \) and whose restriction to \(M^{\text{op}} \subseteq G(M) \) equals (105).

4.2 Subcategories of categories of \(\nu \)-ary structures

4.2.1

Let \(\mathcal{A} \) be a certain category of \(\nu \)-ary structures. By definition, this means that \(\mathcal{A} \) is a subcategory of all such structures and their homomorphisms \(\nu\text{-alg str} \).

4.2.2 Identities

An identity in a \(\nu \)-ary structure is a formal equality

\[w(t_1, \ldots, t_n) = w'(t_1, \ldots, t_n) \]

(106)

where both \(w \) and \(w' \) are expressions obtained by formally applying a finite number of times operations of a \(\nu \)-ary structure to symbols \(t_1, \ldots, t_n \).

For example,

\[t_1(t_2 + t_3) = t_1t_2 + t_1t_3 \]

is an identity involving three symbols and two binary operations (addition and multiplication). It expresses left distributivity of multiplication with respect to addition.

4.2.3 A subcategory defined by a set of identities

We say that a structure \(A \in \text{Ob } \mathcal{A} \) satisfies identity (106) if substitution of any \(n \) elements \(a_1, \ldots, a_n \) under symbols \(t_1, \ldots, t_n \) produces an equality in \(A \). Let \(\mathcal{I} \) be a set of identities like (106) and let \(\mathcal{I}\mathcal{A} \) denote the full subcategory of \(\mathcal{A} \), consisting of those structures \(A \in \text{Ob } \mathcal{A} \) which satisfy all identities from set \(\mathcal{I} \).

4.2.4 The congruence \(\sim_{\mathcal{I}} \) associated with \(\mathcal{I} \)

Let \(\sim_{\mathcal{I}} \) be a weakest congruence on a structure \(A \in \text{Ob } \mathcal{A} \) such that

\[w(a_1, \ldots, a_n) \sim_{\mathcal{I}} w'(a_1, \ldots, a_n) \]
for all \(a_1, \ldots, a_n \in A\). The quotient structure \(A/\sim_g\) satisfies all identities from \(\mathcal{I}\) and any homomorphism \(A \to A'\) into any structure from \(\mathcal{I}\) uniquely factorizes through the quotient homomorphism \(A \to A/\sim_g\). It follows that the assignment \(A \mapsto A/\sim_g\) gives rise to a functor \(\mathcal{A} \to \mathcal{A}\) that is left adjoint to the inclusion functor \(\mathcal{I} \hookrightarrow A\).

\[
\begin{array}{ccc}
A & \xrightarrow{(\cdot)_{\sim_g}} & \mathcal{A} \\
\text{inclusion} & \downarrow & \\
& & \\
& \downarrow & \\
& & \mathcal{I} \\
\end{array}
\]
\tag{107}

4.2.5 Commutativization of a binary structure

There are numerous important examples of the situation described above. For example, the functor sending a structure \(A\) to its reflection in the category of commutative binary structures

\[\text{Bin} \to \text{Bin}_{\text{co}}, \quad A \mapsto A^\text{co}.\]
\tag{108}

Its restriction to the category of groups, yields a functor \(\text{Grp} \to \text{Ab}\), called abelianization. It sends a group to the quotient by its commutator subgroup

\[G \mapsto G^{\text{ab}} := G/[G, G]\]
\tag{109}

and is left adjoint to the inclusion functor \(\text{Grp} \hookrightarrow \text{Ab}\).

Exercise 55 Show that (109) is a reflection of a group \(G\) in the category of abelian groups.

4.2.6 Associativization of a binary structure

A functor sending a binary structure to its reflection in the category of semigroups

\[A \mapsto A^{\text{as}}\]
\tag{110}

is left adjoint to the inclusion functor \(\text{Sgr} \hookrightarrow \text{Bin}\).

4.2.7

Above we saw that the category of groups is a reflective and a coreflective subcategory of the category of monoids. Note that \(\text{Grp}\) is a full subcategory of \(\text{Mon}\) but is not defined by any set of identities involving the operations of multiplication or the 0-ary operation of identity on a monoid.
4.2.8

In contrast, full subcategories of algebraic structures defined by sets of identities are generally only reflective. For example, G^{ab} is the largest abelian quotient group of G but there is no similar largest abelian subgroup in G, except when G is abelian itself. For this reason, inclusion $\text{Ab} \hookrightarrow \text{Grp}$ has no right adjoint functor.

4.3 The diagonal functor $\Delta: \mathcal{C} \rightarrow \mathcal{C}^I$

4.3.1

Given a unital category \mathcal{C} and a small category I, the diagonal embedding functor $\Delta: \mathcal{C} \rightarrow \mathcal{C}^I$ of \mathcal{C} into the category of I-diagrams \mathcal{C}^I, is defined as follows. One assigns to each $c \in \text{Ob} \mathcal{C}$ the constant I-diagram, i.e, a functor $I \rightarrow \mathcal{C}$,

$$\Delta i := c, \quad \Delta i := \text{id}_c \quad (i \in \text{Ob} I, i \in \text{Mor} I).$$

To each morphisms $c \xrightarrow{\alpha} c'$ one assigns the constant natural transformation $\Delta \alpha$,

$$(\Delta \alpha)_i := \alpha \quad (i \in \text{Ob} I).$$

Exercise 56 Show that correspondences (111)–(112) define a unital functor

$$\Delta: \mathcal{C} \rightarrow \mathcal{C}^I.$$

Show that Δ embeds \mathcal{C} onto the full subcategory of \mathcal{C}^I provided I is nonempty.

4.3.2 Inductive limits as reflections along Δ

Reflections of a diagram $D \in \text{Ob} \mathcal{C}^I$ along Δ are the same as inductive limits of D.

4.3.3 Projective limits as coreflections along Δ

Coreflections of a diagram $D \in \text{Ob} \mathcal{C}^I$ along Δ are the same as projective limits of D.

4.3.4 Example: Set $\hookrightarrow G$-set

When I is a single object category,

$$\text{Ob} I = \{\bullet\}, \quad \text{Mor} I = \text{End}(\bullet) = G,$$
where G is a semigroup, the diagonal functor becomes the embedding

$$\Delta: \text{Set} \hookrightarrow G\text{-set} \quad (114)$$

of the category of sets onto a full subcategory of G-sets with trivial action.

Exercise 57 Show that assigning to a G-set its set of orbits

$$X \mapsto X_{/G}, \quad (115)$$

cf. (33) defines a functor $G\text{-set} \rightarrow \text{Set}$. Then, directly from definition, prove that the orbit-set functor is left adjoint to (114). Show that assigning to a G-set its set of fixed points

$$X \mapsto X^G, \quad (116)$$

cf. (32), defines a functor $G\text{-set} \rightarrow \text{Set}$. Then, directly from definition, prove that the fixed-point functor is right adjoint to (114).

4.3.5 Generalization: G'-set $\hookrightarrow G$-set

Let $\phi: G \rightarrow G'$ be an epimorphism of groups. Denote its kernel by N. Any G'-set can be considered as a G-set on which the subgroup N acts trivially. This defines an embedding of the category of G'-sets onto the full subcategory of G-sets with trivial action of N

$$G'\text{-set} \hookrightarrow G\text{-set}. \quad (117)$$

4.3.6

For a G-set X, the normal subgroup $N \subseteq G$ acts trivially on the set of fixed points X^N and on the set of orbits $X_{/N}$. Thus, the action of G on these two sets induces the corresponding actions of the quotient group $G/N \cong G'$ and assignments

$$X \mapsto X_{/N} \quad (118)$$

and

$$X \mapsto X^N \quad (119)$$

define functors $G\text{-set} \rightarrow G'\text{-set}$.

Exercise 58 Show that (118) is left adjoint to (117) while (119) is right adjoint.
5 Forgetful functors

5.1 The forgetful functor $\text{Sgr}_{\text{co}} \rightarrow \text{Set}$

5.1.1 The free commutative semigroup functor

Consider the functor

$$\text{Sgr}_{\text{co}} \rightarrow \text{Set}$$

that sends a commutative semigroup $(M, +)$ to the underlying set M, forgetting the binary operation. This functor has a left adjoint that sends a set X to the coproduct of the constant family of semigroups $(\mathbb{Z}_+ \times x)_{x \in X}$. We shall denote that coproduct $\mathbb{Z}_+ X$. We can think of members of $\mathbb{Z}_+ X$ as being formal linear combinations

$$\sum_{x \in A} l_x x \quad (l \in \mathbb{Z}_+)$$

over all finite nonempty subsets $A \subseteq X$. In particular, $\mathbb{Z}_+ \emptyset$ is the empty semigroup.

5.1.2

Assigning to an element $x \in X$ the sum (124) with $A = \{x\}$ and $l_x = 1$, embeds X into $\mathbb{Z}_+ X$. Any mapping into a commutative semigroup $f : X \rightarrow M$ uniquely extends to a homomorphism of commutative semigroups

$$\mathbb{Z}_+ X \rightarrow M, \quad \sum_{x \in A} l_x x \mapsto \sum_{x \in A} l_x f(x),$$

demonstrating that $X \hookrightarrow \mathbb{Z}_+ X$ is a reflection of set X along the forgetful functor. In particular, $\mathbb{Z}_+ (\)$ is left adjoint to the forgetful functor $\mid \mid$,

$$\text{Set} \xrightarrow{\mathbb{Z}_+ (\)} \text{Sgr}_{\text{co}}$$

5.1.3 Free commutative semigroups

Commutative semigroups isomorphic to $\mathbb{Z}_+ X$ for some set X are referred to as free. We shall now provide an explicit realization of $\mathbb{Z}_+ X$ as the semigroup of symmetric words on alphabet X.
5.1.4 Symmetric powers of a set

The symmetric \(q \)-th power \(\Sigma^q X \) of a set \(X \) is defined as the set of orbits of the action of the permutation group \(\Sigma_q \) of \(1, \ldots, q \) on the \(q \)-th Cartesian power of \(X \). Thus, elements of \(\Sigma^q X \) are equivalence classes of the equivalence relation

\[
(x_1, \ldots, x_q) \sim (x_{\sigma(1)}, \ldots, x_{\sigma(q)}).
\]

Note that \(\Sigma^0 X = X^0 \) and \(\Sigma^1 X = X \).

5.1.5 The symmetric semigroup of words

For a set \(X \), consider the disjoint union of symmetric powers of \(X \),

\[
\Sigma X := X \sqcup \Sigma^2 X \sqcup \Sigma^3 X \sqcup \cdots \quad (121)
\]
equipped with the multiplication of orbits of the permutation groups induced by concatenation of their representatives:

\[
(x_1, \ldots, x_q) \cdot (x'_1, \ldots, x'_r) := (x_1, \ldots, x_q, x'_1, \ldots, x'_r). \quad (122)
\]

Exercise 59 Show that multiplication (122) is well defined and is associative.

Exercise 60 Show that assigning to a \(q \)-tuple its \(\Sigma^q \)-orbit,

\[
(x_1, \ldots, x_q) \mapsto [x_1, \ldots, x_q],
\]
defines a homomorphism of semigroups \(WX \rightarrow \Sigma X \) which is a commutativization of the free semigroup \(WX \).

5.1.6

We shall refer to \(\Sigma X \) equipped with multiplication (122) as the symmetric semigroup of words on an alphabet \(X \). It is isomorphic to \(\mathbb{Z}_+ X \) with

\[
[x_1, \ldots, x_q]
\]
corresponding to the formal linear combination

\[
\sum_{x \in A} l_x x
\]
where

\[
A := \{x_1, \ldots, x_q\} \quad \text{and} \quad l_x := |\{1 \leq i \leq q \mid x_i = x\}|.
\]
5.2 The forgetful functor \(\text{Mon}_\text{co} \rightarrow \text{Set} \)

5.2.1 The free commutative semigroup functor

Consider the functor

\[
\text{Mon}_\text{co} \xrightarrow{\sim} \text{Set}
\]

that sends a commutative monoid \((M, +)\) to the underlying set \(M\), forgetting the binary operation. This functor has a left adjoint that sends a set \(X\) to the coproduct of the constant family of monoids \((N)_{x \in X}\). We shall denote that coproduct \(NX\). It is realized as the direct sum

\[
NX = \bigoplus_{x \in X} N.
\]

We can think of members of \(NX\) as being formal linear combinations

\[
\sum_{x \in X} l_x x \quad (l \in N)
\]

with only finitely many \(l_x \neq 0\). In particular, \(N\emptyset\) is the zero monoid, consisting of a single element.

5.2.2

Like for commutative semigroups, assigning to an element \(x \in X\) the sum (124) with \(A = \{x\}\) and \(l_x = 1\), embeds \(X\) into \(NX\). Any mapping into a commutative monoid \(f: X \rightarrow M\) uniquely extends to a homomorphism of commutative monoids

\[
NX \rightarrow M, \quad \sum_{x \in X} l_x x \mapsto \sum_{x \in X} l_x f(x),
\]

demonstrating that \(X \hookrightarrow NX\) is a reflection of set \(X\) along the forgetful functor. In particular, \(N(\)\) is left adjoint to the forgetful functor \(\sim\),

\[
\text{Set} \xleftarrow{\sim} \text{Mon}_\text{co}
\]

5.2.3 Free commutative monoids

Commutative monoids isomorphic to \(NX\) for some set \(X\) are referred to as free.
5.3 The forgetful functor $\text{Ab} \rightarrow \text{Set}$

5.3.1 The free abelian group functor

Replacing everywhere the monoid \mathbb{N} by the group \mathbb{Z}, we obtain the free abelian group functor,

$$X \mapsto \mathbb{Z}^X = \bigoplus_{x \in X} \mathbb{Z} \quad (X \in \text{Ob Set}).$$

We can think of members of \mathbb{Z}^X as being formal linear combinations

$$\sum_{x \in X} l_x x \quad (l \in \mathbb{Z}) \quad (124)$$

with only finitely many $l_x \neq 0$.

Exercise 61 Show that $\mathbb{Z}(\)$ is left adjoint to the forgetful functor $\text{Ab} \rightarrow \text{Set}$,

$$\text{Set} \xrightarrow{\mathbb{Z}(\)} \text{Ab}$$

5.3.2 Free commutative monoids

Abelian groups isomorphic to \mathbb{Z}^X for some set X are referred to as free.

Exercise 62 Find a left adjoint functor to the forgetful functor $k\text{-mod} \rightarrow \text{Set}$,

$$\text{Set} \xrightarrow{?} k\text{-mod}$$

and define free k-modules.

Exercise 63 Let k be a unital ring. Find a left adjoint functor to the forgetful functor from the category of unitary k modules to the category of sets,

$$\text{Set} \xrightarrow{?} k\text{-mod}_{\text{un}}$$

and define free k-modules.
5.4 The forgetful functor A-set \rightarrow Set

5.4.1 The category of A-sets (A is a set)

Let A be a set. Sets equipped with a family of self-mappings

$$ (X \xrightarrow{L_a} X)_{a \in A} $$

will be referred as A-sets. They are precisely the v-ary structures with

$$ v: A \rightarrow N, \quad v(a) = 1 \quad (a \in A). $$

(125)

5.4.2

We shall denote $L_a(x)$ by ax. Morphisms $X \xrightarrow{f} X'$ are equivariant mappings, i.e., mappings satisfying

$$ f(ax) = af(x) \quad (a \in A, x \in X). $$

Exercise 64 Show that a coproduct of a family of A-sets $(X_i)_{i \in I}$ in the category of sets,

$$ \bigsqcup_{i \in I} X_i, $$

is also a coproduct in A-set.

