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Chapter 1

1.1 Introduction

1.1.1 Structures on a set

1.1.1.1

A very general class of mathematical structures is obtained by equipping
a set X with one or more subsets Γ ⊆ F(X) where F(X) is a set naturally
associated with set X . ‘Naturally’ here means that any map f : X → Y
induces a map

f∗ : F(X)→ F(Y) (1.1)

or a map
f ∗ : F(Y)→ F(X) (1.2)

1.1.1.2

In the first case we expect that

( f ◦ g)∗ = f∗ ◦ g∗, (1.3)

and we speak of covariant dependence on X , in the second case we require
that

( f ◦ g)∗ = g∗ ◦ f ∗, (1.4)

and we speak of contravariant dependence on X .

1.1.1.3

In modern Mathematics, such associations are called covariant and con-
travariant functors from the category of sets to the category of sets.
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1.1.2 A few examples of such functors

1.1.2.1 Cartesian powers

Given a set I , consider the correspondence that associates with a set X its
I -th Cartesian power

X  X I
˜ {(xi)i∈I | xi ∈ X} . (1.5)

The Cartesian power is a covariant functor, a map f : X → Y induces the
map

f∗ : X I → Y I , f∗ ((xi)i∈I)˜ ( f (xi))i∈I . (1.6)

1.1.2.2 Exponents

Given a set A , consider the correspondence that associates with a set X
the set of maps from X to A

X  AX
˜ {φ : X → A}. (1.7)

This functor is contravariant:

f ∗ : AY → AX, f ∗(φ)˜ φ ◦ f . (1.8)

1.1.2.3 The power set as a covariant functor

This is the functor that associates with a set X the set P(X) of all of its
subsets and, with a map f : X → Y , the map f∗ : P(X) → P(Y) that
sends a subset A ⊆ X to its image under f ,

f (A)˜ {y ∈ Y | y = f (x) for some x ∈ A}.

1.1.2.4 The power set as a contravariant functor

This functor associates with a set X , the same set P(X) , and with f : X →
Y , the map f ∗ : P(Y)→P(X) that sends a subset B ⊆ Y to its preimage
under f ,

f−1(B)˜ {x ∈ X | f (x) ∈ B}.

4



1.1.2.5

For any A ⊆ X and B ⊆ Y , one has

f (A) ⊆ B if and only if A ⊆ f−1(B). (1.9)

This means that the pair of maps ( f∗, f ∗) forms a Galois connection between
partially ordered sets (P(X),⊆) and (P(Y),⊆) (cf. Notes on Partially
Ordered Sets).

1.1.2.6

For any set X , there exists a natural bijection1

χX : P(X)→ 2X, A 7→ χX
A, (1.10)

where

χX
A(x)˜

{
1 if x ∈ A
0 otherwise

(1.11)

is the characteristic function of a subset A ⊆ X . In the interest of simplifying
notation when possible, the superscript X is dropped when X is clear from
the context.

1.1.2.7

‘Naturality’ of (1.10) means that, given a map f : X → Y , the following
diagram commutes,

P(X) P(Y)

2X 2Y
u

χX

u

χY

u
f ∗

u
f ∗

, (1.12)

i.e., the composition of arrows either way produces the same result

χX ◦ f ∗ = f ∗ ◦ χY.

In categorical language, we could say that χ is a natural transformation
of the contravariant power-set functor P( ) into the exponent functor
2( ) (in this case an isomorphism of functors, since all the maps χX are
isomorphisms in the category of sets, i.e., they are invertible maps).

1In the language of sets, 0 = ∅ and n = {0, . . . , n− 1} .
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1.1.2.8

Besides the category of sets there are other categories of interest in Math-
ematics, and there exist several interesting functors between them. Cat-
egorical language allows one to see various ‘natural’ constructions in a
clear light, and it facilitates noticing connections between seemingly distant
concepts and subjects. For this reason, it became very popular in modern
Mathematics to the point of being indispensible, and a ‘must-learn’ for a
beginner. We shall use it too.

1.1.2.9

You are encouraged to familiarize yourself with the language of categories
and functors as soon as possible and, after mastering the basics of cate-
gorical grammar, to learn also at least the concepts of an equivalence of
categories and of a pair of adjoint functors, and study numerous fundamen-
tally important examples these two concepts. To facilitate this, I include
the most besic definitions below.

Like with any language, acquiring proficiency requires constant use, so
you, after learning the basic concepts, should be constantly observing these
concepts at work in various branches of Mathematics.

1.2 First terms in the vocabulary

1.2.1 Families

1.2.1.1 Families of sets

The term a family of sets is used in two meanings: as a subset X ⊆P(U)
of the power set of some set U or, as a map

I →P(U), i 7→ Xi,

which assigns a set Xi to every element i ∈ I of certain set I . In the latter
case we speak of a family of subsets of U indexed by set I . The indexing
set can be arbitrary and it may come equipped with additional structure
like ordering.

1.2.1.2 Notation

It is customary to denote indexed families by (Xi)i∈I .
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1.2.1.3

A family of subsets of U viewed as a subset of P(U) is conceptually
simpler, as its definition does not rely on the notion of a map yet it can be
viewed as a special case of an indexed family, namely as a family indexed
by itself:

X →P(U), X 7→ X.

1.2.1.4 Families of elements of a set

A family of elements of a set X will be always used in the sense of a family
indexed by some set I . By definition it is a map

I → X, i 7→ xi.

Conceptually, there is no difference between a family of elements of X and a
map I → X . The difference is exclusively in notation and in the points of
emphasis.

In the language of families of elements the focus is on X and its ele-
ments. The nature of the indexing set is secondary and generally not very
important.

In the language of maps, the source and the target of a map are on equal
footing, and the map itself is usually sufficiently important to merit its own
symbol in notation.

1.2.1.5 Natural numbers

We shall frequently identify natural numbers with the sets:

0˜∅, 1˜ {0}, 2˜ {0, 1}, . . . , n˜ {0, . . . , n-1}, . . . (1.13)

Exercise 1 Show that 2 , 3 .

1.2.1.6 Sequences

Families indexed by subsets of the set of natural numbers or, more generally,
by ordered countable sets, are called sequences.
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1.2.1.7 n -tuples

Families indexed by I = {1, . . . , n} are called ordered n-tuples of elements
of X , and notation

(x1, . . . , xn) instead of (xi)i∈{1,...,n}

is generally used. Ordered 2-, 3-, 4-tuples are respectively called ordered
pairs, triples, quadruples.

1.2.2 Rings of sets and algebras of subsets

1.2.2.1 Rings of sets

A nonempty family of sets R , i.e., a nonempty set whose elements are sets,
is said to be a ring of sets if the union, R ∪ R′ , and the difference, R \ R′ ,
belongs to R for any R, R′ ∈ R .

Exercise 2 Show that in every ring of sets R one has

R ∩ R′ ∈ R for any R, R′ ∈ R.

1.2.2.2 Algebras of subsets

A nonempty family A ⊆P(X) of subsets of a set X is said to be an algebra
of subsets of X if the intersection, A∩ A′ , and the complement, Ac˜X \ A ,
belongs to A for any A, A′ ∈ A .

Exercise 3 Show that A ⊆ P(X) is an algebra of subsets of a set X if and
only if A is a ring of sets which contains X .

1.2.2.3

The family of all finite subsets Pfin(X) of a set X is a ring of sets which is
an algebra of subsets of X if and only if X is finite.

1.2.3 Operations involving families of sets

1.2.3.1 Union

The union of a family X ⊆P(U) is the set

{u ∈ U | u ∈ X for some X ∈ X }. (1.14)
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This set is denoted ⋃
X or

⋃
X∈X

X. (1.15)

1.2.3.2

The union of an indexed family (Xi)i∈I is defined similarly⋃
i∈I

Xi˜ {u ∈ U | u ∈ Xi for some i ∈ I }. (1.16)

1.2.3.3 Intersection

The intersection a family X ⊆P(U) is the set

{u ∈ U | u ∈ X for every X ∈ X }. (1.17)

This set is denoted ⋂
X or

⋂
X∈X

X. (1.18)

1.2.3.4

The intersection of an indexed family (Xi)i∈I is defined similarly⋂
i∈I

Xi˜ {u ∈ U | u ∈ Xi for every i ∈ I }. (1.19)

Exercise 4 Show that the intersection⋂
i∈I

Ri

of any family of rings of sets (Ri)i∈I is a ring of sets. Likewise, show that the
intersection ⋂

i∈I
Ai

of any family of algebras of subsets (Ai)i∈I of a given set X is an algebra of subsets
of X .
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1.2.3.5 Cartesian product

The Cartesian product of an indexed family (Xi)i∈I is the set of all families
ξ = (xi)i∈I of elements of

⋃
i∈I Xi such that xi ∈ Xi :

∏
i∈I

Xi˜
{
(xi)i∈I | xi ∈ Xi

}
. (1.20)

Equivalently,

∏
i∈I

Xi˜

{
ξ : I →

⋃
i∈I

Xi
∣∣ ξ(i) ∈ Xi

}
. (1.21)

1.2.3.6 Notation

The Cartesian product of a finite family (X1, . . . , Xn) is usually denoted

X1 × · · · × Xn. (1.22)

1.2.3.7 Comment

It is important to observe that one can replace
⋃

i∈I Xi in the definition of
the Cartesian product by any set that contains all Xi . The corresponding
‘products’ will be essentially identical sets. This is due to the observation
that there exists a canonical identification between maps A → B whose
image is contained in a subset B′ ⊆ B , and maps A→ B′ .

1.2.3.8 Canonical projections

The Cartesian product comes equipped with the family of surjective maps,

πi : ∏
j∈I

Xj → Xi ξ 7→ xi (i ∈ I), (1.23)

which send a map ξ : I → ⋃
i∈I Xi to its value at each i . When I =

{1, . . . , n} , then πi is the i -th coordinate map

πi : (x1, . . . , xn) 7→ xi (i = 1, . . . , n).

1.2.3.9 A universal property of the Cartesian product

Given any set Y and a family ( fi)i∈I of maps fi : Y → Xi , there exists a
unique map f̃ : Y → ∏i∈I Xi such that

fi = πi ◦ f̃ (i ∈ I). (1.24)
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Exercise 5 Verify that the map

f̃ : y 7→ ( fi(y))i∈I (y ∈ Y) (1.25)

satisfies (1.24), and that any map g : Y → ∏i∈I Xi which satisfies (1.24) coincides
with f̃ .

1.2.3.10 Disjoint unions of sets

The disjoint union of an indexed family (Xi)i∈I should be thought of as
the union of all sets Xi except that we keep as many distinct ‘copies’ of an
element x ∈ ⋃i∈I Xi as there are sets Xi which contain x . We achieve this
by ‘tagging’ every element in

⋃
i∈I Xi by the index of the set it belongs to:

ä
i∈I

Xi˜
{
(i, x) ∈ I ×

⋃
i∈I

Xi | x ∈ Xi
}

. (1.26)

1.2.3.11 Notation

The disjoint union of a finite family (X1, . . . , Xn) is usually denoted

X1 t · · · t Xn. (1.27)

Exercise 6 Denote by p the composition of the inclusion map and the canonical
projection

ä
i∈I

Xi ↪→ I ×
⋃
i∈I

Xi →
⋃
i∈I

Xi. (1.28)

Show that p is surjective. Show that the fiber p−1(x) at x ∈ ⋃i∈I Xi is

p−1(x) = {(i, x) | x ∈ Xi}.

In particular, p−1(x) is in on-to-one correspondence with the set

{i ∈ I | x ∈ Xi}.

1.2.3.12

It follows that the disjoint union of a family of sets (Xi)i∈I is canonically
identified with their union if and only if sets Xi are disjoint for distinct
i ∈ I :

Xi ∩ Xj = ∅ (i , j).
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1.2.3.13 Canonical inclusions

The disjoint union comes equipped with the family of injective maps,

ιi : Xi →ä
j∈I

Xj x 7→ (i, x) (i ∈ I). (1.29)

1.2.3.14 A universal property of the disjoint union

Given any set Y and a family ( fi)i∈I of maps fi : Xi → Y , there exists a
unique map f̃ : äi∈I Xi → Y such that

fi = f̃ ◦ ιi (i ∈ I). (1.30)

Exercise 7 Verify that the map

f̃ : (i, x) 7→ fi(x) (i ∈ I; x ∈ Xi) (1.31)

satisfies (1.30), and that any map g : äi∈I Xi → Y which satisfies (1.30) coincides
with f̃ .

1.2.3.15

Map p defined in (1.28) is precisely such universal map f̃ for the family of
inclusion maps

fi : Xi ↪→
⋃
j∈I

Xj (i ∈ I).

1.2.3.16

Note that the properties of the Cartesian product and of the disjoint union
of a family of sets are dual to each other. We shall explain this concept of
duality later.

1.3 Associativity properties of operations on families
of sets

1.3.1 Associativity of union

1.3.1.1 The indexed families case

Suppose we have two families of sets

(Xi)i∈I and (Xk)k∈K.
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The iterated union ⋃
i∈I

Xi ∪
⋃

k∈K
Xk

and the union ⋃
l∈ItK

Xl

are equal as sets. In the case of a pair of finite families (A1, . . . , Am) and
(B1, . . . , Bn) , this equality acquires the form

(A1 ∪ · · · ∪ Am) ∪ (B1 ∪ · · · ∪ Bn) = A1 ∪ · · · ∪ Am ∪ B1 ∪ · · · ∪ Bn.

1.3.1.2 The total family

In general, given any family of families of sets((
Xij

)
ij∈Ij

)
j∈J

, (1.32)

the universal property of the disjoint union allows us to form the total
family

(Xl)l∈L where L = ä
j∈J

Ij. (1.33)

Indeed, regarding all sets to be subsets of a common set U , family of
families of (1.32) is the same as a family of maps Ij → P(U)}j∈J and,
by the universal property of disjoint union, there exists a unique map
L→P(U) whose ‘restrictions’ to Ij are the component-families

(Ij →P(U))j∈J .

We shall refer to L→P(U) as the total family.

1.3.1.3

Now we are ready to make an observation about iterated unions of families.
The following sets are equal⋃

j∈J

⋃
ij∈Ij

Xij =
⋃
l∈L

Xl .

Exercise 8 Formulate the corresponding associativity laws for intersection of
families.
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1.3.1.4 The nonindexed families case

There are two natural maps⋃
: P(P(P(U))) −→P(P(U)) (1.34)

and ⋃
∗ : P(P(P(U))) −→P(P(U)). (1.35)

The first one is the familiar union-of-a-family map applied to P(U) instead
of U . It sends X ∈P(P(P(U))) , i.e., a family of families of subsets of U ,
to the family of subsets of U which belong to at least one member family
X ∈ X ⋃

X =
⋃

X ∈X
X .

The other one is induced by the map
⋃

: P(P(U))→P(U) . It is formed
by the unions of member families X ∈ X ,⋃

∗(X)˜
{

Y ⊆ U | Y =
⋃

X =
⋃

X∈X

X for some X ∈ X
}

.

Exercise 9 Show that the following diagram commutes

P(P(P(U))) P(P(U)))

P(P(U))) P(U)
u

⋃
w

⋃
∗

u

⋃
w

⋃ , (1.36)

i.e., show that the following two subsets of U ,⋃ (⋃
X
)
=

⋃
X∈⋃X

X

and ⋃⋃
∗(X) =

⋃
X ∈X

(⋃
X
)
=

⋃
X ∈X

( ⋃
X∈X

X

)
,

are equal for any family of families X ⊆P(P(U)) .
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1.3.1.5 Terminology

If one is going to deal with “families of families of subsets of a set U ,”
et caetera, on an extended basis, then one perhaps should use a less
cumbersome terminology. One could, for example, call subsets of the n
times iterated power set

Pn(U) = P(· · ·P︸       ︷︷       ︸
n times

(U) · · · ) (n ≥ 0)

n-families in a set U . In particular, subsets of U = P0(U) are 0-families,
families of subsets of U are 1-families, families of families of subsets of U
are 2-families, etc.

1.3.2 Cartesian product

1.3.2.1 Associativity of Cartesian product

Instead of equality, we have only a canonical identification between the
iterated Cartesian product of a family of families of sets and the Cartesian
product of the total family.

Let us consider first the case of a pair of families of sets

(Xi)i∈I and (Xk)k∈K.

The natural correspondence

((xi)i∈I , (xk)k∈K) ↔ (xl)l∈ItK

identifies the iterated Cartesian product

∏
i∈I

Xi × ∏
k∈K

Xk

with
∏

l∈ItK
Xl .

In the case of a pair of finite families (A1, . . . , Am) and (B1, . . . , Bn) , this
identification acquires the form(

(a1, . . . , am), (b1, . . . , bn)
)
↔ (a1, . . . , am, b1, . . . , bn).
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1.3.2.2 Iterated Cartesian product

In general, given any family of families of sets (1.32), the iterated Cartesian
product and the Cartesian product of the total family are naturally identified

∏
j∈J

∏
ij∈Ij

Xij ←→∏
l∈L

Xl where L = ä
j∈J

Ij. (1.37)

Indeed, elements of ∏ij∈Ij
Xij are maps

ξ j : Ij →
⋃

ij∈Ij

Xij

such that ξ j(ij) ∈ Xij . By composing maps ξ j with the inclusions⋃
ij∈Ij

Xij ↪→ U˜
⋃
l∈L

Xl ,

we can consider all ξ j as being maps with the common target U . Thus,
elements of

∏
j∈J

∏
ij∈Ij

Xij

become families (ξ j)j∈J of maps ξ j : Ij → U . By the universal property of
the disjoint union, there exists a unique map ξ̃ : L→ U whose ‘restrictions’
to Ij are families maps ξ j : Ij → U .

This map ξ̃ is an element of ∏l∈L Xl . Since the correspondence between
families (ξ j)j∈J and maps ξ̃ is bijective, the correspondence in (1.37) is
bijective.

Exercise 10 Formulate and prove the corresponding associativity laws for disjoint
union.

1.3.2.3 Calculus of Cartesian powers of a set

For any sets A , B , and C , one has natural identifications

AB × AC ←→ ABtC (1.38)

and, more generally,
∏
j∈J

ABj ←→ Aäj∈J Bj (1.39)

which are special cases of identifications (1.37).
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1.3.2.4

One has also the following natural identification(
AB)C ←→ AB×C (1.40)

given by the following pair of mutually inverse correspondences(
AB)C 3 f 7→ φ ∈ AB×C, where φ(b, c)˜

(
f (c)

)
(b)

and
AB×C 3 φ 7→ f ∈

(
AB)C, where f (c)˜ φ( · , c).