5.4.3 A-sets of words

For a set X, consider the disjoint union of the Cartesian products,

$$ W(A; X) := X \sqcup A \times X \sqcup A \times A \times X \sqcup \cdots $$

(126)

equipped with the action of A,

$$ a(a_1, \ldots, a_q, x) := (a, a_1, \ldots, a_q, x) \quad (k \geq 0). $$

(127)

We shall refer to it as the A-set of words with coefficients in X.

5.4.4

Given any mapping $f: X \rightarrow Y$ into an A-set Y, the formula

$$ \tilde{f}((a_1, \ldots, a_q, x)) := a_1 \cdots (a_q f(x)) \ldots $$

(128)

defines a mapping $W(A; X) \rightarrow Y$.

Exercise 65 Show that (128) is equivariant. Show that if $g: W(A; X) \rightarrow Y$ is an equivariant mapping whose restriction to X equals f, then $g = \tilde{f}$.

56
5.4.5 The free A-set functor

Thus, inclusion

$$X \hookrightarrow W(A; X)$$

is a reflection of a set X in the category of A-sets and assignment

$$X \mapsto W(A; X)$$

gives rise to a functor $\textbf{Set} \rightarrow A\text{-set}$ that is left adjoint to the forgetful functor $A\text{-set} \rightarrow \textbf{Set}$

$$\textbf{Set} \xrightarrow{W(A; \cdot)} A\text{-set}$$

5.4.6 The category of A-sets (A a semigroup)

Let A be a semigroup. Associative A-sets, i.e., A-sets satisfying the identity

$$(aa')x = a(a'x) \quad (a, a' \in A, x \in X),$$

form a full subcategory of the category of all A-sets. We shall denote it $A_{\text{sgr}}\text{-set}$ (when there is no danger of confusing it with A-set, we shall drop subscript “sgr”).

Exercise 66 Show that a coproduct of a family of associative A-sets $(X_i)_{i \in I}$ in the category of sets,

$$\bigsqcup_{i \in I} X_i,$$

is also a coproduct in $A_{\text{sgr}}\text{-set}$.

Exercise 67 Show that the formulae

$$ax := (a, x) \quad \text{and} \quad a(a', x) := (aa', x)$$

define an associative action of a semigroup A on the set

$$X \sqcup A \times X.$$

Show that any mapping $f : X \rightarrow Y$ into any associative A-set Y extends to a unique equivariant mapping

$$X \sqcup A \times X \xrightarrow{f} Y.$$
Thus, inclusion
\[X \hookrightarrow X \sqcup A \times X \]
is a reflection of a set \(X \) in the category of associative \(A \)-sets and the assignment
\[X \mapsto X \sqcup A \times X \]
gives rise to a functor \(\text{Set} \to A_{\text{sgr}-\text{set}} \) that is left adjoint to the forgetful functor \(A_{\text{sgr}-\text{set}} \to \text{Set} \)

\[\text{Set} \xrightarrow{\sim} A_{\text{sgr}-\text{set}} \]

Since \(A_{\text{set}} \) is the category of \(\nu \)-ary structures, cf. (125), and \(A_{\text{sgr}-\text{set}} \) is the full subcategory of \(A_{\text{set}} \) defined by identity (129), it is a reflective subcategory of \(A_{\text{set}} \).

Exercise 68 Find\(^1\) an equivariant mapping
\[
W(A; X) \longrightarrow X \sqcup A \times X
\]
that is a reflection of the \(A \)-set \(W(A; X) \) in the category of associative \(A \)-sets.

5.4.9 The category of \(A \)-sets (\(A \) a binary structure)

The definition of an associative \(A \)-set requires that identity (129) is satisfied. It does not require that the binary structure \(A \) is itself associative. Thus, we could consider the category \(A_{\text{bin}-\text{set}} \) of \(A \)-sets satisfying identity (129) for any binary structure \(A \).

Exercise 69 Let \(\phi: A \to B \) be a homomorphism of binary structures. Given a \(B \)-set \(Y \), let \(\phi^* Y \) be the same set equipped with the induced action by \(A \),

\[ay := \phi(a)y \quad (a \in A, y \in Y). \]

\(^1\)It goes without saying that whenever you are asked to find any object satisfying a certain property, you must prove that the object you “found” has indeed that property.
Show that the correspondence

\[Y \mapsto \phi \circ Y \quad (Y \in \text{Ob } B_{\text{bin-set}}) \]

gives rise to a functor \(\phi^* : B_{\text{bin-set}} \to A_{\text{bin-set}} \).

Exercise 70 Show that \(\phi^* \) is an isomorphism of categories when \(\phi \) is a reflection of a binary structure \(A \) in the category of semigroups.

5.4.10

In other words, \(A_{\text{bin-set}} \) is canonically isomorphic to the category \((A^\text{as})_{\text{bin-set}} \) of associative sets over the semigroup \(A^{\text{as}} \). In particular, the forgetful functor \(A_{\text{bin-set}} \to \text{Set} \) has as its left adjoint the functor that sends a set \(X \) to the \(A \)-set

\[X \sqcup A^{\text{as}} \times X \]

where \(A^{\text{as}} \) is canonically an \(A \)-set via the associativization homomorphism \(A \to A^{\text{as}} \). Note that \(A \)-set (130) is not associative unless \(A \) is itself associative.

5.4.11 The category of \(A \)-sets (\(A \) a monoid)

Let \(A \) be a monoid. *Associative* and *unitary* \(A \)-sets, i.e., \(A \)-sets satisfying identity (129) and the identity

\[ex = x \quad (x \in X), \quad (132) \]

where \(e \) is the identity of \(A \), form a full subcategory of the category of all \(A \)-sets. We shall denote it \(A_{\text{mon-set}} \) (when there is no danger of confusing it with \(A \)-set, we shall drop subscript “mon”).

Exercise 71 Show that a coproduct of a family of associative and unitary \(A \)-sets \((X_i)_{i \in I} \) in the category of sets,

\[\bigsqcup_{i \in I} X_i, \]

is also a coproduct in \(A_{\text{mon-set}} \).

Exercise 72 Show that the formulae

\[a(a', x) := (aa', x) \]
define an associative action of a semigroup A on the set $A \times X$.

Show that, for any mapping $f : X \rightarrow Y$ into any associative unitary A-set Y, there exists a unique equivariant mapping

$$A \times X \xrightarrow{f} Y$$

such that $\tilde{f}(e, x) = f(x)$.

5.4.12

Thus, inclusion

$$X \hookrightarrow A \times X, \quad x \mapsto (e, x),$$

is a reflection of a set X in the category of associative A-sets and the assignment

$$X \mapsto A \times X$$

gives rise to a functor $\text{Set} \rightarrow \text{A-mon-set}$ that is left adjoint to the forgetful functor $\text{A-mon-set} \rightarrow \text{Set}$

$$\text{Set} \xrightarrow{A \times (\)} \text{A-mon-set}$$

5.4.13

Since A-mon-set is the full subcategory of A-sgr-set defined by identity (132), it is a reflective subcategory of A-sgr-set.

Exercise 73 Find an equivariant mapping

$$X \sqcup A \times X \longrightarrow A \times X$$

that is a reflection of A-set (130) in the category of associative and unitary A-sets.
5.4.14
Any associative A-set X is automatically an associative and unitary \tilde{A}-set where \tilde{A} denotes the unitalization of A. In particular, the two categories

$$A_{\text{gr}}\text{-set} \quad \text{and} \quad \tilde{A}_{\text{mon}}\text{-set}$$

are isomorphic. Note that

$$X \sqcup A \times X = \tilde{A} \times X,$$

i.e., free objects in $A_{\text{gr}}\text{-set}$ are free objects of $A_{\text{mon}}\text{-set}$.

5.4.15
Any A-set X is automatically an associative WA-set where WA denotes the semigroup of words on the alphabet A. In particular, the three categories

$$A\text{-set}, \quad (WA)_{\text{gr}}\text{-set} \quad \text{and} \quad (W_{\text{un}}A)_{\text{mon}}\text{-set}$$

are isomorphic. Note that

$$W(A; X) = X \sqcup WA \times X = W_{\text{un}}A \times X,$$

i.e., free objects in $A\text{-set}$ are free objects of $A_{\text{gr}}\text{-set}$ as well as free objects of $A_{\text{mon}}\text{-set}$.

5.5 General functors $F : \mathcal{C} \rightarrow \text{Set}$

5.5.1
If a set $X = \{\ast\}$ has a reflection along $F : \mathcal{C} \rightarrow \text{Set}$,

$$(\bar{X}, X \xrightarrow{\delta} F\bar{X}),$$

then the set of mappings $X \rightarrow Fc$ is in a natural one-to-one correspondence with the set of morphisms $\bar{X} \rightarrow c$. For a single element X, mappings $X \rightarrow Fc$ are in a natural one-to-one correspondence with elements of Fc. The composition of these two correspondences yields an isomorphism of functors $F \simeq \text{Hom}_{\mathcal{C}}(\bar{X}, \)$ where X is any single element set.

5.5.2
In other words, if a single element set has a reflection along $F : \mathcal{C} \rightarrow \text{Set}$, then F is representable. Moreover, it is representable by any reflection of such a set.
5.5.3 Reflections along $\text{Hom}_C(a,)$

Given an object $a \in C$ and a set X, objects of the category of arrows from X to $\text{Hom}_C(a, C)$ are pairs

$$(c, X \xrightarrow{\delta} \text{Hom}_C(a, c)),$$

i.e., an object $c \in C$ and a family $(a_x)_{x \in X}$ of morphisms $a \rightarrow c$ indexed by X.

Exercise 74 Show that

$$(\bar{X}, X \xrightarrow{\bar{\delta}} \text{Hom}_C(a, \bar{X})),$$

is an initial object of the category of arrows from X to $\text{Hom}_C(a, C)$ if and only if the X-indexed family of arrows defined by by $\bar{\delta}: X \rightarrow \text{Hom}_C(a, \bar{X})$ is a coproduct

$$\bigsqcup_{x \in X} a$$

(134)

of the constant family $(a)_{x \in X}$ in C.

5.5.4

It follows that every set X has a reflection in category C along functor $\text{Hom}_C(a,)$ if and only if all coproducts (134) exist. In particular, the correspondence

$$X \mapsto \bigsqcup_{x \in X} a \quad (X \in \text{Ob}\ Set)$$

gives rise to a functor $\text{Set} \rightarrow C$ that is left adjoint to $\text{Hom}_C(a,)$,

$$\text{Set} \xrightarrow{\bigsqcup_{x \in X} a} C.$$

(135)

5.5.5

All “free structure” functors we examined are of this type. Indeed, the free structures generated by a set X are coproducts of X-indexed families of the corresponding structure generated by a single element. These were: the semigroup

$$t^Z,$$

(or $Z_+ t$ in additive notation),

(136)
the monoid
\[t^N \quad (\text{or } Nt \text{ in additive notation}), \tag{137} \]
and the group
\[t^Z \quad (\text{or } Zt \text{ in additive notation}) \tag{138} \]
— all freely generated by \(\{ t \} \). Note that (136)–(138) are also free power-associative: binary structure, binary structure with identity and, respectively, loop. Their coproducts in the categories of such structures describe free objects in those categories.

5.5.6

One can further extend this list by the nonunital and, respectively, unital power-associative semirings,
\[\mathbb{Z}_+[t]t = \mathbb{Z}_+t^+ \quad \text{and} \quad \mathbb{Z}_+[t] = \mathbb{Z}_+t^N, \]
by the nonunital and, respectively, unital power-associative semirings-with-zero,
\[\mathbb{N}_+[t]t = \mathbb{N}_t^+ \quad \text{and} \quad \mathbb{N}_+[t] = \mathbb{N}_t^N, \]
by the nonunital and, respectively, unital power-associative rings
\[\mathbb{Z}[t]t = \mathbb{Z}t^+ \quad \text{and} \quad \mathbb{Z}[t] = \mathbb{Z}t^N \]
— all freely generated by \(\{ t \} \). They are realized as the ring of of polynomials with integral coefficients in symbolic variable \(t \), and its sub-(semi)-rings of polynomials without constant terms, with non-negative or, finally, with positive coefficients.

Their coproducts in the corresponding categories of associative or only power-associative rings or semirings, are the “free” objects in those categories.

5.5.7

Free \(A \)-sets are coproducts
\[\coprod_{x \in X} W_{un} A_x, \]
free associative \(A \)-sets are coproducts
\[\coprod_{x \in X} \tilde{A}, \]

63
and, finally, free associative A-sets are coproducts

$$
\bigsqcup_{x \in X} A.
$$

In this case, the coproducts calculated in a subcategory are automatically coproducts in a larger category but the free A-sets generated by a single element set are different.
6 Tensor product

6.1 Pairings and the Hom-functor

6.1.1 Pairings in the category of sets

Let M, N and P be sets. We shall refer to mappings of two variables

$$M, N \xrightarrow{\phi} P$$ \hspace{1cm} (139)

as **pairings** from M and N to P.

6.1.2 Induced mappings

Any pairing (139) induces two mappings

$$\lambda: M \longrightarrow \text{Hom}_{\text{Set}}(N, P), \quad m \mapsto \lambda_m,$$

$$\rho: N \longrightarrow \text{Hom}_{\text{Set}}(M, P), \quad n \mapsto \rho_n,$$

where

$$\lambda_m(n) := \phi(m, n) =: \rho_n(m) \quad (m \in M, n \in N).$$

Exercise 75 Show that the correspondence

$$\phi \mapsto \lambda$$ \hspace{1cm} (140)

defines a bijection

$$\text{Map}(M, N; P) \longleftrightarrow \text{Hom}_{\text{Set}}(M, \text{Hom}_{\text{Set}}(N, P)).$$ \hspace{1cm} (141)

Exercise 76 What bijection does the correspondence

$$\phi \mapsto \rho$$ \hspace{1cm} (142)

induce?

6.1.3 Naturality in P

Postcomposing a pairing (139) with a mapping

$$h: P \longrightarrow P'$$ \hspace{1cm} (143)
produces another pairing

\[\begin{array}{c}
M, N \xrightarrow{\hbox{ho}\phi} P'
\end{array} \]

and the diagram

\[
\begin{array}{ccc}
\text{Map}(M, N; P') & \longrightarrow & \text{Hom}_{\text{Set}}(M, \text{Hom}_{\text{Set}}(N, P')) \\
\text{Map}(M, N; P) & \longrightarrow & \text{Hom}_{\text{Set}}(M, \text{Hom}_{\text{Set}}(N, P))
\end{array}
\]

whose rows are bijections (141) and columns are induced by postcomposition with (143). Commutativity of (144) is referred to as \textit{naturality in P}.

\subsection*{6.1.4 Naturality in M}

Next, \(\circ_1\)-precomposing a pairing (139) with a mapping

\[f: M' \longrightarrow M \]

produces the pairing

\[M', N \xrightarrow{\phi_1 f} P \]

and the diagram

\[
\begin{array}{ccc}
\text{Map}(M', N; P) & \longrightarrow & \text{Hom}_{\text{Set}}(M', \text{Hom}_{\text{Set}}(N, P)) \\
\text{Map}(M, N; P) & \longrightarrow & \text{Hom}_{\text{Set}}(M, \text{Hom}_{\text{Set}}(N, P))
\end{array}
\]

whose rows are bijections (141) and columns are induced by \(\circ_1\)-precomposition with (145). Commutativity of (146) is referred to as \textit{naturality in M}.