1.3.2.5

Using the families-of-elements notation instead of maps notation, we can
describe identification (1.40) also in this form(

X I)J ←→ X I×J ,
(
(xij)i∈I

)
j∈J ↔ (xij)(i,j)∈I×J . (1.41)

1.4 The language of categories and functors

1.4.1 Oriented graphs

1.4.1.1

An oriented graph C consists of two classes, C0 (the class of vertices) and C1
(the class of arrows) which are related by a pair of correspondences:

C1

C0 C0


fl
t

[
[]s . (1.42)

1.4.1.2

For any arrow α we shall refer to s(α) as its source, and to t(α) as its target.
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1.4.1.3

Note that we are saying classes—not sets. Basic concepts of Category Theory
impose on the foundations on which the edifice of Mathematics rests, that
one is allowed to talk about classes that are not sets, like the class of all
sets, the class of all singleton sets, the class of all vector spaces over a
given field of coefficients, etc, and one is likewise allowed to talk about
correspondences between classes as if they were mappings between sets.

We henceforth will be cautiously extending to classes certain termi-
nology and notation usually associated with sets. For example, we may
indicate that a is a vertex of a graph C by writing either a ∈ C0 or
a ∈ VertC . Similarly, we may indicate that α is an arrow of a graph C by
writing either α ∈ C1 or α ∈ ArrC .

1.4.2 Categories

1.4.2.1 The class of composable arrows

Consider the class C2 of pairs (α0, α1) of arrows such that the source of α1
is the target of α0 . This class fits naturally into the diagram

C2

C1 	 C1

C0 C0 C0


fl

p0
[
[]p1


fl
t

[
[]

s

fl t

[
[]s

(1.43)

where pi sends (α0, α1) to αi .

1.4.2.2

A graph equipped with a correspondence

m : C2 ↔ C1 (1.44)

is said to be a category if (1.44) is associative, i.e.,

(α0 ◦ α1) ◦ α2 = α0 ◦ (α1 ◦ α2) (1.45)

for any composable triple of arrows. The latter means that

s(α0) = t(α1) and s(α1) = t(α2). (1.46)
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1.4.2.3 Objects and morphisms

1.4.2.4 HomC(a, b)

It was observed early that if one requires in the definition of a category
that, for any pair of objects a, b ∈ C0 , morphisms with a as their source
and with b as their target form a set and not just a class, then one can
avoid essentially all the potential dangers arising from presence of classes
in foundations of Category Theory.

This set is usually denoted HomC(a, b) and its elements are referred as
morphisms from a to b .

1.4.2.5 The class of composable pairs of morphisms

We say that a pair (α, β) of morphisms is composable if s(α) = t(β) . Denote
by C2 the class of composable pairs of morphisms. We assume that a
correspondence

m : C2 → C1, (α, β) 7→ α ◦ β, (1.47)

is given. It is referred to as composition of morphisms, and is possibly the
single most important element of the structure of a category.

1.4.2.6 The class of composable triples of morphisms

We say that a triple (α, β, γ) of morphisms is composable if s(α) = t(β)
and s(β) = t(γ) . As can be expected, we denote the class of composable
triples of morphisms by C3 . (Binary) composition (1.47) induces two
correspondences C3 → C2

m1 : (α, β, γ) 7→ (α ◦ β, γ) and m2 : (α, β, γ) 7→ (α, β ◦ γ). (1.48)

By applying correspondence (1.47), we obtain two correspondences C3 →
C1 . We require them to be equal which means that

(α ◦ β) ◦ γ = α ◦ (β ◦ γ) (1.49)

for any composable triple of morphisms. This condition is called associativ-
ity of the composition of morphisms.
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1.4.2.7

Associativity identity (1.49) can be expressed as commutativity of the
following diagram

C3 C2

C2 C1

u
m2

w
m1

u
m

w
m

(1.50)

1.4.2.8 The identity morphisms

We could stop here and call the defined structures categories. The classical
and still a ‘default’ definition of a category additionally requires presence
of a correspondence

i : C0 → C1, a 7→ ida ∈ HomC(a, a), (1.51)

such that
α ◦ ida = α and idb ◦α = α (1.52)

for any α ∈ HomC(a, b) . Morphism ida is referred to as the identity
morphism of object a .

1.4.2.9

Each of the identities in (1.52) can be expressed as commutativity of a
diagram of correspondences:

C1 × C0 C2

C1 C1

w
(idC1 ,i)

u

m

u

(idC1 ,s)

idC1

and

C0 × C1 C2

C1 C1

w
(i,idC1)

u

m

u

(t,idC1)

idC1

(1.53)

1.4.2.10

There are very good reasons not to require presence of the identity mor-
phisms in general, and to call the categories that possess such morphisms—
unital categories.
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1.4.2.11 Isomorphisms

We say that a morphism α ∈ HomC(a, b) is an isomorphism if there exists
β ∈ HomC(b, a) such that

α ◦ β = idb and β ◦ α = ida . (1.54)

Exercise 11 Show that if there exist morphisms β, γ ∈ HomC(b, a) such that

α ◦ β = idb and γ ◦ α = ida .

then β = γ .

1.4.2.12

In view of the above exercise, if there exists at least one right inverse and at
least one left inverse for a morphism α , then they are equal, which implies
that the two-sided inverse, (1.54), is unique when it exists. It is denoted
α−1 .

1.4.2.13 Endomorphisms of an object

Morphisms α : a → a are called endomorphisms of object a . The set
HomC(a, a) is often denoted EndC(a) .

1.4.2.14 Automorphisms of an object

Isomorphisms α : a → a are called automorphisms of object a . The set of
automorphisms is denoted AutC(a) .

1.4.2.15 Symmetries

Before categorical language was proposed and developed as means to
describe and study underlying structure of numerous areas of Mathematics,
automorphisms of various objects: geometric, physical systems, etc—were
often called symmetries.

1.4.2.16 Subcategories

For a category C , suppose that, a pair of subclasses C′0 ⊆ C0 and C′1 ⊆ C1
is given such that the source and the target of any morphism in C′1 is
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a member of C′0 and the composition of any two such morphisms is a
member of C′1 .

If we equip the pair of classes (C0,C1) with the source, target, and
multiplication correspondences induced from category C , we obtain a
category on its own. Denote it C′ .

This situation arises frequently. We say that C′ is a subcategory of C .

1.4.2.17 Full subcategories

If
HomC′(a, b) = HomC(a, b) (a, b ∈ C′0),

then we say that C′ is a full subcategory of category C .

1.4.3 Natural definitions of a morphism between sets

1.4.3.1 Set

The category of sets usually takes pride of being presented as the first
example of a category. The objects of this category are sets. There are,
however, several natural candidates for the morphisms. The standard
choice for morphisms X → Y is to take maps f : X → Y :

HomSet(X, Y) = YX.

This category will be denoted Set and referred to as the category of sets.
Note that isomorphisms in the category of sets coincide with the class

of bijections.

1.4.3.2 Multivalued maps

A multivalued map, φ : X( Y , from a set X to a set Y , is a map φ : X →
P(Y) . Multivalued maps will be also called multimaps.

1.4.3.3 Maps versus multimaps

Every map f : X → Y defines the multimap

x 7→ φ f (x)˜ { f (x)} (x ∈ X).

The correspondence f 7→ φ f identifies maps f : X → Y with multimaps
φ : X( Y satisfying the property

|φ(x)| = 1 (x ∈ X). (1.55)
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1.4.3.4 The image map for a multimap

Every multimap φ : X( Y naturally extends to a map P(X)→P(Y) ,

A 7−→ φ(A)˜
⋃

x∈A
φ(x) (A ⊆ X). (1.56)

We will continue to denote it φ and will call it the image map associated
with multimap φ .

1.4.3.5 The reverse of a multimap

Every multimap φ : X( Y also defines a multimap Y( X

φrev(y)˜ {x ∈ X | φ(x) 3 y}. (1.57)

We shall refer to it as the reverse of φ . When φ is a map f : X → Y , then
φrev(x) = {x ∈ X | f (x) = y} is called the fiber of f at y ∈ Y .

1.4.3.6 The preimage map for a multimap

The image map for the reverse multimap, φrev , will be called the preimage
map for φ .

Exercise 12 Show that

φrev(B) = {x ∈ X | φ(x) ∩ B , ∅} (B ⊆ Y). (1.58)

1.4.3.7 Composition of multimaps

Given multimaps φ : X( Y and χ : Y( Z , their composition,

χ ◦ φ : x 7−→ χ(φ(x)) (x ∈ X), (1.59)

is a multimap X( Z .

Exercise 13 Given maps f : X → Y and g : Y → Z, show that

φg ◦ φ f = φg◦ f . (1.60)

Exercise 14 Show that composition of multimaps is associative, i.e.,

(χ ◦ φ) ◦ υ = χ ◦ (φ ◦ υ),

for any υ : W ( X , φ : X( Y, and χ : Y( Z.
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1.4.3.8 Setmult

Thus, the class of sets equipped with multimaps as morphisms forms a
category. We shall denote it Setmult .

Exercise 15 Show that the canonical embedding ιX : X ↪→P(X) ,

ιX : x 7−→ {x} (x ∈ X)

is the identity endomorphism of set X in Setmult .

1.4.3.9 Submaps

Let us call a multimap φ : X → Y satisfying the condition

|φ(x)| ≤ 1 (x ∈ X), (1.61)

a submap (compare it with (1.55)).
If multimaps satisfying (1.55) corespond to maps F : X → Y , then

submaps correspond to partially defined maps from X to Y , i.e., to maps
f : X′ → Y whose domain is a subset of X .

Exercise 16 Show that χ ◦ φ is a submap if both φ and χ are submaps.

1.4.3.10 Setsub

The class of sets with submaps as morphisms defines another category
whose objects are sets. We shall denote it Setsub .

1.4.3.11 Setfin

More generally, we shall say that φ : X( Y is a finitely-valued map, if

|φ(x)| < ∞ (x ∈ X). (1.62)

Exercise 17 Show that χ ◦ φ is finitely-valued if both φ and χ are finitely-valued.