\subsection*{6.1.5 Naturality in N}

Finally, \(\circ_2\)-precomposing a pairing (139) with a mapping

\[g: N' \longrightarrow N \]

66
produces the pairing

\[M, N' \xrightarrow{\phi \circ g} P \]

and the corresponding diagrams

\[
\begin{array}{ccc}
\text{Map}(M, N'; P) & \xrightarrow{h \circ (\)} & \text{Hom}_{\text{Set}}(M, \text{Hom}_{\text{Set}}(N', P)) \\
\text{Map}(M, N; P) & \xrightarrow{(\) \circ g \circ (\)} & \text{Hom}_{\text{Set}}(M, \text{Hom}_{\text{Set}}(N, P))
\end{array}
\] (148)

whose rows are bijections (141) and columns are induced by postcomposition with (143). Commutativity of (148) is referred to as \textit{naturality in} \(N \).

Exercise 77 \textit{Show that diagrams (144), (146) and (148) commute.}

6.1.6

Similarly, the correspondence

\[\phi \mapsto \rho \]

defines a bijection

\[\text{Map}(M, N; P) \leftrightarrow \text{Hom}_{\text{Set}}(N, \text{Hom}_{\text{Set}}(M, P)) \]

natural in \(M, N \) and \(P \).

6.1.7

Postcomposing or precomposing with morphisms of the category of sets is an obvious way to “generate” pairings. In fact, there exists a \textit{universal} pairing\footnote{\(\upsilon \) is the letter \textit{upsilon}, it precedes \(\phi \) in the Greek alphabet and is also the first letter of the word \textit{universal}.} \[M, N \xrightarrow{\upsilon} T \] (149)

such that any pairing (139) can be produced from (149) by postcomposing with a \textit{unique} mapping \(h: T \rightarrow P \). We shall realize the universal pairing (149) as an \textit{initial} object in the appropriate category of pairings.
6.1.8 The category Bimap\((M,N)\)

The objects are pairings
\[
\begin{array}{c}
M,N \xrightarrow{\phi} X
\end{array}
\]
with arbitrary sets \(X\) as targets. The morphisms
\[
\begin{array}{c}
(M,N \xrightarrow{\phi} X) \longrightarrow (M,N \xrightarrow{\phi'} X')
\end{array}
\]
are mappings \(h: X \rightarrow X'\) such that
\[
\begin{array}{c}
\phi' \quad X' \\
\downarrow \quad \downarrow h \\
M,N \quad X \\
\phi \quad \downarrow \quad \downarrow
\end{array}
\]
commutes.

6.1.9

An initial object (149) in Bimap\((M,N)\) is called a tensor product of \(M\) and \(N\). Since Bimap\((M,N)\) is a unital category, any two initial objects are isomorphic by a unique isomorphism.

6.1.10 The functor Bimap\(_{MN}\)

Exercise 78 Show that the correspondences
\[
X \mapsto \text{Map}(M,N;X) \quad (X \in \text{Ob Set}),
\]
and
\[
h \mapsto h \circ () \quad (h \in \text{Hom}_{\text{Set}}(X,X'))
\]
do not define a functor that will be denoted
\[
\text{Bimap}_{MN}: \text{Set} \longrightarrow \text{Set}.
\]

Exercise 79 Show that functor Bimap\(_{MN}\) is representable by a set \(T\) if and only if there exists a pairing (149) that is an initial object of category Bimap\((M,N)\).
6.1.11 Automatic naturality of tensor product

Given two pairs of sets \(M, N \) and \(M', N' \), and their tensor products
\[
M, N \xrightarrow{v} T \quad \text{and} \quad M', N' \xrightarrow{v'} T',
\]
for any pair of mappings
\[
M \xrightarrow{f} M' \quad \text{and} \quad N \xrightarrow{g} N',
\]
there exists a unique mapping \(T \longrightarrow T' \), such that the diagram
\[
\begin{array}{ccc}
M', N' & \xrightarrow{v'} & T' \\
\downarrow{f} & & \downarrow{g} \\
M, N & \xrightarrow{v} & T
\end{array}
\]
commutes. Indeed, \(v' \circ (f, g) : M, N \longrightarrow T' \) uniquely factorizes through \(v \). Let us denote this mapping by \(T(f, g) \).

6.1.12

Given a third pair of sets \((M'', N'') \) and their tensor product
\[
M'', N' \xrightarrow{v''} T'' ,
\]
and a pair of mappings
\[
M' \xrightarrow{f'} M'' \quad \text{and} \quad N' \xrightarrow{g'} N'',
\]
we similarly obtain a unique mapping \(T(f', g') : T' \longrightarrow T'' \) for which the diagram
\[
\begin{array}{ccc}
M'', N'' & \xrightarrow{v''} & T'' \\
\downarrow{f'} & & \downarrow{T(f', g')} \\
M', N' & \xrightarrow{v} & T'
\end{array}
\]
commutes. It follows that the diagram

\[
\begin{array}{c}
M'', N'' \xrightarrow{v''} T'' \\
\downarrow (f', g') \circ (f, g) \quad \downarrow T(f', g') \circ T(f, g) \\
M, N \xrightarrow{v} T'
\end{array}
\]

does that as well. But

\[(f', g') \circ (f, g) = f' \circ f, g' \circ g.\]

Uniqueness of an arrow \(T \rightarrow T''\) closing up (156) to a commutative diagram thus implies that the following two mappings are equal

\[T(f' \circ f, g' \circ g) = T(f', g') \circ T(f, g).\]

6.1.13 Tensor product functors

We shall demonstrate shortly that a tensor product of any pair of sets indeed exists. As we observed above, any assignment of a tensor product (i.e., an initial object of category \(\text{Bimap}(M, N)\)) to each pair of sets \(M\) and \(N\) gives rise in a unique manner to a bifunctor, i.e., a functor of two variables

\[\text{Set, Set} \xrightarrow{T} \text{Set},\]

for which those pairings

\[M, N \xrightarrow{v_{MN}} T(M, N) \quad (M, N \in \text{Ob Set}),\]

are natural in \(M\) and \(N\).

6.2 Naturality

Naturality here means that for any pair of mappings (153), the diagram

\[
\begin{array}{c}
M', N' \xrightarrow{v_{M'N'}} T(M', N') \\
\downarrow f \circ g \quad \downarrow T(f, g) \\
M, N \xrightarrow{v_{MN}} T(M, N)
\end{array}
\]

commutes.
6.2.1

The correspondence between such assignments and the corresponding bifunctors equipped with universal pairings (157) that are natural in M and N, is bijective.

6.2.2 Existence of a tensor product

Consider the pairing

$$v_{MN}: M, N \rightarrow M \times N, \quad v_{MN}(m, n) := (m, n), \quad (159)$$

with the target being the Cartesian product of M and N, i.e., the set of ordered pairs of elements of M and N. The existence of the ordered pair is guaranteed by axioms of Set Theory. We shall refer to (159) as the tautological pairing.

It assigns to arguments $m \in M$ and $n \in N$ the ordered pair

$$(m, n) \in M \times N.$$

Note that the parentheses in "(m, n)" form a part of the standard notation for the ordered pair. On the other hand, the parentheses in "$v_{MN}(m, n)$" are present only to delimit the list of arguments to v_{MN}. They are entirely dispensable and are employed, like in many other mathematical formulae, to make the corresponding symbolic expressions easier to parse for a human eye.

6.2.3

As we see, the Cartesian product of M and N serves a double purpose. It provides a binary product of M and N in the category of sets, i.e., a projective limit of the functor $0_2 \rightarrow \textbf{Set}$,

$$\bullet \longrightarrow M, \quad \bullet' \longrightarrow N,$$

from the category 0_2 that has two objects \bullet and \bullet', and no morphisms.

It also represents mappings of two variables as mappings of a single variable, i.e., as morphisms of the category of sets (note that mappings of two variables themselves are not morphisms in \textbf{Set}).
6.2.4

More precisely, the functor Bimap_{MN} is representable by the Cartesian product $M \times N$, and isomorphisms of functors

$$\text{Hom}_{\text{Set}}(M \times N, \) \simeq \text{Bimap}_{MN}$$

are in bijective correspondence with those pairings

$$M, N \xrightarrow{\nu} M \times N$$

that are initial objects of category $\text{Bimap}(M, N)$. The latter serve as the Yoneda elements of functor isomorphisms (160), cf. Section 1.7.4. Thus, the bijection between isomorphisms (160) and initial objects of category $\text{Bimap}(M, N)$ is a restriction of the bijective correspondence between natural transformations

$$\text{Hom}_{\text{Set}}(M \times N, \) \longrightarrow \text{Bimap}_{MN}$$

and elements of $\text{Bimap}_{MN}(M \times N)$.

6.2.5

One such, canonical, isomorphism of functors (160) is induced by the tautological pairing, cf. (159).

Exercise 80 Show that the correspondences

$$M \mapsto M \times N \quad \text{and} \quad P \mapsto \text{Hom}_{\text{Set}}(N, P) \quad (M, P \in \text{Ob Set}),$$

(161)

give rise to functors

$$\text{Set} \xrightarrow{\text{Hom}_{\text{Set}}(N, \)} \text{Set}$$

(162)

and show that $(\) \times N$ is left adjoint to $\text{Hom}_{\text{Set}}(N, \)$.

6.2.6

Noting that

$$M \times N = \bigsqcup_{n \in N} M,$$

we observe that the pair of adjoint functors (162) is an instance of a general case (135) examined before.
6.3 q-ary mappings

6.3.1 Terminology

We shall refer to mappings of q variables as q-ary mappings.

6.3.2 Ternary tensor product

By considering initial objects in the corresponding categories of ternary mappings $\text{Map}_3(M, N, P)$,

$$M, N, P \xrightarrow{\phi} X,$$

one can define in a similar manner ternary tensor product functors

$$\text{Set, Set, Set} \xrightarrow{T} \text{Set}$$

equipped with universal ternary mappings

$$M, N, P \xrightarrow{\nu_{MNP}} T(M, N, P) \quad (163)$$

that are natural in M, N and P.

6.3.3 Naturality

Naturality here means that, for any mappings,

$$M \xrightarrow{f} M, \quad N \xrightarrow{g} N' \quad \text{and} \quad P \xrightarrow{h} P', \quad (164)$$

the diagram

$$\begin{array}{ccc}
M', N', P' & \xrightarrow{\nu_{M'N'P'}} & T(M', N', P') \\
\downarrow f & & \downarrow T(f, g, h) \\
M, N, P & \xrightarrow{\nu_{MNP}} & T(M, N, P)
\end{array} \quad (165)$$

commutes.

6.3.4

Ternary tensor product functors are again unique up to a unique isomorphism of functors equipped with natural universal ternary mappings.
6.3.5 “Associativity” of binary tensor product

Two iterated binary tensor products provide the corresponding triple tensor product functors:

\[M, N, P \mapsto T(T(M, N), P) \quad v_{MN|P} := v_{T(M,N), P} \circ v_{MN}, \]
(166)

and

\[M, N, P \mapsto T(M, T(N, P)), \quad v_{M|NP} := v_{M, T(N,P)} \circ v_{NP}. \]
(167)

For example, for the tautological pairings (159), the corresponding triple tensor product functor (166) becomes

\[M, N, P \mapsto (M \times N) \times P \quad v_{MN|P}(m, n, p) := ((m, n), p) \]

while (167) becomes

\[M, N, P \mapsto M \times (N \times P) \quad v_{M|NP}(m, n, p) := (m, (n, p)). \]

6.3.6

Uniqueness of a triple tensor product functor up to a unique isomorphism compatible with universal triadditive mappings (190), means that these iterated binary tensor product functors are isomorphic via such unique isomorphism. This is known as associativity of binary tensor product. Note, that this is not the strict associativity in the sense of equality of functors. But tensor product itself is defined up to such a unique isomorphism.

6.3.7

Above we encountered a situation that is very common in modern Mathematics: associativity

\textit{up to an isomorphism of a certain kind.}

In the case of tensor product, an isomorphism compatible with the data that our functors are equipped with is unique. In this situation, one can proceed, essentially, as if the corresponding functors were all equal.
6.3.8

The case of q-ary mappings is handled similarly. A standard model for the universal q-ary mapping

$$M_1, \ldots, M_q \xrightarrow{\phi} X$$ \hspace{1cm} (168)

is provided by the tautological q-ary mapping

$$M_1, \ldots, M_q \xrightarrow{\nu_{\text{taut}}} M_1 \times \cdots \times M_q$$ \hspace{1cm} (169)

where

$$\nu_{\text{taut}}(m_1, \ldots, m_q) := (m_1, \ldots, m_q).$$

6.3.9

Here any model can be used for the ordered q-tuple the most common being a mapping

$$\{1, \ldots, q\} \xrightarrow{f} M_1 \cup \cdots \cup M_q$$

such that

$$f(i) \in M_i \hspace{0.5cm} (1 \leq i \leq q).$$

6.3.10 Caveat

The habit of subconsciously identifying mappings of q-variables m_1, \ldots, m_q with mappings of a single variable, realized as the ordered q-tuple

$$(m_1, \ldots, m_q) \in M_1 \times \cdots \times M_q,$$

is so deeply ingrained in modern mathematical notation and terminology that one loses from sight the fact that mappings of q variables form an independent concept, similar to $q + 1$-ary relations being a different concept from binary relations.

The habit of omitting the parentheses when writing the value of a function

$$f: M_1 \times \cdots \times M_q \rightarrow N$$

as

$$f(m_1, \ldots, m_q) \hspace{0.5cm} \text{instead of} \hspace{0.5cm} f((m_1, \ldots, m_q))$$

removes even further any distinction between the two concepts.
6.3.11
Since tensor product of \(q\) sets is realized by Cartesian product, there is no need to employ separate terminology. This is also the reason why one normally does not hear about tensor products of sets. Understanding, however, the multiple roles Cartesian product plays in the category of sets helps greatly to comprehend the concept of tensor product in general as well as in concrete cases, like the categories of semigroups, monoids, abelian groups, and, more generally, \(G\)-sets, semimodules, modules, bimodules, etc.

6.4 Tensor product of commutative semigroups

6.4.1 Biadditive pairings

We shall refer to the binary operation in the category \(\text{Sgr}_{\text{co}}\) of commutative semigroups as addition and denote it accordingly by employing \(+\) symbol. Pairings in \(\text{Sgr}_{\text{co}}\) are biadditive pairings, i.e., binary mappings (139) which in each argument are morphisms in \(\text{Sgr}_{\text{co}}\), and that means additivity.

6.4.2 Notation

For any element \(m\) in a commutative semigroup \(M\) let

\[
am = ma := m + \cdots + m \quad (a \in \mathbb{Z}_+) \quad (170)
\]

6.4.3
The sets of morphisms \(\text{Hom}_{\text{Sgr}_{\text{co}}}(M, N)\) are naturally equipped with addition

\[
(f + g)(m) := f(m) + g(m) \quad (m \in M).
\]

Exercise 81 Show that the composition pairings

\[
\text{Hom}_{\text{Sgr}_{\text{co}}}(M, N), \quad \text{Hom}_{\text{Sgr}_{\text{co}}}(N, P) \quad \circ \quad \text{Hom}_{\text{Sgr}_{\text{co}}}(M, P)
\]

are themselves biadditive.
6.4.4

Even though $M \times N$ has a canonical commutative semigroup structure, the mapping

$$\bar{\phi}: M \times N \to P$$

representing a biadditive pairing (139) is not additive because

$$\bar{\phi}((m, n) + (m', n')) = \bar{\phi}((m + m', n + n')) = \phi(m + m', n + n')$$

$$\neq \phi(m, n) + \phi(m', n') = \bar{\phi}((m, n)) + \bar{\phi}((m', n')). \quad (171)$$

In other words, tensor product of commutative semigroups performed in the category of sets does not produce morphisms of \textbf{Sgr}_{co}. The problem of existence—for a given pair of commutative semigroups—of a universal biadditive pairing is, nevertheless, handled exactly the same way as before: a tensor product of commutative semigroups M and N is defined as an initial object of the corresponding category $\text{Biadd}(M, N)$ of biadditive pairings whose sources are M and N.

6.4.5 The category $\text{Biadd}(M, N)$

The definition of $\text{Biadd}(M, N)$ is completely analogous to $\text{Bimap}(M, N)$. In place of sets one considers commutative semigroups, in place of mappings – additive mappings, in place of pairings – biadditive pairings. Thus, the objects are biadditive pairings (150) with arbitrary commutative semigroups X as targets. The morphisms (151) are are additive mappings $h: X \to X'$ such that diagram (152) commutes.

6.4.6

An initial object $M \times N \xrightarrow{\upsilon} T$ in $\text{Biadd}(M, N)$ is called a tensor product of commutative semigroups M and N. Since $\text{Biadd}(M, N)$ is a unital category, any two initial objects are isomorphic by a unique isomorphism.

6.4.7 The functor Biadd_{MN}

The correspondences

$$X \mapsto \text{Map}(M, N; X) \quad (X \in \text{Ob} \textbf{Sgr}_{co}),$$

and

$$h \mapsto h \circ (\quad (h \in \text{Hom}_{\text{Sgr}_{co}}(X, X'))$$
define a functor that will be denoted
\[\text{Biadd}_{MN} : \text{Sgr} \rightarrow \text{Sgr} \].

Exercise 82 Show that functor \(\text{Biadd}_{MN} \) is representable by a commutative semigroup \(T \) if and only if there exists a biadditive pairing (149) that is an initial object of category \(\text{Biadd}(M, N) \).

6.4.8 Tensor product functors

Tensor product in the category of commutative semigroups enjoys the same automatic naturality properties as in the case of the category of sets and the same argument demonstrates that.

We shall demonstrate shortly that a tensor product of any pair of commutative semigroups indeed exists. Thus, the functors

\[\text{Sgr}_{co}, \text{Sgr}_{co} \rightarrow T \text{Sgr}_{co} \]

equipped with biadditive pairings

\[M, N \xrightarrow{\nu_{MN}} T(M, N) \]

such that, for any pair of homomorphisms (153), the diagram

\[\begin{array}{ccc}
M', N' & \xrightarrow{\nu_{M'N'}} & T(M', N') \\
\downarrow{f \otimes g} & & \downarrow{T(f \otimes g)} \\
M, N & \xrightarrow{\nu_{MN}} & T(M, N)
\end{array} \]

(173)

commutes, are in one-to-one correspondence with assignments of a tensor product (i.e., an initial object of category \(\text{Biadd}(M, N) \)) to each pair of commutative semigroups \(M \) and \(N \).

6.4.9 Tensor product notation

A tensor product functor is generally denoted \(\otimes \) and the value of the corresponding universal “bimorphism”

\[M, N \xrightarrow{\otimes} M \otimes N \]

(174)
on \(m \in M \) and \(n \in N \) is denoted \(m \otimes n \). The morphism that functor \(\otimes \) assigns to a pair of morphisms (153), is denoted

\[
f \otimes g : M \otimes N \longrightarrow M' \otimes N'.
\]

This notational practice is applied nearly in all situations when one encounters the concept of tensor product. The category of sets (and, as we shall see soon, the categories of \(G \)-sets) are rare exceptions. In those categories another, earlier introduced structure, fulfills the purpose of tensor product. Variants to this notational practice are marked by placing various subscripts or, in case of topological tensor products, “ornaments” like \(\hat{\otimes} \).

Exercise 83 Show that

\[
\phi(ma, n) = \phi(m, an) \quad (m \in M, n \in N, a \in Z_+)
\]

for any biadditive pairing (139). In particular,

\[
ma \otimes n = m \otimes an \quad (m \in M, n \in N, a \in Z_+).
\] (175)

6.4.10 Divisible elements

An element \(m \in M \) of a semigroup is said to be \(q \)-divisible if for every power \(q^d \) of \(q \), \(d \geq 1 \), there exists an element \(l \in M \) such that \(m = l^{q^d} \). If \(M \) is commutative, this condition in additive notation becomes \(m = q^d l \).

6.4.11 Divisible semigroups

A semigroup is \(q \)-divisible if every element is \(q \)-divisible.

Exercise 84 Show that \(M \otimes N \) is \(q \)-divisible if either \(M \) or \(N \) is divisible.

6.4.12 Elements of finite order

An element \(n \in N \) of a monoid has finite order, if there exists an integer \(q > 0 \) such that \(n^q = 1 \). If \(N \) is commutative, this condition in additive notation becomes \(qn = 0 \).

Exercise 85 Show that \(m \otimes n = 0 \) in \(M \otimes N \) for any \(q \)-divisible element \(m \) and any element \(n \) such that \(q^d n = 0 \) for some positive integer \(d \).
6.4.13
As a corollary we obtain that
\[\mu_\infty \otimes \mu_\infty = 0 \quad \text{and} \quad \mu_{p^\infty} \otimes \mu_{p^\infty} = 0 \]
where \(\mu_\infty \) is the multiplicative group of complex roots of unity, and \(\mu_{p^\infty} \) is the subgroup of roots of order being a power of prime \(p \).

6.4.14
A corollary of the previous observation is that the abelian group
\[C^* \otimes C^* \] (176)
has no elements of finite order since every element of the multiplicative group of complex numbers is \(q \)-divisible for any positive integer \(q \). In other words, (176) is a uniquely divisible abelian group, i.e., is a vector space over the field of rational numbers \(\mathbb{Q} \). The quotient of this group by a weakest congruence \(\sim \) such that
\[w \otimes z \sim z \otimes w \quad \text{and} \quad z \otimes (1-z) \sim 1 \otimes 1 \]
is isomorphic to \(K_2(\mathbb{C}) \), the 2nd algebraic \(K \)-group of the field of complex numbers by a celebrated theorem of Matsumoto. This is one of the earliest and still a fundamental result of Algebraic \(K \)-Theory. Note that here we preserve usual multiplicative notation for multiplication in the field of complex numbers.

6.4.15
Suppose that both \(M \) and \(N \) are monoids and elements \(m \in M \) and \(n \in N \) satisfy
\[am = o_M \quad \text{and} \quad bn = o_N \]
for some positive integers \(a \) and \(b \). Note that
\[m \otimes o_N = m \otimes (ao_N) = (am) \otimes o_N = o_M \otimes o_N \]
and, similarly,
\[o_M \otimes n = o_M \otimes o_N. \]
The greatest common divisor \(d \) of \(a \) and \(b \) can be represented as their linear combination with integral coefficients \(a' \) and \(b' \),

\[
d = aa' + bb'.
\]

Since \(a, c, d > 0 \), one of the factors \(a', b' \) is positive, another one—negative. Without loss of generality, suppose \(a > 0, \ b < 0 \).

Then

\[
(aa')m = a'(am) = a'0_M = o_M \quad \text{and} \quad (-bb')n = -(b')(bn) = -(b')0_N = o_N,
\]

and

\[
d(m \otimes n) = m \otimes (dn) + m \otimes o_N = m \otimes (dn) + m \otimes (-bb')n = m \otimes (d - bb')n = m \otimes (aa')n = (aa')m \otimes n = o_M \otimes o_N.
\]

In particular,

\[
m \otimes m = o_M \otimes o_N
\]

if \(a \) and \(b \) are relatively prime.

6.4.17 Tensor product of cyclic groups

The smallest positive integer \(a \) such that \(am = o_M \) is called the order of an element \(m \) in a monoid \(M \). The submonoid \(m \) generates

\[
\{0_M, m, 2m, 3m, \ldots, (a - 1)m\}
\]

is a cyclic group of order \(a \). Tensor product of two finite cyclic groups \(C_a \) and \(C_b \) of orders \(a \) and \(b \) is generated by a single element, namely \(g \otimes h \), where \(g \) and \(h \) are the corresponding generators of order \(a \) and, respectively, \(b \). As we saw in Section 6.4.16, the order of \(g \otimes h \) is at most \(d = \gcd(a, b) \).

Exercise 86 Show that the pairing

\[
\begin{pmatrix}
\phi \\
\end{pmatrix} : C_a, C_b \rightarrow \mathbb{Z}/d\mathbb{Z} , \quad \phi(ig, jh) := ij \mod d, \quad (177)
\]

where \(i, j \in \mathbb{N} \), is well defined, is biadditive and surjective.
6.4.18

In particular, pairing (177) induces a surjective homomorphisms of $C_a \otimes C_b$ onto the cyclic group $\mathbb{Z}/d\mathbb{Z}$. Since $C_a \otimes C_b$ has no more than d elements, this must be an isomorphism. We demonstrated that the tensor product of finite cyclic groups $C_a \otimes C_b$ is a cyclic group of order $d = \gcd(a, b)$.

6.4.19 Semilattices

A commutative semigroup M is a semilattice if every element in M is an idempotent. Recall that

$$ m \preceq m' \quad \text{if} \quad m + m' = m' $$

defines an order relation on M such that the binary operation becomes

$$ m + m' = \sup\{m, m'\}. $$

Note that in a semilattice a sink is the greatest element $\max M$. In particular, a semilattice has no more than a single sink. The identity element of addition, denoted 0, is the smallest element $\min M$.

Exercise 87 Show that $M \otimes N$ is a semilattice if one of the two semigroups is a semilattice.

Exercise 88 Show that the first-component pairing

$$ M, N \xrightarrow{\pi_1} M, \quad \pi_1(m, n) = m, \quad (178) $$

is biadditive if M is a semilattice. In particular, there exists a surjective homomorphism of commutative semigroups $M \otimes N \to M$.

6.4.20 Tensor product of a semilattice with an abelian group

Exercise 89 Suppose that N is an abelian group and $z \in M$ is an idempotent, i.e., $z + z = z$. Show that

$$ z \otimes n = z \otimes o_N \quad (n \in N). \quad (179) $$

(Hint. This is less obvious than it seems.)
If M is a semilattice while N is an abelian group, then, according to Exercise 89, the tensor product $M \otimes N$ is additively generated by $m \otimes o_N$, in view of the fact that every element in a semilattice is idempotent. The first-component pairing (178) is surjective and at the same time biadditive, according to Exercise 88, hence it induces a surjective homomorphism

$$M \otimes N \longrightarrow M. \quad (180)$$

This shows that all elements $m \otimes o_N$ are different. Since

$$m \otimes o_N + m' \otimes o_N = (m + m') \otimes N,$$

we conclude that (180) is an isomorphism of semigroups.

6.4.21 Tensor product of two semilattices

Let us consider a special case when both M and N are semilattices. If

$$m \preceq m' \quad \text{and} \quad n \preceq n',$$

then

$$m + m' = m' \quad \text{and} \quad n + n' = n',$$

and therefore

$$(m + m') \otimes (n + n') = m \otimes n + m' \otimes n + m \otimes n' + m' \otimes n' = m' \otimes n'. \quad (181)$$

Adding $m \otimes n$ to the left side of (181) does not change it, since

$$m \otimes n + m \otimes n = (m + m) \otimes n = m \otimes n.$$

Hence

$$m \otimes n + m' \otimes n' = m' \otimes n'.$$

In particular,

$$m \otimes n \preceq m' \otimes n'. \quad (182)$$
Example: $\{0, 1\} \otimes \{0, 1\}$

Let $M = \{0, 1\}$ be the simplest nontrivial semilattice, with $0 \prec 1$. Thus, 1 is a *sink* and 0 is the identity element of the additively written binary operation.

The tensor product $M \otimes M$ is additively generated by

$$0 \otimes 0, \; 0 \otimes 1, \; 1 \otimes 0 \; \text{and} \; 1 \otimes 1.$$

The results of Section 6.4.21 show that

$$0 \otimes 0 = \min M \otimes M, \quad 1 \otimes 1 = \max M \otimes M,$$

while $0 \otimes 1 + 1 \otimes 0$ is greater or equal than both $0 \otimes 1$ and $1 \otimes 0$. This almost completely determines the structure of $M \otimes M$. It implies, for example, that the set

$$\{0 \otimes 0, \; 0 \otimes 1, \; 1 \otimes 0, \; 0 \otimes 1 + 1 \otimes 0, \; 1 \otimes 1\} \quad (183)$$

is closed under addition, hence equals $M \otimes M$. It remains to show that these elements are all different.

We shall consider a number of surjective homomorphisms

$$M \otimes M \longrightarrow M \quad (184)$$

that will distinguish these elements. Thus, the first-component pairing (178) induces a homomorphism (184) that sends $0 \otimes 1$ to 0 while it sends $1 \otimes 0$ to 1. This shows that

$$0 \otimes 1 \neq 1 \otimes 0$$

and, since $1 \otimes 0 \leq 0 \otimes 1 + 1 \otimes 0$, also

$$0 \otimes 1 \neq 0 \otimes 1 + 1 \otimes 0, \quad \text{i.e.,} \quad 0 \otimes 1 \prec 0 \otimes 1 + 1 \otimes 0.$$

By considering the homomorphism (184) induced by the second-component pairing

$$\pi_2(m, m') := m',$$

we show that

$$1 \otimes 0 \prec 0 \otimes 1 + 1 \otimes 0.$$

Finally, the pairing

$$\phi(m, m') := \begin{cases} 1 & \text{if } m = m' = 1 \\ 0 & \text{otherwise} \end{cases}$$

84
(check that it is biadditive !) induces a homomorphism (184) that sends $1 \otimes 1$ to 1 and every other element of (183) to 0. Thus all 5 elements of (183) are indeed different. What we demonstrated can be represented in terms of the Hasse diagrams of the corresponding lattices as:

![Hasse diagram](image)

Exercise 90 *Show that the tensor product of linearly ordered sets with 3 and 2*
elements is the following lattice with 9 elements

To simplify notation we abbreviate

\[2 \otimes 1 \text{ to } 21, \quad 1 \otimes 1 + 2 \otimes 0 \text{ to } 11 + 20, \quad \text{etc.} \]

Exercise 91 Show that the tensor product of linearly ordered sets with 4 and 2
elements is the following lattice with 14 elements
One can show that the tensor product of a linearly ordered set with \(q \) elements by \(\{0, 1\} \),

\[
\begin{array}{c}
_ \\
_ \\
_ \\
_ \\
_ \\
_ \\
0
\end{array}
\]

is a lattice with \(\frac{q(q+3)}{2} \) elements, of which 2\(q \) are rank 1 tensors

\[i \otimes o \quad \text{and} \quad i \otimes 1, \]

and \(\frac{q(q-1)}{2} \) are rank 1 tensors

\[i \otimes 1 + j \otimes 0 \quad (1 \leq i < j \leq q). \]

Exercise 92 Draw the Hasse diagram of the tensor product of the linearly ordered set with 5 elements \(\{0, 1, 2, 3, 4\} \) and \(\{0, 1\} \).