In particular, sets with finitely-valued maps as morphisms form a
category. We shall denote it Setfin .
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1.4.3.12 Setcount

Another possibility is to consider countably-valued maps as morphisms,

φ(x) countable for all x ∈ X . (1.63)

Let us denote denote the corresponding category by Setcount .

1.4.3.13

The above categories form an increasing chain of unital subcategories of
the category of sets and multimaps

Set ⊆ Setsub ⊆ Setfin ⊆ Setcount ⊆ Setmult.

Note that they share the same class of objects. They differ only in their
morphisms.

1.4.3.14 Composition of binary relations

A different approach to defining morphisms from a set X to a set Y is to
consider binary relations R ⊆ X×Y . For R ⊆ X×Y and S ⊆ Y× Z ,

R ◦S˜{(x, z) ∈ X×Z | there exists y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}.
(1.64)

is a binary relation between elements of X and Z . If we use notation
x ∼R y (“element x ∈ X is in relation R with element y ∈ Y”) to express the
fact that (x, y) ∈ R , then we can rewrite Definition (1.64) as follows

R ◦S˜{(x, z) ∈ X×Z | there exists y ∈ Y such that x ∼R y and y ∼S z}.
(1.65)

Exercise 18 Show that composition of binary relations is associative, i.e.,

(Q ◦ R) ◦ S = Q ◦ (R ◦ S)

for any Q ⊆W × X , R ⊆ X×Y, and S ⊆ Y× Z.

1.4.3.15 The identity relation

For any set X we shall call the binary relation

∆X˜ {(x, x′) ∈ X× X | x = x′} (1.66)

the identity relation on X .
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Exercise 19 Show that
∆X ◦ R = R = R ◦ ∆Y

for any R ⊆ X×Y.

1.4.3.16

Denote the category whose objects are sets and relations R ⊆ X × Y are
morphisms X → Y by Setrel .

1.4.4 Discrete categories

1.4.4.1

There are much simpler categories than the categories of sets. The sim-
plest, are perhaps the categories with the empty class of morphisms. Such
categories are referred to as discrete.

1.4.4.2 Discrete unital categories

Every unital category is supposed to have at least the identity morphisms
for each object. For this reason, in the context of unital categories discrete
means: no morphisms besides the identity morphisms.

1.4.5 Small categories

1.4.5.1

If the class of objects forms a set, such a category is called a small category.
In this case, the class of morphisms is a set too. Indeed, it is the union

C1 =
⋃

(a,b)∈C0×C0

HomC(a, b)

of the family of HomC(a, b) which is indexed by the Cartesian square of
the set of objects.

1.4.5.2

Several fundamentally important structures in Mathematics can be in-
terpreted as small categories. We give here just one yet very important
example of such structures: a preordered set. Other examples will appear
later.
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1.4.5.3 Preordered sets

We say that a binary relation J on a set X is a preorder (the term quasiorder
is used too), if it is reflexive,

x J x (x ∈ X), (1.67)

and transitive

if x J y and y J z , then x J z (x, y, z ∈ X). (1.68)

Of these two properties transitivity is far more important.
A preordered set. i.e., a set equipped with a preorder gives rise to the

category whose objects are elements of X , and Hom(x, y) consists of a
single element, if x J y , and is empty otherwise. Since Hom(x, y) has at
most one element, it does not matter how does one denote it. One may use,
for example, symbol J or, to indicate its source and target, x J y .

Note that in the associated category, objects x and y are isomorphic if
and only if x J y and y J x .

1.4.5.4

Vice-versa, any small category C with the property that, for any a, b ∈ C0 ,

HomC(x, y) has at most one element, (1.69)

is obtained this way.

Exercise 20 For a small category that satisfies (1.69), show that

x J y if HomC(x, y) , ∅

defines a preorder relation on X˜ Co .

1.4.5.5 Partially ordered sets

A partial order on a set X is a preorder which is weakly antisymmetric

if x J y and y J x , then x = y. (1.70)

1.4.5.6

Small discrete categories correspond to discrete partially ordered sets, i.e.,
the sets equipped with the smallest order relation—the identity relation:

x Jdiscr y if x = y.
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1.4.6 Functors

1.4.6.1

A functor F : C  D from a category C to a category D consists of two
correspondences: between the classes of objects and between the classes of
morphisms

F0 : C0 → D0 and F1 : C1 → D1

which are compatible with all the elements of the category structure. The
latter means that the following diagrams of correspondences

C0 D0

C1 D1

C0 D0

w
F0

u
s

w
F1

u
t

u
s

u
t

w
F0

(1.71)

and
C2 D2

C1 D1

u
m

w
F2

u
m

w
F1

(1.72)

are commutative. Here, F2 denotes the correspondence induced by F1 on
the classes of composable pairs:

F2 : C2 → D2, (α, β) 7→ (F1(α), F1(β)). (1.73)

1.4.6.2 Unital functors

When the corresponding categories are unital, i.e., possess identity mor-
phisms, then it is customary to require that a functor F : C D is compati-
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ble also with the identities. This means that the diagram

C0 D0

C1 D1

u
id

w
F0

u
id

w
F1

(1.74)

is supposed to commute. We shall call such functors unital.

1.4.6.3

In the interest of keeping notation as transparent as possible it is customary
to omit subscript indices and denote the correspondences between the
objects, morphisms, composable pairs of morphisms, etc., using the same
symbol F .

1.4.6.4

Commutativity of the two squares in diagram (1.71) then can be expressed
as

s(F(α)) = F(s(α)) and t(F(α)) = F(t(α)) (α ∈ C1), (1.75)

while commutativity of diagram (1.72) expresses the fact that

F(α) ◦ F(β) = F(α ◦ β) (1.76)

for any pair of composable morphisms α and β in C .
Finally, commutativity of diagram (1.74) means that

idF(a) = F (ida) (a ∈ C0). (1.77)

1.4.6.5 Contravariant functors

The functors we defined above are also called covariant functors. The
contravariant variety is obtained if one requires instead

s(F(α)) = F(t(α)) and t(F(α)) = F(s(α)) (α ∈ C1), (1.78)

and
F(β) ◦ F(α) = F(α ◦ β) (1.79)

for any pair of composable morphisms α and β in C .

Exercise 21 Express requirements (1.78) and (1.79) with help of diagrams analo-
gous to (1.71) and (1.72).
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1.4.6.6 An example: the graph functor

For a multimap φ : X( Y , the set

Γφ˜ {(x, y) ∈ X×Y | φ(x) 3 y} (1.80)

will be called the graph of φ . It can be naturally identified with the set⋃
x∈X
{x} × φ(x).

Exercise 22 Verify that ΓidX = ∆X and, for any φ : X ( Y and χ : Y ( Z,
one has

Γχ◦φ = Γφ ◦ Γχ. (1.81)

Thus, the double correspondence

X 7→ X, φ 7→ Γφ (X ∈ ObSet, φ ∈ ArrSetmult), (1.82)

defines a cotravariant functor Γ : Setmult  Setrel . When φ satisfies condi-
tion (1.55), Γφ cincides with the graph of the corresponding map f : X → Y .

1.4.6.7

Note that the correspondence

HomSetmult(X, Y) −→P(X×Y), φ 7−→ Γφ,

is bijective: for any R ⊆ X×Y , one has R = ΓφR where φR : X( Y is the
multimap

φR(x)˜ {y ∈ Y | (x, y) ∈ R}.

1.4.6.8

Functors very often encode natural constructions in Mathematics. We have
already encountered a few functors in Section 1.1.2 of the Introduction,
all being functors Set  Set, the first and the third being covariant, the
second and the fourth being contravariant.

1.4.6.9 The canonical inclusion functors

Given a subcategory C′ of a category C , the natural inclusion correspon-
dences ι0 : C′0 → C0 and ι1 : C′1 → C1 define the inclusion functor ι : C′  C .
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1.4.6.10 The category of small categories

The category whose objects are small categories and morphisms are covari-
ant functors between small categories is itself a category. It is denoted Cat
and is called the category of (small nonunital) categories.

1.4.6.11 The category of small unital categories

If we consider only unital small categories and unital functors, then we
obtain the category of small unital categories. We shall denote it here Cat1 .
The reader should be warned that since categories are usually assumed to
possess identity morphisms, the category of small unital categories is often
denoted Cat.

1.4.6.12 The category of sets viewed as a subcategory of the category of
small categories

Let us identify sets X with small discrete categories X ,

X0 = X, X1 = Ø.

Any map f : X → Y defines a functor F : X Y ,

F0 = f , F1 = id∅,

and every functor F : X  Y is necessarily of this form since id∅ is the
only map from ∅ to ∅ .

In particular, the category of sets can be viewed as a full subcategory of
the category of small categories.

1.4.6.13 Set viewed as a subactory of Cat

In the unital case, we associate with any set X the category X′ ,

X′0 = X, X′1 = X

with all the structural correspondences being idX (note that X′2 = {(x, x) |
x ∈ X} is here naturally identified with set X ).

Any map f : X → Y defines a functor F : X′  Y′ ,

F0 = f , F1 = f , (1.83)

Exercise 23 Show that any unital functor F : X′ → Y′ is of the form (1.83).

It follows that Set, the unital category of sets, is a full subcategory of
Cat, the category of small unital categories.
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1.4.6.14

Since functors between unital categories do not necessarily respect the
identity morphisms (an example will be given below), Cat1 is a subcategory
of Cat yet not a full subcategory.