6.4.24

Note that we were able to answer a number of questions about tensor product of commutative semigroups without even having a single explicit construction of tensor product at our disposal. This is how such questions should be handled. A construction that is coming is, in fact, highly nonexplicit, and is hardly ever used in actual questions involving tensor products — the universal properties of tensor product is what is employed instead.

6.4.25 A comment on constructing morphisms \(M \otimes N \rightarrow P \)

We determined the structure of \(M \otimes M \), where \(M = \{0, 1\} \), by constructing a number of homomorphisms into a specific semigroup (in our case it was \(M \) itself). Each such morphism was constructed by defining a biadditive
pairing \(M, M \xrightarrow{\phi} M \). This is the only admissible way of defining such homomorphisms. Attempts to define homomorphisms \(M \otimes N \rightarrow P \) directly on generating elements \(m \otimes n \) is not admissible in view of the fact that even though such elements generate \(M \otimes N \) but they are usually subject to intricate relations. Presence and nature of such relations between tensors is known to be connected to some of the most profound phenomena in Geometry and Mathematics in general.

Exercise 93 Show that \(M \otimes N \) is a group when both \(M \) and \(N \) are abelian groups.

6.4.26 A construction of a tensor product

Consider the free commutative semigroup \(F(M \times N) \) with basis \(M \times N \). Its elements are formal linear combinations

\[
\sum_{(m,n) \in S} l_{mn}(m,n) \quad (l_{mn} \in \mathbb{Z}_+),
\]

where \(S \) is a nonempty subset of \(M \times N \). Elements of \(M \times N \) correspond to the sums with

\[
S = \{(m,n)\} \quad \text{and} \quad l_{mn} = 1.
\]

Any mapping (150) into any commutative semigroup \(X \) uniquely extends to a homomorphism

\[
\tilde{\phi}: F(M \times N) \rightarrow X
\]

by the formula

\[
\tilde{\phi} \left(\sum l_{mn}(m,n) \right) := \sum l_{mn} \beta(m,n).
\]

6.4.27

Consider a weakest congruence \(\sim \) on the free semigroup \(F(M \times N) \) such that

\[
(m + m', n) \sim (m, n) + (m', n) \quad \text{and} \quad (m, n + n') \sim (m, n) + (m, n'),
\]

and set

\[
T(M, N) := F(M \times N)/\sim.
\]
Denote the equivalence class of \((m, n)\) by \(\overline{(m, n)}\). By design, the pairing
\[
v_{MN}: M \times N \rightarrow T(M, N), \quad (m, n) \mapsto \overline{(m, n)}
\]
is biadditive and homomorphism (185) uniquely factorizes through congruence \(\sim\) which demonstrates that (188) is an initial object of \(\text{Biadd}(M, N)\).

Notice that the construction given above is functorial in \(M\) and \(N\).

Exercise 94 Show that correspondence (140) defines an isomorphism of commutative semigroups
\[
\text{Hom}_{\text{Sgr}^\text{co}}(M \otimes N, P) \cong \text{Hom}_{\text{Sgr}^\text{co}}(M, \text{Hom}_{\text{Sgr}^\text{co}}(N, P)).
\]

We obtain a pair of functors
\[
\text{Sgr}^\text{co} \xrightarrow{(\) \otimes N} \text{Sgr}^\text{co} \xleftarrow{\text{Hom}_{\text{Sgr}^\text{co}}(N, \)}.
\]

Exercise 95 Show that \((\) \otimes N\) is left adjoint to \(\text{Hom}_{\text{Sgr}^\text{co}}(N, \)\).

6.5 \(q\)-ary tensor product of commutative semigroups

6.5.1 Ternary tensor product

By replacing biadditive mappings by triadditive mappings
\[
M, N, P \rightarrow X
\]
one can similarly define tensor product functors
\[
\text{Sgr}_{\text{co}}, \text{Sgr}_{\text{co}}, \text{Sgr}_{\text{co}} \xrightarrow{\text{T}} \text{Sgr}_{\text{co}}
\]
equipped with universal triadditive mappings
\[
M, N, P \xrightarrow{\nu_{\text{MPQ}}} T(M, N, P).
\]
6.5.2

Ternary tensor product functors are again unique up to a unique isomorphism of functors equipped with natural universal triadditive ternary mappings.

6.5.3 "Associativity" of binary tensor product

Two iterated binary tensor products provide the corresponding triple tensor product functors:

\[M, N, P \mapsto (M \otimes N) \otimes P, \quad \upsilon_{MN,P}: (m, n, p) \mapsto (m \otimes n) \otimes p, \]

and

\[M, N, P \mapsto M \otimes (N \otimes P), \quad \upsilon_{MNP}: (m, n, p) \mapsto m \otimes (n \otimes p). \]

Uniqueness of a triple tensor product functor up to a unique isomorphism compatible with universal triadditive mappings (190), means that these two iterated binary tensor product functors are isomorphic via such unique isomorphism, exactly like we saw it before in the case of the category of sets. In particular, binary tensor product of commutative semigroups is "associative" in the same sense as was explained in that case.

6.5.4

The case of multiadditive mappings is handled similarly and the same comments apply as in the case of the category of sets.

Exercise 96 Let \(M_1, \ldots, M_q \) be a sequence of commutative semigroups. Provide a correct definition of a \(q \)-additive \(q \)-ary mapping (168).

6.5.5 Terminology and notation

We shall abbreviate "\(q \)-additive \(q \)-ary mapping" to \(q \)-additive mapping or additive \(q \)-ary mapping. A universal \(q \)-additive mapping \(\upsilon_{M_1 \ldots M_q} \) is denoted

\[M_1, \ldots, M_q \longrightarrow M_1 \otimes \cdots \otimes M_q \quad (191) \]

with

\[\upsilon_{M_1 \ldots M_q}(m_1, \ldots, m_q) := m_1 \otimes \cdots \otimes m_q. \]
6.6 Tensor product of semilattices

6.6.1

We observed that a tensor product of semilattices in the category of semigroups is a semilattice, cf. Exercise 87. But there is also a tensor product in the category of semilattices, namely an initial object in the category of bimorphisms of semilattices,

\[\text{Bihom}_{\text{SLt}}(M, N), \]

(192)
i.e., parings (150) that are homomorphisms of semilattices in each argument.

6.6.2 The Idem functor

The image of any homomorphism of a lattice \(M \) into a commutative semigroup \(X \) has its image contained in the set of idempotents

\[\text{Idem } X := \{ x \in X \mid 2x = x \}. \]

(193)

Note that (193) is a subsemigroup of \(X \). Thus

\[\text{Hom}_{\text{Sgr}_c}(M, X) = \text{Hom}_{\text{SLt}}(M, \text{Idem } X) \]

which shows that assignment \(X \mapsto \text{Idem } X \) gives rise to a functor

\[\text{Sgr}_c \rightarrow \text{SLt} \]

that is right adjoint to the inclusion functor

\[\text{SLt} \hookrightarrow \text{Sgr}_c \]

that embeds the category of semilattices onto a full subcategory of commutative monoids which means that

\[\text{Hom}_{\text{SLt}}(M, N) = \text{Hom}_{\text{Sgr}_c}(M, N) \]

for any semilattices \(M \) and \(N \).

In other words, \(\text{SLt} \) is a full coreflective subcategory of \(\text{Sgr}_c \).

6.6.3

Since \(\text{SLt} \) is a full subcategory of \(\text{Sgr}_c \), if a tensor product \(M \otimes N \) of semilattices in the category of semigroups happens to be a semilattice, then an initial object in category Biadd\((M, N)\) is also an object in category Bihom\(_{\text{SLt}}\)(\(M, N\)), and therefore also an initial object of Bihom\(_{\text{SLt}}\)(\(M, N\)). In other words, for semilattices,

\[M \otimes_{\text{Sgr}_c} N = M \otimes_{\text{SLt}} M. \]

(194)
6.6.4 \(\mathcal{P}_\text{fin}^*(X \times Y) = \mathcal{P}_\text{fin}^*(X) \otimes \mathcal{P}_\text{fin}^*(Y) \)

Let \(\mathcal{P}_\text{fin}^*X \) denote the set of nonempty finite subsets of \(X \). Equipped with the operation of union \(\cup \) it is a semilattice freely generated by one-element subsets: each nonempty finite subset \(A \subseteq \mathcal{P}_\text{fin}^*(X) \) is represented as the union of distinct one-element sets,

\[
A = \{x_1\} \cup \cdots \cup \{x_q\},
\]

and such a representation is unique, with only those \(\{x\} \) contributing to representation \((195)\) being over all distinct elements of \(A \).

6.6.5

In particular, each homomorphism of semilattices

\[
\varphi: \mathcal{P}_\text{fin}^*(X) \rightarrow L
\]

is determined by its restriction to the set of one-element subsets \(\mathcal{P}_1(X) \), and any mapping \(f: \mathcal{P}_1(X) \rightarrow L \) has a unique extension to a morphism \((196)\) in the category \(\text{SLt}_\text{un} \) of semilattices,

\[
\varphi_f(A) := \sum_{x \in A} f(\{x\})
\]

In other words, there is a natural one-to-one correspondence

\[
\text{Hom}_{\text{SGr}_{\text{co}}}(\mathcal{P}_\text{fin}^*(X), L) = \text{Hom}_{\text{SLt}}(\mathcal{P}_\text{fin}^*(X), L) \longrightarrow \text{Hom}_{\text{Set}}(\mathcal{P}_1(X), L).
\]

6.6.6

Similarly, there is a natural one-to-one correspondence

\[
\text{Bihom}_{\text{SLt}}(\mathcal{P}_\text{fin}^*(X), \mathcal{P}_\text{fin}^*(Y); L) \longrightarrow \text{Hom}_{\text{Set}}(\mathcal{P}_1(X \times Y), L).
\]

A mapping \(f: \mathcal{P}_1(X \times Y) \rightarrow L \) has a unique extension to a biadditive mapping

\[
\phi_f(A, B) := \sum_{x \in A, y \in B} f(\{x\} \times \{y\})
\]

It follows that

\[
\mathcal{P}_\text{fin}^*(X), \mathcal{P}_\text{fin}^*(Y) \longrightarrow \mathcal{P}_\text{fin}^*(X \times Y), \quad A, B \mapsto A \times B,
\]

is an initial object in the category of bimorphisms of semilattices

\[
\text{Bihom}_{\text{SLt}}(\mathcal{P}_\text{fin}^*(X), \mathcal{P}_\text{fin}^*(Y)),
\]

93
6.6.7

Note that pairing (198) extends to

\[\mathcal{P}^*(X), \mathcal{P}^*(Y) \xrightarrow{X} \mathcal{P}^*(X \times Y) \ , \quad A, B \mapsto A \times B. \]

This is still a tensor product of \(\mathcal{P}^*(X) \) and \(\mathcal{P}^*(Y) \) if at least one of the sets \(X \) or \(Y \) is finite. When both are infinite, then (199) induces only an embedding

\[\mathcal{P}^*(X) \otimes \mathcal{P}^*(Y) \rightarrow \mathcal{P}^*(X \times Y). \]

6.7 Tensor product of commutative monoids

6.7.1

In the category of commutative monoids pairings and, more generally, \(q \)-ary mappings (168), are expected to be monoid homomorphisms in each argument. This means that besides additivity also

\[\phi(m_1, \ldots, m_q) = 0_X \]

is expected if any one \(m_1, \ldots, m_q \) is the identity element of the corresponding monoid (the latter in additive notation is denoted “0”). The category of commutative monoids \(\text{Mon}_{\text{co}} \) is not a full subcategory of \(\text{Sgr}_{\text{co}} \), so (200) has to be postulated.

6.7.2

With this caveat, tensor product of commutative monoids is defined exactly like for commutative semigroups, as an initial object of the corresponding category \(\text{Biadd}_{\text{un}}(M, N) \), of biadditive and unital in each argument pairings (150).

6.7.3 Tensor product of unital semilattices

The argument of Section 6.6.2 shows also that unital semilattices form a full coreflective subcategory of the category of commutative monoids with the Idem functor being a right adjoint to the inclusion functor \(\iota \),

\[\text{SL}_{\text{un}} \xrightarrow{\iota} \text{Mon}_{\text{co}}. \]
6.7.4

Noting that a tensor product of unital semilattices is a unital semilattice, we conclude that

\[M \otimes_{\text{Mon}_{\text{un}}} N = M \otimes_{\text{SLt}_{\text{un}}} N \quad (201) \]

for any unital semilattices \(M \) and \(N \).

6.7.5 \(\mathcal{P}_{\text{fin}}(X \times Y) = \mathcal{P}_{\text{fin}}(X) \otimes_{\text{mon}} \mathcal{P}_{\text{fin}}(Y) \)

The semilattice \((\mathcal{P}_{\text{fin}}(X), \cup) \) of all finite subsets of a set \(X \) is freely generated by one-element subsets in the category of \textit{unital} semilattices.

This is seen by inspecting formulae (196) and (197) in which one needs now to take into account also the cases when \(A \) or \(B \) are \(\emptyset \). This is done by setting

\[\varphi(\emptyset) = 0 \quad \text{and} \quad \varphi(\emptyset, B) = \varphi(A, \emptyset) = 0. \]

This adaptation of the corresponding argument for \(\mathcal{P}_{\text{fin}}^* \) shows that

\[\mathcal{P}_{\text{fin}}(X \times Y) = \mathcal{P}_{\text{fin}}(X) \otimes \mathcal{P}_{\text{fin}}(Y) \]

in the category of \textit{unital} semilattices and therefore also in the category of commutative monoids.

6.7.6 Construction of a tensor product of monoids

In the construction of its existence one still employs the free commutative \textit{semigroup} \(F(M \times N) \) and replaces congruence \(\sim \) by a weakest congruence \(\sim_{\text{mon}} \) on the free semigroup \(F(M \times N) \) such that it satisfies both

\[(m + m', n) \sim_{\text{mon}} (m, n) + (m', n) \quad \text{and} \quad (m, n + n') \sim_{\text{mon}} (m, n) + (m, n'), \quad (202) \]

and

\[(o_M, n) \sim_{\text{mon}} (o_M, o_N) \sim_{\text{mon}} (m, o_N). \quad (203) \]

Then

\[T_{\text{mon}}(M, N) := F(M \times N) / \sim_{\text{mon}} \quad (204) \]

provides a monoid that is a target of a universal biadditive pairing such that

\[v(o_M, n) = 0 = v(m, o_N). \]

Note that the \(o_{T_{\text{mon}}(M, N)} \) is the equivalence class of \((o_M, o_N) \).
An alternative approach is to utilize tensor product in the ambient category Sgr_{co} and modify it by enforcing unitality of both the universal pairing and the induced morphisms $M \otimes N \to P$.

So, for commutative monoids M and N, let

$$M \otimes_{\text{mon}} N := M \otimes N / \sim_0$$

where $M \otimes N$ denotes a tensor product in the category of commutative semigroups and \sim_0 is a weakest monoid congruence such that

$$o_M \otimes n \sim_0 o_M \otimes o_N$$

and

$$m \otimes o_M \sim_0 o_M \otimes o_N.$$

Exercise 97 Given two monoids, show that the composition of the universal biadditive pairing (174) with the quotient mapping $M \otimes N \to M \otimes_{\text{mon}} N$ is an initial object of category $\text{Biadd}_{\text{un}}(M, N)$.