1.4.6.15 Natural transformations of functors

Given two (covariant) functors F and G from a category C to a category
D , a natural transformation between them, denoted φ : F ⇒ G , consists
of a single correspondence φ : C0 → D1 which is compatible with all the
present structures. The latter means that

φ(a) ∈ HomD(F(a), G(a)) (a ∈ C0), (1.84)

and, for any morphism α ∈ HomC(a, b) , the following square commutes

F(a) G(a)

F(b) G(b)
u

F(α)

w
φ(a)

u

G(α)

w
φ(b)

(1.85)

1.4.6.16

In the language of correspondences, conditions (1.84) translates into com-
mutativity of the following diagram

D0

C0 D1

D0



fiF0

w
φ

[
[
[[]G0

u
s

u
t

(1.86)
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while conditions (1.85) expresses commutativity of the diagram

C1 D2

D2 D1

u
(G1,φ◦s)

w
(φ◦t,F1)

u
m

w
m

(1.87)

Exercise 24 Formulate the definition of a natural transformation of contravari-
ant functors analogous to (1.84)-(1.85).

Exercise 25 Formulate the definition of a natural transformation of contravari-
ant functors analogous to diagrams (1.86)-(1.87).

1.4.6.17

We have already encountered a natural transformation of contravariant
functors χ : P( )⇒ 2( ) in Section 1.1.2.6.

1.4.6.18

Many properties normally expressed as identities involving objects, mor-
phisms, sets, maps, elements of various sets, etc, can be often expressed
as commutativity of certain diagrams. This leads to proliferation of what
some call ‘diagrammatic thinking’ in modern Mathematics. Employing
diagrams often can significantly clarify the picture.

On some occasions information conveyed by diagrams may be more
difficult to understand than the same information expressed differently. I
would say that it is probably easier to understand the meaning of conditions
(1.85) than the meaning of the commutativity of diagram (1.87). That is
probably due to the fact that the conditions (1.85) are themselves expressed
in terms of commutativity of some easy-to-understand diagrams.

1.4.7 The opposite category

1.4.7.1

Note that if one retains the clases of objects and arrows, C0 and C1 , but
exchanges the source and the target correspondences, s : C1 → C0 and
t : C1 → C0 , then one obtains a category again. This is the opposite category
Cop .
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1.4.7.2

More precisely,

C
op
0 = C0, C

op
1 = C1, sop = t, and top = s. (1.88)

If an object a of C is considered as an object of Cop , then it should be
denoted aop . Similarly for morphisms: if α : a → b is a morphism in C ,
then α considered as a morphism of the opposite category is a morphism
bop → aop and it should be denoted αop .

1.4.7.3

The correspondences

a 7→ aop and α 7→ αop (a ∈ C0; α ∈ C1),

define a contravariant functor

( )
op
C : C Cop.

1.4.7.4

Note that

( )
op
C ◦ ( )

op
Cop = idCop and ( )

op
Cop ◦ ( )op

C = idC .

1.4.7.5 An example: a partially ordered set

If C is the category that corresponds to a partially ordered set (X,�) , cf.
Section 1.4.5.6, then Cop corresponds to set X equipped with the reverse
order, �rev .

1.4.7.6

One of the uses of the concept of the opposite category is that it allows to
consider any contravariant functor F : C D as a covariant functor either
C  Dop or Cop  D . Formally speaking, this is done by composing F
with ( )

op
D or ( )

op
Cop ,

( )
op
D ◦ F : C→ Dop or F ◦ ( )op

Cop : Cop  D.
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1.4.7.7

Any functor F : C D , induces also a functor from Cop to Dop

Fop
˜ ( )

op
D ◦ F ◦ ( )op

Cop . (1.89)

Note that Fop is covariant (respectively, contravariant) when F is covariant
(respectively, contravariant).

1.4.7.8

Assigning to any category C its opposite category Cop is natural in C , so
one can expect that it gives rise to a functor on the category of (small)
categories. This is so indeed, the correspondences

C 7→ Cop and F 7→ Fop (C ∈ Cat0; F ∈ Cat1), (1.90)

defined by (1.88) and (1.89), yield a functor ( )op : Cat Cat.

Exercise 26 Is functor (1.90) covariant or contravariant?

1.4.7.9 Setmult ' (Setrel)
op

The graph functor, Γ : Setmult  Setrel , which was defined in Section 1.4.6.6,
identifies the category of sets with multimaps as morphisms with the
category opposite to the category of sets with binary relations as morphisms.
In other words, Setmult is isomorphic to (Setrel)

op .
Isomorphisms between categories are, generally speaking, a rare occur-

rence.

1.4.7.10 Importance of the opposite category concept

Any diagram in a category C can be interpreted as the same diagram—but
with the direction of all arrows reversed—in the opposite category.

An immediate corollary of this simple observation yields the following
Duality Principle:

For any categorical concept or construction involving one or
more diagrams, there is a dual concept or construction.
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1.4.8 Categories of arrows

1.4.8.1

For any category there are several naturally associated categories whose
objects are morphisms. We shall mention here three.

1.4.8.2 The category of arrows

For a category C , let C→ be the category whose objects are morphisms of
C ,

(C→)0˜ C1, (1.91)

and morphisms φ : α→ β are pairs of morphisms φ = (φs, φt) in C ,

φs : s(α)→ s(β), φt : t(α)→ t(β), (1.92)

such that the following diagram commutes

• •

• •
u

α

w
φs

u
β

w
φt

(1.93)

1.4.8.3

Category of arrows C→ is sometimes also denoted ArrC . One should
be advised however, that ArrC may also be used to denote the class of
morphisms in C .

1.4.8.4 Two comma categories

For any object a in a category C , one can consider two categories: one,
Ca→ , whose objects are morphisms in C with source a ,

(Ca→)0˜ {α ∈ C1 | s(α) = a}, (1.94)

and another one, C→a , whose objects are morphisms with target a ,

(Ca→)0˜ {α ∈ C1 | t(α) = a}. (1.95)
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1.4.8.5

Morphisms φ : α→ β in Ca→ are morphisms φ : t(α)→ t(β) such that the
following diagram commutes

•

a

•
u

φ
AA
ACα

‚‚‚›
β

(1.96)

1.4.8.6

Morphisms φ : α→ β in C→a are morphisms φ : s(α)→ s(β) such that the
following diagram commutes

•

a

•
u

φ

‚‚‚›α

AA
AC
β

(1.97)

1.4.9 Categories of diagrams

1.4.9.1

(Covariant) functors from a small category Γ to an arbitrary category C

form a category, denoted CΓ , with morphisms φ : F → G being natural
transformations of functors.

1.4.9.2 Diagrams as functors

Such functors are often called diagrams in C and the reason will become
clear when we look at a series of simple examples.

1.4.9.3 C

Consider the category with a single object, 0, with empty class of mor-
phisms. Denote this category by 1. Functors from 1 to C correspond to
single objects in C , and C1 becomes naturally identified with category C

itself.
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1.4.9.4 C→

Consider the category with two objects, 0 and 1, and a single morphism

0 → 1.

Denote this category by 2. Functors from 2 to C correspond to single
morphisms in C , and C2 becomes naturally identified with the category of
arrows, C→ .

1.4.9.5 The category of composable pairs of arrows

Consider the category with three objects, 0, 1 and 2, and just three mor-
phisms, the following two

0 → 1 → 2,

and their composition. Denote this category by 3. Functors from 3 to
C correspond to composable pairs of morphisms in C , and C3 becomes
naturally identified with the category of composable pairs of arrows in C .

Exercise 27 The category of composable pairs of arrows in C has class C2 as its
class of objects. Knowing that morphisms φ : (α0, α1)→ (β0, β1) are defined in a
natural manner, give the definition of morphisms.

1.4.9.6

Categories 1, 2 and 3 correspond to the linearly ordered sets {0} , {0, 1} ,
{0, 1, 2} . Let n be the category with n objects

0, 1, . . . , n-1

which corresponds to the linearly ordered set {0, . . . , n− 1} .

Exercise 28 Find the number of morphisms in n.

Exercise 29 Provide a description of Cn which generalizes to arbitrary n the
descriptions given above for n = 1, 2, 3 .
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1.4.9.7 The category of commuting squares

Consider the category with four objects

00, 01, 10, and 11,

and just five morphisms
00 01

10 11

u
`

w
>

[
[
[[]
4

u
a

w
⊥

Denote this category by � . Objects of C� are commuting squares in C .

Exercise 30 Describe morphisms in C� .

1.4.9.8 The category of families of objects

Let I be the category with a set I as its class of objects and empty class
of morphisms. Objects of CI are families (ai)i∈I of objects of category C

indexed by set I .

Exercise 31 Describe morphisms φ : (ai)i∈I → (bi)i∈I .
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Chapter 2

Sets equipped with a family of
subsets

2.1 Two categories of pairs

2.1.1

2.1.1.1

Pairs (X, A ) , where X is a set and A ⊆P(X) is a family of subsets of X ,
form a category in two natural ways. In both cases, pairs (X, A ) provide
the objects.

The difference between these two categories is their morphisms: in the
first case we consider the power-set functor P( ) as a covariant functor, in
the second—as a contravariant functor.

2.1.1.2

A map f : X → Y induces the pair of maps

f∗ : P(X) −→P(Y), f ∗ : P(Y) −→P(X).

Each of these maps, in turn, induces the corresponding pair of maps
between the iterated power sets

( f∗)∗ : P(P((X)) −→P(P(Y)), ( f∗)∗ : P(P((Y)) −→P(P(X)),

and

( f ∗)∗ : P(P((Y)) −→P(P(X)), ( f ∗)∗ : P(P((X)) −→P(P(Y)).
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2.1.1.3 Notation

In order to simplify notation we shall drop the parentheses:

f∗∗A ˜ ( f∗)∗(A ), f ∗∗A ˜ ( f ∗)∗(A ),

and
f ∗∗ B˜ ( f∗)∗(B), f ∗∗B˜ ( f ∗)∗(B).

We shall, however, observe the correct placement of the aterisk sub- and
superscripts, since

f ∗∗ , f ∗∗ .

2.1.1.4 The family of images

Exercise 32 Show that

f∗∗A = { f (A) | A ∈ A } = {F ⊆ Y | F = f (A) for some A ∈ A }. (2.1)

We shall refer to ( f∗)∗(A ) as the family of f -images for A .

2.1.1.5 The inverse image of a family

Exercise 33 Show that

f ∗∗ B = {E ⊆ X | f (E) ∈ B} (2.2)

We shall refer to f ∗∗ B as the inverse image of B .

2.1.1.6 The family of preimages

Exercise 34 Show that

f ∗∗B =
{

f−1(B) | B ∈ B
}
=
{

E ⊆ X | E = f−1(B) for some B ∈ B
}

.
(2.3)

We shall refer to ( f ∗)∗(B) as the family of f -preimages for B .

2.1.1.7 The direct image of a family

Exercise 35 Show that

f ∗∗A =
{

F ⊆ Y | f−1(F) ∈ A
}

(2.4)

We shall refer to ( f ∗)∗(A ) as the direct image of A .
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2.1.1.8

All three pairs in 2.1.1.2 form Galois connections between the corresponding
power sets ordered by the relation ⊆ . The iterated power sets are, however,
equipped also with preorders J and K , and we have further pairs of
Galois connections for two out of four mappings and for each of these
preorders.

Exercise 36 Show that

f∗∗A K B if and only if A K f ∗∗B

and
f∗∗A J B if and only if A J f ∗∗B.

2.1.1.9

There are further relations involving the pairs of mappings that “go in the
same direction”.

Exercise 37 Show that

f∗∗A K f ∗∗A and f ∗∗ B J f ∗∗B.

2.1.1.10

2.1.1.11 The first category of pairs (X, A )

Morphisms (X, A )→ (Y, B) are maps f : X → Y such that

f (A) ∈ B for any A ∈ A , (2.5)

i.e., family f∗∗A is contained in family B or, equivalently, family A is
contained in family f ∗∗ B .

2.1.1.12 The second category of pairs (X, A )

Morphisms (X, A )→ (Y, B) are maps f : X → Y such that

f−1(B) ∈ A for any B ∈ B, (2.6)

i.e., family f ∗∗B is contained in family A or, equivalently, family B is
contained in family f ∗∗A .
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2.1.1.13

One could profitably refer to the first as the covariant category of pairs
(X, A ) , and to the second—as the contravariant category of pairs (X, A ) .
Be forewarned however that the words ‘covariant’ and ‘contravariant’ are
here used strictly as names that allow us to clearly indicate which of the
two categories of pairs we mean. As concepts, ‘covariant’ and ‘contravariant’
apply to functors, not categories.

2.1.2 A variant: rich categories of pairs

2.1.2.1 Binary relations acting on power sets

Any binary relation R ⊆ X × Y naturally induces two oreder preserving
maps,

·R : P(X)→P(Y) and R· : P(Y)→P(X), (2.7)

where

A 7→ A · R˜ {y ∈ Y | there exists x ∈ A such that x ∼R y} (2.8)

and

B 7→ R · B˜ {x ∈ X | there exists y ∈ B such that x ∼R y}. (2.9)

To simplify notation we shall often omit the subscript if it is clear within
which set the complement of a subset is formed.

2.1.2.2

If we identify X with 1× X and Y with Y× 1 ,

x ↔ (1, x), y↔ (y, 1), (x ∈ X, y ∈ Y), (2.10)

then subsets A ⊆ X and B ⊆ Y become binary relations between elements
of sets 1 and X , and elements of sets Y and 1 , respectively. Under
these identifications, formulae (2.8) and (2.9) express composition of the
corresponding relations, cf. Section 1.4.3.14
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2.1.2.3

By conjugating mappings ·R and R◦ with the complement operations

( )c
X : P(X)→P(X), A 7→ Ac

X˜ X \ A,

and
( )c

Y : P(Y)→P(Y), B 7→ Bc
Y˜Y \ B,

we obtain two additional order preserving maps

�R : P(X)→P(Y) and R� : P(Y)→P(X), (2.11)

where

A 7→ A � R˜ (Ac
X · R)c

Y = Y \ ((X \ A) · R)
= {y ∈ Y | x �R y whenever x < A}

(2.12)

and

B 7→ R � B˜ (R · Bc
Y)

c
X = X \ (R ◦ (Y \ B))

= {x ∈ X | x �R y whenever y < B}.
(2.13)

Exercise 38 Let A ⊆ X and Y ⊆ Y. Show that

A · R ⊆ B if and only if A ⊆ R � B (2.14)

and
R · B ⊆ A if and only if B ⊆ A � R. (2.15)

2.1.2.4

Equivalence (2.14) expresses the fact that the pair of mappings (·R, R�)
forms a Galois connection between partially ordered sets (P(X),⊆) and
(P(Y),⊆) . One can show that any Galois connection between the power
sets is of this form for a unique binary relation R ⊆ X × Y (cf. Notes on
Partially Ordered Sets).

2.1.2.5

Dually, equivalence (2.15) expresses the fact that the pair of mappings
(R◦, �R) forms a Galois connection between partially ordered sets (P(Y),⊆)
and (P(X),⊆) .
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Exercise 39 Show that

A · Γ f = f (A) and Γ f · B = Γ f � B = f−1(B) (A ⊆ X, B ⊆ Y),

and
A � Γ f =

(
f (Ac)c

= Y \ f (X \ A)), (A ⊆ X),

where Γ f is the graph of a map f : X → Y.

2.1.2.6

Note that Γ f � = Γ f ◦ while �Γ f , ·Γ f , in general. This is due to the
fact that while the preimage-of-a-map, B 7→ f−1(B) , commutes with the
operation of taking the complement, the image-of-a-map, A 7→ f (B) , does
not.

Exercise 40 Let A ⊆ P(X) be a family of subsets of X and B ⊆ P(Y) be
a family of subsets of Y . Show that f A coincides with the image of A under
mapping ·Γ f while f•A coincides with the preimage of A under mapping Γ f ◦ ,

f A = (·Γ f )(A ) and f•A =
(
Γ f ·
)−1

(A ).

Dually, show that f−1B coincides with the preimage of B under mapping ·Γ f
while f •B coincides with the preimage of B under mapping Γ f ◦ ,

f−1B = (Γ f ◦)(B) and f •B =
(
◦Γ f

)−1
(B).

2.1.2.7

In the “rich” variant of the first category of pairs, morphisms (X, A ) →
(Y, B) are relations R ⊆ X×Y such that

A · R ∈ B for any A ∈ A . (2.16)

2.1.2.8

Like in the case of the category of sets, the graph of the map defines a functor
that identifies the first category of pairs with a subcategory of the category
opposite to the “rich” first category of pairs (cf. Sections 1.4.6.6 and 1.4.7.9).
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2.1.2.9

In the “rich” variant of the second category of pairs, morphisms (X, A )→
(Y, B) are relations R ⊆ X×Y such that

R · G ∈ A for any B ∈ B. (2.17)

The graph of the map defines a functor that identifies the second category
of pairs with a subcategory of the category opposite to the “rich” second
category of pairs.

2.2 Topological spaces

2.2.1 Topologies

2.2.1.1

A family T ⊆P(X) is called a topology on a set X if it is closed under ar-
bitrary unions and finite intersections, which means that, for any subfamily
V ⊆ T , one has ⋃

V ∈ T (2.18)

and, for any finite subfamily V ⊆ T ,⋂
V ∈ T . (2.19)

It is also assumed that the smallest and the largest elements of P(X)
belong to T :

∅ ∈ T and X ∈ T . (2.20)

Note, however, that ∅ is the union of the empty subfamily ∅ ⊆ T whereas
X is the intersection of the empty subfamily, so, formally speaking, the two
conditions of (2.20) follow from conditions (2.18)–(2.19).

2.2.1.2 The set of topologies on a set

The set Top(X) of topologies on a set X is a subset of the set of all families
of subsets of X , i.e., of P(P(X)) . In particular, it is ordered by inclusion.
It possesses the smallest element

T triv
˜ {∅, X} (2.21)

46



which is called the trivial topology, and the largest element

T discr
˜P(X) (2.22)

which is called the discrete topology.

Exercise 41 Show that the intersection of any family of topologies T on X ,⋂
T =

⋂
T ∈T

T , (2.23)

is a topology on X .

2.2.1.3 The topology generated by a family of subsets

For any family of subsets A ⊆ P(X) of a set X , the intersection of the
family of all topologies T containing A ,

TA ˜
⋂

T ∈Top(X)
T ⊇A

T ,

is the smallest topology that contains A . We shall call it the topology
generated by A .

2.2.1.4

Since (2.23) is the largest family of subsets of X , which is contained in
every member T of the family, it follows from Exercise 41 that any subset
T of partially ordered set Top(X) has infimum, and that this infimum
coincides with the infimum of T when viewed as a subset of P(P(X)) :

infTop(X)T =
⋂

T = infP(P(X))T. (2.24)

2.2.1.5

Recall that in any partially ordered set (S,�) , if s is the infimum of the set
U(E) of upper bounds of a set E ⊆ S , then s ∈ U(E) which means that

inf U(E) = min U(E),

and min U(E) is, by definition, sup E . In particular, if every subset E has
infimum in S , it has also supremumem in S .
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Applying this to S = Top(X) , we see that any family of topologies T

on X has the supremum. Unlike the corresponding infima, the supremum
of T in Top(X) generally does not coincide with the supremum of T in
P(P(X)) because the union of a family of topologies is only rarely a
topology.