6.7.8

We obtain a pair of functors

$$\xymatrix{ \text{Mon}_{\text{co}} \ar[r]^-{\otimes_{\text{mon}} N} & \text{Mon}_{\text{co}} \ar[l]_-{\text{Hom}_{\text{Mon}_{\text{co}}}(N, \)} }$$

6.7.9 Notation

We shall employ notation $M \otimes_{\text{mon}} N$ and $m \otimes_{\text{mon}} n$ in order to indicate that we form a tensor product in the category of monoids. When there is no danger of confusion, the subscript mon may dropped.

Exercise 98 Show that $\{0, 1\} \otimes_{\text{mon}} \{0, 1\}$ is isomorphic to $\{0, 1\}$.
Exercise 99 Show that

\[
\begin{align*}
2 \otimes 1 \\ 1 \otimes 2 + 2 \otimes 1
\end{align*}
\]

\[
\begin{align*}
2 & \downarrow \quad 2 \\
1 & \otimes_{\text{mon}} 1 \\
0 & \downarrow \quad 0 \\
1 & \otimes 1 \\
0 & \otimes 0
\end{align*}
\]

6.7.10 Abelian groups

Exercise 100 Show that

\[M \otimes_{\text{mon}} N \sim M \otimes N \]

when both \(M \) and \(N \) are abelian groups, i.e., show that tensor product of abelian groups formed in the category of commutative semigroups is also a tensor product of those groups in the category of commutative monoids.

Exercise 101 Show that \(M \otimes_{\text{mon}} N \) is an abelian group if one of the two monoids is a group.

6.7.11

This is in stark contrast with tensor product of an abelian group with a monoid in \(\text{Sgr}_{\text{co}} \), see Exercise 6.4.20. In fact, tensor product of an abelian
group \(N \) and a semilattice with identity \(M \) in the category of commutative monoids vanishes. Thus
\[
M \otimes N \cong M \quad \text{and} \quad M \otimes_{\text{mon}} N = 0.
\]

Exercise 102 Show that \(m \otimes_{\text{mon}} n = \alpha_M \otimes \alpha_N \) when \(M \) is an abelian group and \(N \) is a semilattice with identity.

6.7.12

Since the category of abelian groups \(\textbf{Ab} \) is a full subcategory of the category of commutative semigroups \(\textbf{Sgr}_\text{co} \), the pair of adjoint functors (189) restricts to the pair of similarly adjoint functors on \(\textbf{Ab} \).

\[
\begin{array}{ccc}
\text{Ab} & \overset{(-) \otimes N}{\longrightarrow} & \text{Ab} \\
\downarrow \text{Hom}_{\text{Ab}}(N, -) & & \downarrow \text{Hom}_{\text{Ab}}(N, -) \\
\end{array}
\]

(205)

6.7.13

In view of Exercise 101, we also obtain a pair of adjoint functors

\[
\begin{array}{ccc}
\text{Mon}_\text{co} & \overset{(-) \otimes_{\text{mon}} N}{\longrightarrow} & \text{Ab} \\
\downarrow \text{Hom}_{\text{Mon}_\text{co}}(N, -) & & \downarrow \text{Hom}_{\text{Mon}_\text{co}}(N, -) \\
\end{array}
\]

for any abelian group \(N \).

Exercise 103 Show that for any group \(G \),
\[
G \longrightarrow \text{Hom}_{\text{Mon}_\text{co}}(\mathbb{Z}, G), \quad g \mapsto h_g(h_g(l) := g^l),
\]
is an isomorphism of groups.

6.7.14

In particular, \(\text{Hom}_{\text{Mon}_\text{co}}(\mathbb{Z}, -) \) is isomorphic to the inclusion functor
\[
\begin{array}{ccc}
\text{Ab} & \hookrightarrow & \text{Mon}_\text{co} \\
\end{array}
\]

(206)

and we deduce that \((-) \otimes_{\text{mon}} \mathbb{Z} \) is left adjoint to (206).
A left adjoint to (206) is employed in definition of the \textit{K-functor} of a topological space and of an associative ring. The former leads to \textit{Topological}, the latter — to \textit{Algebraic K-Theory}. Both are among the most fundamental and most difficult subjects in modern Mathematics. Both are related to some of modern Mathematics’ greatest achievements.

\section*{6.8 \textit{A}-sets}

\subsection*{6.8.1}

Let \(A \) be a binary structure. The objects of the category \textit{A-set} are sets \(M \) equipped with the \textit{left} action of \(A \), i.e., a homomorphism of \(A \) into the multiplicative monoid

\[L: A \rightarrow \text{End}_{\text{Set}}(M)^{\times}, \quad a \mapsto L_a \]

where \(L_a(m) \) is denoted \(am \). Property of being a homomorphism of binary structures is expressed by the identity

\[(aa')m = a(a'm) \quad (a, a' \in A, m \in M). \]

\subsection*{6.8.2}

\textit{Equivariant} mappings between \textit{A}-sets, i.e., mappings \(f: M \rightarrow N \) such that

\[f(am) = af(n) \quad (a \in A, m \in M), \quad (207) \]

are the morphisms in the category of \textit{A}-sets.

\subsection*{6.8.3 \textit{Right} \textit{A}-sets}

Sets \(M \) equipped with the \textit{right} action of \(A \), i.e., an anti-homomorphism of \(A \) into the multiplicative monoid

\[R: A \rightarrow \text{End}_{\text{Set}}(M)^{\times}, \quad a \mapsto L_a \]

where \(R_a(m) \) is denoted \(ma \). Property of being an anti-homomorphism of binary structures is expressed by the identity

\[m(aa') = (ma)a' \quad (a, a' \in A, m \in M). \]
6.8.4
Right equivariant mappings, i.e., mapping satisfying
\[f(ma) = f(m)a \quad (a \in A, \ m \in M), \]
are morphisms and the category of right \(A \)-sets is denoted \(\text{set-} A \).

6.8.5
Note that \(A \) is an \(A \)-set, via left multiplication, if and only if the multiplication in \(A \) is associative. The same for right multiplication.

6.8.6
Since each binary structure acts on \(M \) via its image in the monoid \(\text{End}_{\text{Set}} M \), and that substructure of the multiplicative structure of \(\text{End}_{\text{Set}} M \) is associative, one can restrict attention to actions by semigroups.

6.8.7
Structure \(A \) acts naturally both on the left and on the right on the set of all mappings \(M \rightarrow N \),
\[(a'f)(m) := a'(f(m)) \quad \text{and} \quad (fa'')(m) := f(a''m). \quad (208) \]

Exercise 104 Show that \(a'f \) and \(fa'' \) are equivariant if \(a' \) and \(a'' \) belong to the center \(a' \in Z(A) \). Show that in that case
\[a'f = fa' \]

6.8.8
It follows that
\[\text{Hom}_{\text{A-set}}(M, N) \]
(209)
is an \(A \)-set itself if \(A \) is commutative. Tensor product of \(A \)-sets \(M \) and \(N \) is the defined as an initial object in the category
\[\text{Bihom}_{\text{A-set}}(M, N) \]
of biequivariant pairings (150), exactly like in previously considered categories. The corresponding \(A \)-set
\[M \otimes_{\text{A-set}} N \]
is realized as the balanced product,

\[M \times_A N := M \times N / \sim, \]

and the latter is defined as the quotient of \(M \times N \) by the equivalence relation

\[(am, n) \sim (m, an). \]

6.9 \((A, B)\)-bisets

6.9.1

The lack of an appropriate \(A \)-action on (209) is overcome when one realizes that each of the two \(A \)-actions on (209) are induced by another action on \(M \) and on \(N \), not necessarily by the same structure as \(A \), which commute with the actions of \(A \) on \(M \) and \(N \). This leads us to the notion of an \((A, B)\)-set.

6.9.2

Let \(A \) and \(B \) be binary structures. A set \(M \) equipped with a left action of \(A \) and a right action of \(B \) such that they commute, i.e., the identity

\[(am)b = a(mb) \quad (a \in A, b \in B) \quad (210) \]

holds, will be called an \((A, B)\)-set. We shall say in this case that \(M \) is equipped with an \((A, B)\)-biation.

6.9.3 The categories of \((A, B)\)-bisets

Sets equipped with an \((A, B)\)-biation form naturally categories denoted \(A\text{-}set\text{-}B \). The morphisms are mappings that are simultaneously \(A \) and \(B \)-equivariant.

6.9.4 The induced biset structure on \(\text{Hom}_{A\text{-}set}(M, N) \)

Exercise 105 Let \(M \) be an \((A, B)\)-set and \(N \) be an \((A, C)\)-set. Show that

\[(bf)(m) := (f(mb)) \quad \text{and} \quad (fc)(m) := (f(m)c) \quad (b \in B, c \in C), \quad (211) \]

defines a \((B, C)\)-biation on (209).
6.9.5
When $A = B = C$ is commutative and the left and right actions of A on M coincide, and similarly for N, we speak of symmetric A-bisets. In this case the two A-actions (211) are nothing but the actions introduced in (208) that make $\text{Hom}_{A-\text{set}}(M, N)$ a symmetric A-bimodule.

6.9.6 Terminology
In general, A-bisets are (A, B)-bisets with $A = B$. In other words, the sets equipped with two commuting actions of A, one left, one right.

6.9.7
In absence of commutativity, one has to postulate separate right actions on both M and N in order to have (209) equipped with an action by A. This calls for a left and a right action on each set given separately from each subject to the constraint that they commute with each other. In such circumstances there is no reason to limit oneself to actions on both sides by a single structure.

6.9.8
The concept of a biset allows one to extend the notion of a tensor product to sets equipped with actions by noncommutative structures. This is done by an appropriate refinement of the notion of an q-ary morphism.

6.9.9
Let A_0, \ldots, A_q be a sequence of binary structures and M_1, \ldots, M_q be a sequence of bisets, with M_i being an (A_{i-1}, A_i)-biset, $1 \leq i \leq q$.

6.9.10
We say that a q-ary mapping (168) whose sources are (A_{i-1}, A_i)-bisets and the target is an (A_0, A_q)-set X is balanced if

$$\phi(a_0m_1, m_2, \ldots, m_q) = a_0\phi(m_1, m_2, \ldots, m_q), \quad (212)$$

$$\phi(m_1, \ldots, m_i a_i, m_{i+1}, \ldots, m_q) = \phi(m_1, \ldots, m_i, a_i m_{i+1}, \ldots, m_q) \quad (1 \leq i < q), \quad (213)$$
and
\[\phi(m_1, m_2, \ldots, m_q a_q) = \phi(m_1, m_2, \ldots, m_q) a_q, \]
for all \(a_i \in A_i \) and \(m_i \in M_i \).

6.9.11 Balanced product

Let \(\sim \) be a weakest equivalence relation on
\[M_1 \times \cdots \times M_q \]
(215)
such that
\[(m_1, \ldots, m_i a_i, m_{i+1}, \ldots, m_q) \sim (m_1, \ldots, m_i, a_i m_{i+1}, \ldots, m_q) \quad (1 \leq i < q) \]
for all \(a_i \in A_i \) and \(m_i \in M_i \).

6.9.12

Denote by
\[M_1 \times_{A_1} \cdots \times_{A_{q-1}} M_q \]
the quotient of (215) by \(\sim \). We shall call it the balanced product of \(M_1, \ldots, M_q \).

Exercise 106 Show that
\[a_0(m_1, \ldots, m_q) := (a_0 m_1, \ldots, m_q) \]
and
\[(m_1, \ldots, m_q) a_q := (m_1, \ldots, m_q a_q) \]
are well defined.

Exercise 107 Show that the composition of the quotient mapping with the tautological \(q \)-ary mapping (169),
\[M_1, \ldots, M_q \xrightarrow{\text{taut}} M_1 \times \ldots \times M_q \xrightarrow{\sim} M_1 \times_{A_1} \cdots \times_{A_{q-1}} M_q \]
(219)
provides an initial object in the category \(\text{Bal Map}_q(M_1, \ldots, M_q) \) whose objects are balanced \(q \)-ary mappings (168) and morphisms are morphisms of \((A_0, A_q) \)-bisets.
\[h: X \longrightarrow X' \text{ such that} \]

\[
\begin{array}{ccc}
X' & \xrightarrow{\phi'} & X' \\
\downarrow & & \downarrow h \\
M_1, \ldots, M_q & \xrightarrow{\phi} & X
\end{array}
\] (220)

commutes.

6.9.13 Special case: symmetric \(A\)-bisets

When \(A_0, \ldots, A_q\) are all equal to a commutative structure \(A\), and \(M_1, \ldots, M_q\) are all symmetric \(A\)-bisets, then balanced \(q\)-ary mappings (168) are just \(q\)-ary morphisms of \(A\)-sets. In particular, balanced product

\[M_1 \times_A \cdots \times_A M_q \]

is a tensor product

\[M_1 \otimes_{A\text{-set}} \cdots \otimes_{A\text{-set}} M_q \]

in the category of \(A\)-sets, introduced in Section 6.8.8.

6.10

The \(q\)-ary correspondence

\[M_1, \ldots, M_q \mapsto M_1 \times_{A_1} \cdots \times_{A_{q-1}} M_q \]

gives rise to a \(q\)-ary functor

\[A_0\text{-set} \dashv A_1, \ldots, A_{q-1}\text{-set} \longrightarrow A_q \]

6.10.1 Balanced pairings and the Hom-functor

Exercise 108 For any \((A, B)\)-set \(M\), a \((B, C)\)-set \(N\) and an \((A, C)\)-set \(P\), show that the correspondence (140) defines a bijection

\[
\text{Hom}_{A\text{-set}}(M \times_B N, P) \longleftrightarrow \text{Hom}_{A\text{-set}}(M, \text{Hom}_{B\text{-set}}(N, P))
\]

that is natural in \(M, N\) and \(P\).
Exercise 109 Show that the correspondences
\[M \mapsto M \times_B N \quad (M \in \text{Ob } A\text{-set-B}), \quad (221) \]
and
\[P \mapsto \text{Hom}_{\text{set-C}}(N, P) \quad (P \in \text{Ob } A\text{-set-C}), \quad (222) \]
give rise to functors
\[A\text{-set-B} \xrightarrow{_ \times_B _} A\text{-set-C} \]
and show that \(_ \times_B _ \) is left adjoint to \(\text{Hom}_{\text{set-C}}(N, _). \)

Exercise 110 For any \((A, B)\)-set \(M\), a \((B, C)\)-set \(N\) and an \((A, C)\)-set \(P\), show that the correspondence \((142)\) defines a bijection
\[\text{Hom}_{A\text{-set-C}}(M \times_B N, P) \leftrightarrow \text{Hom}_{B\text{-set-C}}(N, \text{Hom}_{A\text{-set}}(M, P)) \]
that is natural in \(M\), \(N\) and \(P\).

Exercise 111 Show that the correspondences
\[N \mapsto M \times_B N \quad (N \in \text{Ob } B\text{-set-C}), \quad (223) \]
and
\[P \mapsto \text{Hom}_{A\text{-set}}(M, P) \quad (P \in \text{Ob } A\text{-set-C}), \quad (224) \]
give rise to functors
\[B\text{-set-C} \xrightarrow{M \times_B (_)} A\text{-set-C} \]
and show that \(M \times (_}\) is left adjoint to \(\text{Hom}_{A\text{-set}}(M, _).\)

6.10.2 The functor \(f^* : A\text{-set-C} \rightarrow A\text{-set-B}\)

A homomorphism of binary structures \(f : B \rightarrow C\) induces the functor
\[f^* : A\text{-set-C} \rightarrow A\text{-set-B} \]
which is identical on the underlying sets and on morphisms, preserves the left action of \(A\) and replaces the right action of \(C\) by the action of \(B\):
\[pb := p f(b) \quad (p \in P, b \in B). \]
6.10.3 The functor $f_* : A\text{-set-}B \rightarrow A\text{-set-}C$

When C is a semigroup, then C is naturally a (B, C)-set, with $bc := f(b)c$ and cc' being the multiplication in C. Balanced product with C over B provides the functor $f_* = (\) \times_B C$.

6.10.4

The two functors

$$
\begin{array}{c}
A\text{-set-}B \\
\downarrow f_*
\end{array}
\quad \quad
\begin{array}{c}
A\text{-set-}C \\
\downarrow f^*
\end{array}

$$

are not adjoint, in general. If C is a monoid, then $M \times_B C$ is automatically a unitary C-set, and the resulting pair of functors

$$
\begin{array}{c}
A\text{-set-}B \\
\downarrow f_*
\end{array}
\quad \quad
\begin{array}{c}
A\text{-set-}C \\
\downarrow f^*
\end{array}

$$

is indeed adjoint with f_* being left adjoint to f^*.

6.11 Semimodules

6.11.1 Semirings

Binary structures in the category of commutative semigroups are called (binary) semirings. Semigroups in the category of commutative semigroups are associative semirings.

6.11.2 Semiring $\text{End}_{\text{Sgr}_{\text{co}}} M$

In view of biadditivity of composition in Sgr_{co}, cf. (81), the monoid of endomorphisms of any commutative semigroup M is an associative and unital semiring.

6.11.3 Semimodules

If A is a semiring, then a biadditive pairing

$$
A, M \rightarrow M, \quad (a, m) \mapsto am,
$$
is said to be a (left) A-semimodule structure on a commutative semigroup M if it is simultaneously an action of the multiplicative structure of A, i.e., if

$$(aa')m = a(a'm) \quad (a, a' \in A, m \in M).$$

6.11.4

An A-semimodule structure on M is the same as a homomorphism of semirings

$$L: A \rightarrow \text{End}_{\text{Sgr}^\text{co} M}, \quad a \mapsto L_a \quad (L_a(m) := am).$$

Denote by $\bar{A} = L(A)$ the homomorphic image of A in $\text{End}_{\text{Sgr}^\text{co} M}$. The action of A on M is entirely determined by the action of the associative semiring \bar{A}, hence the notion of a semimodule reduces essentially to the case when the semiring of coefficients A is associative.

6.11.5 Right semimodules

Right semimodules are defined analogously, with the multiplicative structure of A acting on a commutative semigroup M on the right.

A right A-semimodule structure on M is the same as an anati-homomorphism of semirings

$$R: A \rightarrow \text{End}_{\text{Sgr}^\text{co} M}, \quad a \mapsto R_a \quad (R_a(m) := ma).$$

6.11.6 (A, B)-semimodules

Let A and B be semirings. A commutative semigroup M equipped with a left A-semimodule structure and a right B-semimodule structure is said to be an (A, B)-bisemimodule, if the two structures commute, i.e., if (210) holds.

6.11.7 Terminology

We speak of A-bisemimodules when $A = B$, and of symmetric A-bisemimodules when A is commutative and the two semimodule structures coincide.
6.11.8 Tensor product of semibimodules

Tensor product

$$M_1 \otimes_{A_1} \cdots \otimes_{A_q} M_q$$

of semibimodules is defined as an initial object in the category

$$\text{Bal Add}_q(M_1, \ldots, M_q)$$ (225)

whose objects are balanced q-additive mappings (168) and morphisms are morphisms of (A_0, A_q)-bisemimodules $h: X \rightarrow X'$ such that diagram (220) commutes.

6.11.9 A construction of a tensor product of semibimodules

On a tensor product

$$M_1 \otimes \cdots \otimes M_q$$ (226)

of the underlying commutative semigroups, let \sim be a weakest semigroup congruence such that

$$m_1 \otimes \cdots \otimes m_i a_i \otimes m_{i+1} \otimes \cdots \otimes m_q \sim m_1 \otimes \cdots \otimes m_i \otimes a_i m_{i+1} \otimes \cdots \otimes m_q$$ (227)

for any $1 \leq i < q$ and any $a_i \in A_i$.

6.11.10 Any q-additive mapping (168) factors uniquely through a universal q-additive pairing (191) and then, in view of being balanced, it further factors uniquely through the canonical quotient mapping

$$M_1 \otimes \cdots \otimes M_q \longrightarrow (M_1 \otimes \cdots \otimes M_q)_{\sim}$$ (228)

thus demonstrating that the composition of a universal q-additive pairing (191) with an (A_0, A_q)-semimodule morphism (228) is an initial object of (225).

6.12 Semimodules and semibimodules with zero

6.12.1 Here one assumes that all semirings and semimodules have 0 and that

$$o_A m = o_M \quad (m \in M).$$

108
6.12.2 Tensor product of semibimodules with zero

Tensor product
\[M_1 \otimes_{A_1} \cdots \otimes_{A_q} M_q \] \hspace{1cm} (229)

of semibimodules with zero is defined as an initial object in the category
\[\text{Bal Hom}_q(M_1, \ldots, M_q) \] \hspace{1cm} (230)

whose objects are balanced \(q \)-additive mappings (168) sending zero to zero, and morphisms are morphisms of \((A_0, A_q)\)-bisemimodules with zero \(h : X \rightarrow X' \) such that diagram (220) commutes.

6.12.3

A construction of a tensor product is a simple modification of the construction of Section 6.11.9, with the tensor product (226) replaced by the tensor product in the category of commutative monoids
\[M_1 \otimes_{\text{mon}} \cdots \otimes_{\text{mon}} M_q. \] \hspace{1cm} (231)

6.12.4 Tensor product of bimodules

When \(A_0, \ldots, A_q \) are associative rings and \(M_1, \ldots, M_q \) are the corresponding bimodules, then their tensor product (229) in the category of semibimodules is automatically an \((A_0, A_q)\)-bimodule. Since the category of bimodules is a full subcategory of the category of semibimodules with zero, (229) is also a tensor product in the category of bimodules.

6.13 \(k \)-semialgebras

6.13.1 Binary \(k \)-semialgebras

A bisemimodule \(A \) over an associative semiring \(k \), equipped with a bilinear multiplication
\[A, A \rightarrow A \]

6.14 \(k \)-algebras and unitalization

6.14.1 Binary \(k \)-algebras

Let \(k \) be an associative ring. A \(k \)-bimodule \(A \) equipped with a bilinear multiplication distributive with respect to addition
\[A \times A \rightarrow A \]
is called a \textit{k-algebra}. A \textit{k-algebra} structure on a \textit{k-bimodule} is the same as a \textit{k-bimodule} homomorphism

\[A \otimes_k A \longrightarrow A. \]

\section*{6.14.2 The ground ring}

In this situation, \(k\) is referred to as \textit{the ground ring} of an algebra \(A\).

\section*{6.14.3}

When \(k\) is a \textit{unital} ring, the bimodule \(A\) is expected to be \textit{unitary}, i.e., \(1 \in k\) is supposed to act on the left and on the right as \(\text{id}_A\). Let us denote by \(k\text{-alg}\) the corresponding category of associative \textit{k-algebras}. It contains the full subcategory of unital \textit{k-algebras} \(k\text{-alg}_{\text{un}}\).

\section*{6.14.4}

A homomorphism of \textit{k-algebras} \(f: A \longrightarrow A'\) is, by definition, a homomorphism of binary ring structures and of the underlying \textit{k-bimodule} structures.

\section*{6.14.5}

A homomorphism of unital \textit{k-algebras} is supposed to send \(1_A\) to \(1_{A'}\).

\textbf{Exercise 112} Let \(A\) and \(A'\) be unital \textit{k-algebras} over a unital ground ring. Show that a unital ring homomorphism \(f: A \longrightarrow A'\) is automatically a \textit{k-bimodule} homomorphism, hence \(f\) is a homomorphism of unital \textit{k-algebras}.

\section*{6.14.6}

In particular, for unital homomorphisms, the classes of ring and of \textit{k-algebra} homomorphisms coincide.

\section*{6.14.7 The unitalization functor}

For any \(A \in k\text{-alg}\) consider the \textit{k-algebra}

\[\tilde{A}_k := k \ltimes A. \]

(232)

110
The additive group of \tilde{A}_k is $k \times A$ with multiplication given by
\[(c,a) \cdot (c',a') := (cc', ca' + ac').\] (233)

The inclusion
\[k \hookrightarrow \tilde{A}_k, \quad c \mapsto (c,0),\] (234)
is a homomorphism of unital k-algebras, the k-bimodule structure of \tilde{A} is realized as multiplication by elements of the embedded copy of k.

Exercise 113 Show that
\[\tilde{f}_k: \tilde{A}_k \to \tilde{A}'_k, \quad \tilde{f}_k((c,a)) := (c, f(a))\] (235)
is a homomorphism of unital k-algebras.

6.14.8

Since one has clearly
\[\tilde{f} \circ \tilde{g}_k = \tilde{f}_k \circ \tilde{g}_k \quad \text{and} \quad \tilde{id}_A = \tilde{id}_{\tilde{A}_k},\]
the correspondences
\[A \mapsto \tilde{A}_k \quad \text{and} \quad f \mapsto \tilde{f}_k,\]
define a unital functor from $k\text{-alg}$ to $k\text{-alg}_{\text{un}}$.

Exercise 114 Show that the unitalization functor $U_k: k\text{-alg} \to k\text{-alg}_{\text{un}}$ is left adjoint to the inclusion functor $\iota: k\text{-alg}_{\text{un}} \to k\text{-alg}$.

6.14.9 Symmetric bimodules

A right k-module structure on A is the same as a left k^{op}-module structure. When $k = k^{\text{op}}$, i.e., when k is commutative, we say that A is a symmetric k-bimodule if the left and the right k-module structures coincide. The concept of a symmetric k-bimodule thus reduces to the concept of a k-module.
6.14.10 Z-algebras

An abelian group A is already equipped with a structure of a Z-module,

$$na := \begin{cases} a + \cdots + a & n > 0 \\ \underbrace{-(a + \cdots + a)}_{-n \text{ times}} & n < 0 \\ 0 & n = 0 \end{cases}$$

and this is the only unitary Z-module structure on A. This is equivalent to a simple observation that for any unital ring R, there is only one unital homomorphism $Z \rightarrow R$.

Exercise 115 Let R be any binary ring. For any idempotent $e \in R$,

$$f_e: Z \rightarrow R, \quad n \mapsto ne,$$

defines a homomorphism of nonunital binary rings. Show that the correspondence, $e \mapsto f_e$, defines a bijection

$$\{\text{idempotents in } R\} \leftrightarrow \\{\text{binary ring homomorphisms} \quad Z \rightarrow R \}$$

6.14.11

In particular, every unitary Z-bimodule is symmetric and any unital ring R has only one unital Z-algebra structure.

Exercise 116 Show that the image of Z in R is contained in the center of R

$$Z(R) := \{c \in R \mid [c, r] = 0 \text{ for all } r \in R\}. \quad (236)$$

6.14.12

If we apply this observation to the ring $\text{End}_{\text{Ab}} M$ of endomorphisms of an abelian group M, we conclude that any left or right R-module structure on M commutes with the unique unitary Z-module structure. In particular, a left R-module is the same as an (R, Z)-bimodule and a right R-module is the same as an (Z, R)-module.
Traditionally, k-algebras over commutative ground rings are expected to be k-modules, i.e., symmetric bimodules.

6.15 Tensor algebra

6.15.1 The tensor algebra functor

For any k-bimodule M, we define its tensor algebra by

$$TM := \bigoplus_{q > 0} M^\otimes_k q$$

where

$$M^\otimes_k q := M \otimes_k \cdots \otimes_k M \quad (q \text{ times}).$$

6.15.2

The multiplication

$$M^\otimes_k p \times M^\otimes_k q \longrightarrow M^\otimes_k (p+q)$$

sends $(m_1 \otimes \cdots \otimes m_p, m'_1 \otimes \cdots \otimes m'_q)$ to

$$m_1 \otimes \cdots \otimes m_p \otimes m'_1 \otimes \cdots \otimes m'_q.$$

Its associativity is automatic in view how we define q-ary tensor products of bimodules.

6.15.3

This defines a functor

$$T: k\text{-bimod} \longrightarrow k\text{-alg}, \quad M \longmapsto TM.$$ \hspace{1cm} (239)

6.15.4

Let A be a k-algebra. To provide a bimodule mapping $TM \longrightarrow A$ is equivalent to providing a sequence of q-linear mappings

$$\alpha_q: M^q \longrightarrow A \quad (q > 0).$$
Such a sequence corresponds to a homomorphism of k-algebras if and only if, for all $m_1, \ldots, m_{p+q} \in M$ and all $p, q > 0$, one has

$$
\alpha_{p+q}(m_1, \ldots, m_{p+q}) = \alpha_p(m_1, \ldots, \alpha_p(m_{p+1}, \ldots, m_{p+q})).
$$

(240)

In view of associativity of multiplication in A, identities (240) are equivalent to the identities

$$
\alpha_q(m_1, \ldots, m_q) = \alpha_1(m_1) \cdots \alpha_q(m_q).
$$

(241)

In particular, a k-algebra homomorphism $TM \rightarrow A$ is uniquely determined by its degree 1 component $\alpha_1 : M \rightarrow A$. Vice-versa, any bimodule homomorphism $f : M \rightarrow A$ extends to a k-algebra homomorphism $TM \rightarrow A$ by defining α_q via (241).

6.15.5

The bijective correspondence

$$
\hom_{k\text{-alg}}(TM, A) \leftrightarrow \hom_{k\text{-bimod}}(M, A)
$$

is natural both in M and A. This proves that the tensor algebra functor is a left adjoint to the forgetful functor $F: k\text{-alg} \rightarrow k\text{-bimod}$.

6.15.6 The unital version

On the category $k\text{-bimod}_{\text{un}}$ of unitary k-bimodules over a unital ground ring k, the correspondence

$$
M \mapsto T_{\text{un}}M := \bigoplus_{q \geq 0} M^{\otimes q}
$$

(242)

gives rise to a functor

$$
k\text{-bimod}_{\text{un}} \rightarrow k\text{-alg}_{\text{un}}
$$

which is left adjoint to the forgetful functor

$$
F_{\text{un}} : k\text{-alg}_{\text{un}} \rightarrow k\text{-bimod}_{\text{un}}
$$

from the category of unital k-algebras to the category of unitary k-bimodules.

6.15.7

Note that $M^{\otimes 0} = k$ for any, even zero, k-bimodule. In particular, $T_{\text{un}}0 = k$.

114
Note that $T_{\text{un}}M$ is the unitalization of TM.
7 Schemes

7.1 Schemes over a ground ring k

Let k be a unital associative and commutative ring. For brevity, we shall denote the category of unital associative and commutative k-algebras by k-Alg. We shall refer to k as the ground ring.

7.1.2 Functors $X: k$-Alg \to Set will be referred to as schemes or, more precisely, k-schemes.

7.1.3 Points over A

For each k-algebra A, elements of $X(A)$ are called points of X (defined) over A. We shall refer to $X(A)$ as the set of A-points of X.

7.1.4 Rational points

Elements of $X(k)$ are called rational points of X.