Exercise 42 Show that supTop(X)T is the topology generated by supP(P(X))T .

2.2.2 Topological spaces

2.2.2.1

Pairs (X, TX) , where TX is a topology on a set X , are called topological
spaces. Topological spaces naturaly form a subcategory of the category of
pairs, and we have two possibilities: to consider topological spaces as a
full subcategory of the covariant category of pairs, cf. 2.1.1.11, or of the
contravariant category of pairs, cf. 2.1.1.12

2.2.2.2 Open maps

In the first case, morphisms (X, TX)→ (Y, TY) are called open maps.

2.2.2.3 Continuous maps

In the second case, morphisms (X, TX) → (Y, TY) are called continuous
maps.

2.2.2.4 The category of topological spaces

Since continuous maps are considered to be far more important than open
maps, the established practice is to apply the name the category of topological
spaces to the category whose morphisms are continuous maps. This category
is usually denoted Top.

Exercise 43 Let f : X → Y be any mapping between sets, T be a topology on
X , and T ′ be a topology on Y. Show that f•T is a topology on Y and f−1T ′

is a topology on X .
Show that f is a continuous mapping (X, T )→ (Y, T ′) if and only if

T ′ ⊆ f•T

if and only if
f−1T ′ ⊆ T .

48



2.2.2.5

For obvious reasons, f•T is said to be the strongest topology on Y such
that mapping f from (X, T ) is continuous, while f−1T ′ is said to be the
weakest topology on X such that mapping f to (Y, T ′) is continuous.

2.2.2.6 The category of sets viewed as a subcategory of the category of
topological spaces

Any map between discrete topological spaces is continuous:

HomTop

((
X, T discr), (Y, T discr)) = HomSet(X, Y).

This observation allows us to consider Set as a subcategory of Top.

2.2.3 Measurable spaces

2.2.4 σ -algebras of subsets

2.2.4.1

A family M ⊆ P(X) of subsets of a set X is called a σ -algebra if it is
closed under countable unions and the operation of taking the complement

A 7→ Ac
˜ X \ A. (2.25)

It is also assumed that X ∈M . Note, however, that X is the intersection
of the empty family of subsets ∅ ⊆M , hence X ∈M in view of M being
closed under intersections of arbitrary countable subfamilies of M .

2.2.4.2 The set of σ -algebras on a set

The set σ -alg(X) of σ -algebras on a set X is a subset of the set of all
families of subsets of X , i.e., of P(P(X)) . In particular, it is ordered by
inclusion. It possesses the smallest element

M triv
˜ {∅, X} (2.26)

which is called the trivial σ -algebra, and the largest element

M discr
˜P(X) (2.27)

which will be called the discrete σ -algebra.
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Exercise 44 Show that the intersection of any family of σ -algebras M on X ,⋂
M =

⋂
M∈M

M , (2.28)

is a σ -algebra on X .

2.2.4.3 The σ -algebra generated by a family of subsets

For any family of subsets A ⊆ P(X) of a set X , the intersection of the
family of all σ -algebras M containing A ,

A ∗
˜

⋂
M∈ σ -alg(X)

M⊇A

M ,

is the smallest σ -algebra on X which contains A . We shall call it the
σ -algebra generated by A .

2.2.4.4 Measurable spaces

2.2.4.5

Pairs (X, M ) are referred to as measurable spaces.

2.2.4.6 Measurable maps

As in the case of topological spaces, we have two choices what to consider
to be a morphism (X, M )→ (Y, N ) . And again, we condition (2.6) is the
more important one. Maps f : X → Y such that

for any B ∈ N , one has f−1(B) ∈M , (2.29)

will be called measurable.

Exercise 45 Let f : X → Y be any mapping between sets, M be a σ -algebra
on X, and M ′ be a σ -algebra on Y. Show that f•M is a σ -algebra on Y and
f−1M ′ is a σ -algebra on X .

Show that f is a measurable mapping (X, M )→ (Y, M ′) if and only if

M ′ ⊆ f•M

if and only if
f−1M ′ ⊆M .
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2.2.4.7 The category of measurable spaces

Below, the category of measurable spaces will always mean the full subcategory
of the contravariant category of pairs, cf. 2.1.1.12. We shall denote it Meas.

2.2.5 Borel σ -algebra

2.2.5.1 Borel subsets of a topological space

For a topological space (X, T ) , the σ -algebra T ∗ generated by the topol-
ogy is called the Borel σ -algebra, and its members—Borel subsets of X .

2.2.5.2 Borel maps between topological spaces

A map f : X → Y between topological spaces is called a Borel map if it is a
morphism of the corresponding Borel measurable spaces(

X, (TX)
∗)→ (

Y, (TY)
∗) .

Any continuous map f : (X, TX)→ (Y, TY) is a Borel map.

2.2.5.3

A map f : X → Y from a measurable space to a topological space is said to
be measurable if it is a morphism (X, M )→

(
Y, (TY)

∗) . Thus, we will be
also talking of measurable functions f : X → R , f : X → [0, ∞] , etc.
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Chapter 3

Sets equipped with one or
more relations

3.1 Introduction

3.1.1 Relations on a set

3.1.1.1 I -ary relations

Let I be a set. An I -ary relation on a set X is the same as as a subset
R ⊆ X I .

3.1.1.2 Morphisms

A natural notion of a morphism (X, R)→ (Y, S) is that it is a map X → Y
such that the induced map f∗ : X I → Y I sends R to S :

f∗(R) ⊆ S. (3.1)

Explicitly, this means that if (xi)i∈I ∈ R , then ( f (xi))i∈I ∈ S .

Exercise 46 Formulate the notion of a set with two relations, and define the
appropriate notion of a morphism.

3.1.1.3 Notation: binary relations

If R ⊆ X2 is a binary relation on a set X , an alternative notation may be
used to denote the fact that (x, x′) ∈ R :

x ∼R x′
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or simply
x ∼ x′,

when the relation is clear from the context. Here ∼ is a generic symbol for
a pair of elements ‘being in relation’. In specific situations special symbols
may be used. For example, when R is a partial order relation, then the
symbols � or � are generally used.

3.1.1.4

In this notation, a morphism
(
X,∼X

)
→
(
Y,∼Y

)
is a map f : X → Y such

that
x ∼X x′ implies f (x) ∼Y f (x′) (x, x′ ∈ X).

3.1.1.5 Terminology: isotone maps

Morphisms
(
X,�X

)
→
(
Y,�Y

)
are referred to as order-preserving, or isotone

maps. The latter is common in literature on partially ordered sets.

3.1.1.6 Restriction to a subset

If Y ⊆ X is a subset, then Y I can be naturally identified with the subset of
X I of those functions from I to X whose values belong to Y . In particular,
R ∩ Y I becomes an I -ary relation on Y . We shall call it the restriction of
relation R to Y , and denote it R|Y .

3.2 Sets equipped with an operation

3.2.1 I -ary operations

3.2.1.1

An I -ary operation on a set X is a map

µ : X I → X. (3.2)
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3.2.1.2 Commutativity

We say that operation (3.2) is commutative if the following diagram com-
mutes

X I

X

X I
u

ρ∗

‚‚‚›µ

A
AAC

µ

(3.3)

for any bijection ρ : I → I .1 Note that ρ∗ : X I → X I is the induced map,
introduced in (1.8).

3.2.2 n-ary operations

3.2.2.1

An n -ary operation on a set X is a map

µ : Xn → X. (3.4)

It can be viewed as an (n + 1) -ary relation

Rµ =
{
(x0, x1, . . . , xn) ∈ Xn+1 | x0 = µ(x1, . . . , xn)

}
. (3.5)

Exercise 47 Let X be a set and R ⊆ Xn+1 . Show that there exists an n-ary
operation, (3.4), such that R = Rµ if and only if R satisfies the following property

for any x1, . . . , xn ∈ X , there exists a unique element
x0 ∈ X , such that (x0, x1, . . . , xn) ∈ R. (3.6)

3.2.2.2

Sets with an n -ary operation are sometimes called n-ary structures. They
form a full subcategory of the category of sets with an (n + 1) -ary relation.

Exercise 48 Show that f : (X, µ)→ (Y, ν) is a morphism if and only if

f (µ (x1, . . . , xn)) = ν ( f (x1) , · · · , f (xn)) (x1, · · · , xn ∈ X) . (3.7)
1Self-bijections of I are called permutations of elements of set I .
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3.2.2.3

For a subset Y ⊆ X of a set with an n -ary operation (X, µ) , the restriction
of Rµ to Y is an n -ary relation on Y which does not need to satisfy
property (3.6).

Exercise 49 Show that
(

Rµ

)
|Y = Rν for some n-ary operation ν on Y if and

only if
for any y1, . . . , yn ∈ Y, one has µ(y1, . . . , yn) ∈ Y. (3.8)

Show that, for all y1, . . . , yn ∈ Y,

ν(y1, . . . , yn) = µ(y1, . . . , yn).

3.2.2.4

In this case, we shall denote ν by µY , call it the operation on Y induced by
µ , and (Y, µY) , the subset-with-operation of (X, µ) .

3.2.3 The category of sets with an n-ary operation

3.2.3.1 Homomorphisms

Traditionally, maps f : X → Y between sets equipped with an n -ary op-
eration which satisfy identity (3.7) are referred as homomorphisms. This is
where the term morphism originated.

3.2.3.2

Identity (3.7) is equivalent to the commutativity of the following diagram

Xn Yn

X Y
u

µ

w
f∗

u
ν

w
f

(3.9)

where f∗ (x1, . . . , xn)˜ ( f (x1) , . . . , f (xn)) .