7.1.5 Affine space A_k^d

Given a natural number d, the affine space over k of dimension d is defined to be the functor

$$A \mapsto A^d := A \times \cdots \times A \quad \text{(d times)},$$

which sends a homomorphism of k-algebras $\phi: A \to B$ to the product map

$$\phi \times \cdots \times \phi : A^d \to B^d.$$ \hspace{1cm} (244)

7.1.6 The point (a scheme)

The affine space A_k^0 is called the point. For each k-algebra A, it has a unique A-point represented by the inclusion of the empty set into A,

$$A^0(A) = \{\emptyset \hookrightarrow A\}.$$
Exercise 117 Show that any natural transformation $A^0 \xrightarrow{\varphi} X$ is uniquely determined by the mapping

$$\varphi_k: A^0(k) \to X(k)$$

and deduce that there exists a natural bijection

$$\text{Nat tr}(A^0, X) \leftrightarrow X(k).$$

7.2 Functions on a scheme

7.2.1 The affine line

Among all functors $k\text{-Alg} \to \text{Set}$, the affine line A^1 has the distinction of coinciding with the forgetful functor from $k\text{-Alg}$ to Set.

7.2.2 Natural transformations from a functor $X: k\text{-Alg} \to \text{Set}$ to the forgetful functor A^1 form a cornerstone of the theory of schemes. We shall refer to them as functions on a scheme X. A function on X is a family

$$f = \left(X(A) \xrightarrow{f_A} A \right) \quad (A \in \text{Ob } k\text{-Alg})$$

of mappings $X(A) \to A$ indexed by arbitrary k-algebras A and naturally depending on A.

7.2.3 Values of functions

For any function $f: X \to A^1$, its value at an A-point $x \in X(A)$ is defined as

$$f(x) := f_A(x).$$

7.2.4 Addition and multiplication of functions

Given two functions $f: X \to A^1$ and $g: X \to A^1$, we can form the families of pointwise sums and products

$$\left(X(A) \xrightarrow{f_A + g_A} A \right) \quad \text{and} \quad \left(X(A) \xrightarrow{f_A g_A} A \right). \quad (245)$$

Given an element $c \in k$, we can also form the family

$$\left(X(A) \xrightarrow{c f_A} A \right). \quad (246)$$
Exercise 118 Show that three families in (245) and (246) are functions on \(X \), i.e., they are natural transformations \(X \to A^1 \).

7.2.5
Since the operations on functions are defined in terms of the corresponding operations on their values in \(k \)-algebras \(A \), and the latter are unital, associative and commutative, similar properties hold also for the induced operations on functions.

7.2.6 Small schemes
We shall say that a scheme \(X \) is small if natural transformations \(X \to A^1 \) form a set.

7.2.7 The \(k \)-algebra \(\mathcal{O}(X) \) of functions on a small scheme
In particular, for a small scheme, the functions on \(X \) form a unital, associative and commutative \(k \)-algebra,

\[
\mathcal{O}(X) := \text{Nat tr}(X, A^1).
\] (247)

7.3 Affine schemes
7.3.1 The spectrum of a \(k \)-algebra
For any \(k \)-algebra \(\mathcal{O} \), the functor

\[
\text{Hom}_{k-\text{Alg}}(\mathcal{O},)
\]

will be denoted \(\text{Spec}_k \mathcal{O} \) and called the spectrum of \(\mathcal{O} \).

Exercise 119 Show that there exists a bijection

\[
\text{Nat tr}(\text{Spec}_k \mathcal{O}', \text{Spec}_k \mathcal{O}) \leftrightarrow \text{Hom}_{k-\text{Alg}}(\mathcal{O}, \mathcal{O}')
\] (248)

which is natural in both \(\mathcal{O} \) and \(\mathcal{O}' \).

7.3.2 In particular, schemes \(\text{Spec}_k \mathcal{O} \) and \(\text{Spec}_k \mathcal{O}' \) are isomorphic if and only if \(k \)-algebras \(\mathcal{O} \) and \(\mathcal{O}' \) are isomorphic.
7.3.3 The category of affine schemes

A scheme that is isomorphic to the spectrum of some k-algebra is referred to as an affine scheme (over k). Affine schemes form a category Sch_{aff} with morphisms $X \to X'$ being the natural transformations from X to X'.

Exercise 120 Show that every affine scheme is a small scheme.

Exercise 121 Show that the affine space \mathbf{A}^d_k over k is isomorphic to the spectrum of the algebra $k[T_1, \ldots, T_d]$. (249)

7.3.4 Rational points of an affine scheme

It follows from Exercise 119 that rational points of $\text{Spec}_k \mathcal{O}$ are in natural one-to-one correspondence with homomorphisms of k-algebras $\mathcal{O} \to k$.

Such homomorphisms are called augmentations (of a k-algebra \mathcal{O}). Note that the composition of an augmentation with the canonical homomorphism $k \to \mathcal{O}, 1_k \mapsto 1_\mathcal{O}$ equals id_k in view of the fact that id_k is the only k-algebra homomorphism $k \to k$.

7.3.5 Product of affine schemes

Exercise 122 Show that $\text{Spec}_k (\mathcal{O} \otimes_k \mathcal{O}')$ is a product of $\text{Spec}_k \mathcal{O}$ and $\text{Spec}_k \mathcal{O}'$ in the category of affine schemes Sch_{aff}. (Hint. Use Yoneda’s correspondence to represent morphisms between the spectra of k-algebras.)

7.3.6

Existence of a canonical isomorphism

$$k[T_1, \ldots, T_n] \cong k[T_1] \otimes_k \cdots \otimes_k k[T_n]$$

reflects the fact that \mathbf{A}^d_k is a product of d copies of \mathbf{A}^1.

3Unital homomorphisms $A \to B$ of k-algebras are k-linear and send 1_A to 1_B.

119
7.3.7 Affine schemes with multiplication

A multiplication

\[X \times X \longrightarrow X \] \hspace{1cm} (250)

on an affine scheme \(X = \text{Spec}_k \mathcal{O} \) is, according to Exercise 119, the same as a unital homomorphism of \(k \)-algebras

\[\mathcal{O} \longrightarrow \mathcal{O} \otimes_k \mathcal{O}. \] \hspace{1cm} (251)

Any such a homomorphism is referred to as a \textit{comultiplication} on a \(k \)-module \(\mathcal{O} \).

7.3.8 Coalgebras

A \(k \)-module \(M \) equipped with a morphism

\[M \longrightarrow M \otimes_k M \]

is called a \textit{coalgebra} over \(k \) or a \(k \)-coalgebra.

7.3.9

Coassociativity, cocommutativity, a coidentity for comultiplication and, finally, a unary operation providing the inverse for comultiplication, are defined by reversing direction of arrows in the diagrams expressing the corresponding properties for a multiplication

\[M \otimes_k M \longrightarrow M. \]

7.3.10 Bialgebras

When \(M \) is a binary \(k \)-algebra, and comultiplication as well as a coidentity

\[M \longrightarrow k, \]

are homomorphisms of \(k \)-algebras, we say that \(M \), equipped with both multiplication and comultiplication is a \textit{bialgebra} over \(k \).
7.3.11 The bialgebra structure on \(k[T] \)

The correspondence
\[
T \mapsto 1 \otimes T + T \otimes 1
\]
induces the comultiplication on the algebra of polynomials \(k[T] \),
\[
T^l \mapsto (1 \otimes T + T \otimes 1)^l = \sum_{i+j=l} \binom{l}{i} T^i \otimes T^j. \tag{252}
\]

Exercise 123 Show that comultiplication (252) is coassociative and the augmentation
\[
e : k[T] \rightarrow k, \quad e(T) := 0,
\]
is its coidentity.

7.3.12 The additive group scheme \(G_a \)

Comultiplication (252) corresponds to addition of \(A \)-points of the affine line \(\mathbb{A}^1 \). The affine line is an example of a commutative group scheme. Its commutativity is reflected by the fact that comultiplication (252) is cocommutative. Viewed as a group scheme, the affine line is denoted \(G_a \) and referred to as the additive group (scheme).

7.3.13 Affine group schemes

Affine group schemes are isomorphic to \(\text{Spec}_k \mathcal{H} \) where \(\mathcal{H} \) is a commutative Hopf \(k \)-algebra.

7.3.14

Commutative and cocommutative Hopf algebras correspond to commutative affine group schemes.

7.3.15 The multiplicative group scheme \(G_m \)

The multiplicative group \(G_m \) is defined as the spectrum of the ring of Laurent polynomials \(k[T, T^{-1}] \) with comultiplication given by
\[
T \mapsto T \otimes T
\]
and the coidentity \(e : k[T, T^{-1}] \rightarrow k \) sending \(T \) to 1.
7.3.16 The general linear group scheme GL_n

The general linear group scheme GL_n is represented by the quotient of the algebra of polynomials over k in $1 + n^2$ variables

$$T_0 \quad \text{and} \quad T_{ij} \quad (1 \leq i, j \leq n),$$

by the ideal generated by the single element

$$1 - T_0 \sum_{\sigma \in \Sigma_n} \text{sign} \sigma T_1^{\sigma(1)} \cdots T_n^{\sigma(n)}$$

reflecting the fact that the determinant of an invertible $n \times n$ matrix is invertible. Here T_{ij} represent matrix element functions while T_0 represents the inverse of the determinant.

7.3.17

The comultiplication is given by

$$T_0 \mapsto T_0 \otimes T_0$$

(which reflects the fact that the determinant of the product of matrices is the product of their determinants), and

$$T_{il} \mapsto \sum_{1 \leq j \leq n} T_{ij} \otimes T_{jl} \quad (1 \leq i, l \leq n).$$

Note that comultiplication is not commutative for $n > 1$. For $n = 1$ we obtain $GL_1 = G_m$.

7.3.18 General group schemes

General group schemes are the same as functors

$$k\text{-Alg} \rightarrow \text{Grp}.$$

The underlying scheme structure is obtained by composing such a functor with the forgetful functor $\text{Grp} \rightarrow \text{Set}$.

Thus, G_m is a functor that assigns to a k-algebra A the multiplicative group A^* of its invertible elements, while GL_n assigns to A the group $GL_n(A)$ of invertible $n \times n$ matrices with entries from A.
7.4 Morphisms into affine schemes

7.4.1

A morphism \(\varphi: X \rightarrow \text{Spec}_k \mathcal{O} \), i.e., a natural transformation from \(X \) to \(\text{Spec}_k \mathcal{O} \), is a family of mappings of sets

\[
\varphi = \left(X(A) \xrightarrow{\varphi_A} \text{Hom}_{k}\text{-Alg}(\mathcal{O}, A) \right),
\]

which is indexed by \(k \)-algebras \(A \in \text{Ob } k\text{-Alg} \) and natural in \(A \). The latter means that, for any \(\alpha \in \text{Hom}_{k}\text{-Alg}(A, A') \), the square

\[
\begin{array}{ccc}
X(A) & \xrightarrow{\varphi_A} & \text{Hom}_{k}\text{-Alg}(\mathcal{O}, A) \\
\downarrow X_\alpha & & \downarrow \alpha() \\
X(A') & \xrightarrow{\varphi_{A'}} & \text{Hom}_{k}\text{-Alg}(\mathcal{O}, A')
\end{array}
\]

(253)

commutes.

7.4.2

Each component mapping \(\varphi_A \) is a family of homomorphisms \((\varphi_{A,x})_{x \in X(A)} \) from \(\mathcal{O} \) to \(A_x \) indexed by the set of \(A \)-points of \(X \). By the universal property of the product, there exists a unique homomorphism of unital \(k \)-algebras

\[
\psi_A: \mathcal{O} \rightarrow \prod_{x \in X(A)} A
\]

such that

\[
\text{ev}_x \circ \psi_A = \varphi_{A,x} \quad (x \in X(A)).
\]

Here \(\text{ev}_x \) are the “evaluation at \(x \)” mappings, corresponding to the canonical projections from the product onto its components.

Exercise 124 Show that commutativity of square (253) is equivalent to the commutativity of the squares

\[
\begin{array}{ccc}
X(A) & \xrightarrow{\varphi_{A}(h)} & A \\
\downarrow X_\alpha & & \downarrow \alpha() \\
X(A') & \xrightarrow{\varphi_{A'}(h)} & A'
\end{array}
\]

(254)
for each \(h \in \mathcal{O} \).

7.4.3

In other words, for each \(h \in \mathcal{O} \), the family

\[
\psi(h) := (\psi_A(h))_{A \in \text{Ob} \ k \text{-Alg}}
\]

is a natural transformation \(X \longrightarrow A^1 \), i.e., a function on \(X \).

Exercise 125 Show that, for any \(h, h' \in \mathcal{O} \) and \(c \in k \), one has

\[
\psi(h + h') = \psi(h) + \psi(h'), \quad \psi(hh') = \psi(h)\psi(h'). \quad \text{and} \quad \psi(ch) = c\psi(h)
\]

7.4.4

Vice-versa, let

\[
\psi: \mathcal{O} \longrightarrow \text{Nat tr}(X, A^1)
\]

be a unital homomorphism from a \(k \)-algebra \(\mathcal{O} \) to the class of natural transformations \(\text{Nat tr}(X, A^1) \).

Exercise 126 Show that the family \((\varphi_A)\), where

\[
\varphi_A: X(A) \longrightarrow \text{Hom}_{k \text{-Alg}}(\mathcal{O}, A)
\]

assigns to \(x \in X(A) \) the homomorphism \(\mathcal{O} \longrightarrow A \),

\[
h \mapsto \text{ev}_x \circ \psi_A(h),
\]

is a natural transformation \(X \longrightarrow \text{Spec}_k \mathcal{O} \).

7.4.5 The evaluation morphism of a small scheme

For a small scheme \(X \) and a \(k \)-algebra \(A \), let

\[
X(A) \xrightarrow{\text{ev}_A} \text{Hom}_{k \text{-Alg}}(\mathcal{O}(X), A)
\]

be the mapping that assigns to \(x \in X(A) \) the “evaluation at \(x \)” homomorphism \(\mathcal{O}(X) \longrightarrow A \),

\[
f \mapsto f(x).
\]

Exercise 127 Show that the family of mappings \(\text{ev} = (\text{ev}_A) \) is a natural transformation \(X \longrightarrow \text{Spec}_k \mathcal{O}(X) \).
Exercise 128 Show that homomorphism (255) associated to the evaluation morphism

\[\text{ev}: X \rightarrow \text{Spec}_k \mathcal{O}(X) \] \hspace{1cm} (257)

is the identity homomorphism.

Exercise 129 Given any k-algebra \(\mathcal{O} \) and a morphism \(\varphi: X \rightarrow \text{Spec}_k \mathcal{O} \), show that the diagram

\[
\begin{array}{ccc}
\text{Spec}_k \mathcal{O} & \xrightarrow{\varphi} & \text{Spec}_k \mathcal{O}(X) \\
\downarrow & & \downarrow (\) \circ \psi \\
X & \xleftarrow{\text{ev}} & \text{Spec}_k \mathcal{O}(X)
\end{array}
\] \hspace{1cm} (258)

commutes where \(\psi \) is the homomorphism (255) associated with \(\varphi \) and show that
\((\) \circ \psi \) is the only morphism \(\text{Spec}_k \mathcal{O}(X) \rightarrow \text{Spec}_k \mathcal{O} \) making (258) commute.

7.4.6

In other words, (257) is a reflection of a small scheme \(X \) in the full subcategory of affine schemes.

Exercise 130 Show that \(X \) is affine if and only if (257) is an isomorphism.