3.2.3.3 Induced operations

3.2.3.4

An n -ary operation on a set induces several other n -ary operations on
related sets. We shall consider here just two examples.
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3.2.3.5 The induced operation on YX

The set of maps from a set X to a set Y which is equipped with an n -ary
operation ν , is itself naturally equipped with a n -ary operation that is
induced by ν .

For maps f1, . . . , fn , we define ν ( f1, . . . , fn) as the map X → Y whose
value at x ∈ X is calculated by applying ν to the values of f1, . . . , fn at x :

ν ( f1, . . . , fn) (x)˜ ν ( f1(x), . . . , fn(x)) (x ∈ X). (3.10)

3.2.3.6 The induced operation on P(X)

The set of subsets of a set X which is equipped with an n -ary operation µ ,
is itself naturally equipped with an n -ary operation that is induced by µ .

For subsets A1, . . . , An of X , we define µ (A1, . . . , An) as the set ob-
tained by applying µ to every n -tuple (a1, . . . , an) ∈ A1 × · · · × An :

µ (A1, . . . , An)˜ {µ (a1, . . . , an) | (a1, . . . , an) ∈ A1 × · · · × An} (3.11)

Exercise 50 Suppose that subsets A1, . . . , An are finite. Show that µ (A1, . . . , An)
is finite by demonstrating the inequality

|µ (A1, . . . , An)| � |A1| · · · |An| . (3.12)

3.2.4 0-ary operations

3.2.4.1

For any set X , there is just a single map ∅ → X , namely the canonical
inclusion map ι that embeds the empty set into X . Thus, the zeroth
Cartesian power of any set X has a single element, namely ι , and therefore
any 0-ary operation on a set X ,

X0 → X, (3.13)

is the same as selecting a single element ξ ∈ X , the latter being the only
value of map (3.13).

3.2.4.2 The category of sets with a distinguished element

In particular, sets equipped with a 0-ary operation are just sets with a
distinguished element. Morphisms (X, ξ)→ (Y, υ) are the maps f : X → Y
which are compatible with the distinguished elements, i.e.,

f (ξ) = υ. (3.14)
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3.2.5 Unary operations

3.2.5.1

A unary operation on a set X is the same as a map φ : X → X . Such maps
are often referred to as selfmaps on X .

3.2.5.2 The category of sets with a self-map

Morphisms (X, φ)→ (Y, ψ) are the maps f : X → Y which are compatible
with the selfmaps, i.e., such that the diagram

X Y

X Y
u

φ

w
f

u
ψ

w
f

(3.15)

commutes which translates into the identity f ◦ φ = ψ ◦ f .

3.2.5.3

Certain sets possess natural unary operations, e.g., P(X) comes equipped
with the ‘complement-of-a-subset’ self-map, cf. (2.25).

3.3 Binary structures

3.3.1 General binary structures

3.3.1.1 Binary structures

Sets equipped with a single binary operation are sometimes called binary
structures. They form a full subcategory of the category of sets equipped
with a binary relation, cf. Section 3.2.3. We shall denote it Bin.

3.3.1.2 Notation

Traditionally, for a binary operation on a set X an alternative notation is
used:

x ∗ y instead of µ(x, y)

where ∗ here stands for any symbol denoting the operation. You may see
here + , × , · , ⊗ , and many other symbols.
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3.3.1.3 Simplified notation

A frequent practice is to omit the symbol for the operation altogether and
to write xy for µ(x, y) .

3.3.1.4 Identity elements

An element e ∈ X is a left identity if

µ(e, x) = x (x ∈ X).

Exercise 51 Formulate the notion of a right identity in a set with a binary
operation, and show that, if e is a left identity and e′ is a right identity, then
e = e′ . In particular, any set with a binary operation has no more than one
two-sided identity.

3.3.1.5 Sink elements

An element z ∈ X is a left sink if

µ(z, x) = z (x ∈ X).

Exercise 52 Formulate the notion of a right sink in a set with a binary operation,
and show that, if z is a left sink and z′ is a right sink, then z = z′ .

In particular, any set with a binary operation has no more than one
two-sided sink.

3.3.1.6 Idempotents

An element x of a binary structure is called an idempotent if

µ(x, x) = x. (3.16)

3.3.1.7 Commutative binary operations

In the special case of a binary operation, the general notion of commuta-
tivity introduced in Section 3.2.1.2 takes on the following form. A binary
operation µ is commutative if it satisfies the identity

µ(x, y) = µ(y, x) (x, y ∈ X). (3.17)

The same in simplified notation:

xy = yx (x, y ∈ X).

58



3.3.1.8

Identity (3.17) can be expressed as commutativity of the following diagram

X× X

X

X× X
u

τ

‚‚‚›µ

A
AAC
µ

(3.18)

where τ : X× X → X× X is the flip

τ : (x, y) 7→ (y, x) (x, y ∈ X). (3.19)

3.3.1.9 Additive notation and terminology

A commutative binary operation is often referred to as addition. In that case
additive notation x + y is used rather than µ(x, y) or xy .

3.3.1.10 Additive maps

In additive notation homomorphisms betwen commutative binary struc-
tures f : X → Y are just additive maps

f
(
x + x′

)
= f (x) + f

(
x′
) (

x, x′ ∈ X
)

.

3.3.1.11

Given a binary structure (X, µ) , define a binary relation ∼µ on X by

x ∼µ y if µ(x, y) = y (x, y ∈ X). (3.20)

Exercise 53 Show that relation ∼µ defined in (3.20) is reflexive if and only if
every element in (X, µ) is idempotent.

Exercise 54 Show that relation ∼µ defined in (3.20) is weakly antisymmetric,
cf. (1.70), if µ is commutative.

59



3.3.1.12 Associative binary operations

A binary operation is said to be associative if it satisfies the identity

µ (µ(x, y), z) = µ (x, µ(y, z)) (x, y, z ∈ X). (3.21)

The same in simplified notation:

(xy)z = x(yz) (x, y, z ∈ X).

Exercise 55 Show that relation ∼µ defined in (3.20) is transitive, cf. (1.68), if µ
is associative.

3.3.1.13

Identity (1.49) can be expressed as commutativity of the following diagram

X× X× X X× X

X× X X
u

idX ×µ

w
µ×idX

u
µ

w
µ

(3.22)

3.3.2 Binary versus I -ary operations

3.3.2.1

A binary operation µ : X × X → X allows to convert 2 elements of a set
into a single element. What about 3 or more elements? Given a list of n
elements

x1, . . . , xn,

we have to apply it first to a single pair of consecutive elements, say xi
and xi+1 , and replace that pair with the result. The new list has length
n− 1. By iterating this procedure n− 1 times we eventually obtain a list
consisting of a single element. This is the final result.

3.3.2.2 Iterated n -ary operations

If we recorded the sequence of steps performed, we can use the same recipe
to any n -tuple of elements of X . The resulting map Xn → X is what we
call an iterated n -ary operation induced by a binary operation.
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A binary operation induces two ternary operations,

(x1, x2, x3) 7→ µ(µ(x1, x2), x3) (x1, x2, x3 ∈ X) (3.23)

and
(x1, x2, x3) 7→ µ(x1, µ(x2, x3)) (x1, x2, x3 ∈ X), (3.24)

five quaternary operations X4 → X , etc. There are exactly

1
n

(
2n− 2
n− 1

)
(3.25)

induced iterated n -ary operations in total, and all of them are different
in general. The number of induced iterated n -ary operations coincides
with the number of nested sequences of n− 1 pairs of parentheses, and is
known as the (n− 1) -st Catalan number.

3.3.2.3

Associativity of µ states that the two ternary operations above, (3.23)–
(3.24), coincide. Using this fact, one can show by induction on n that all the
iterated n -ary operations coincide. Thus, an associative binary operation
induces exactly one n -ary operation for each n ≥ 2.

3.3.2.4

Commutativity of an associative binary operation has one more advantage:
it allows one to extend the operation to families of elements (xi)i∈I of X
indexed by arbitrary finite nonempty sets I , producing I -ary operations

µI : X I → X. (3.26)

For a general associative operation, performing the iterated operation
requires that the indexing set be ordered, which amounts to providing a
bijection between the set {1, . . . , n} and I

I = {i1, . . . , in}.

Then family (xi)i∈I becomes a list

xi1 , . . . , xin

and we apply µ to that list as explained above.
If I has n elements, there are exactly n! different orderings of I , and

therefore an associative binary operation induces exactly n! operations
(3.26). They all coincide if µ is commutative and we denote this unique
I -ary operation µI .
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3.3.2.5 Associativity seen through the induced I -ary operations

Given a finite family (ξ j)j∈J of finite families ξ j =
(
xij

)
i∈Ij

of elements of
X , we can evaluate µIj on each ξ j to get(

µIj(ξ j)
)

j∈J ∈ X J

and subsequently evaluate µJ on it. We can also apply µL to the total
family

(xl)l∈L

indexed by the disjoint sum

L = ä
j∈J

Ij,

cf. Section 1.3.1.2. The results are equal

µJ

((
µIj

(
(xij)i∈Ij

))
j∈J

)
= µL

(
(xl)l∈L

)
. (3.27)

If we simplify notation by omitting indexing sets, then identity (3.27)
becomes a little easier to read

µJ

((
µIj

(
(xij)

)))
= µL

(
(xl)). (3.28)

3.3.2.6

Note that identity (3.27) holds even if some of the indexing sets Ij have a
single element, provided that

µI : X I → X

is to be understood as the canonical bijection that identifies X{•} with X :

X{•} 3 {• 7→ x} ←→ x ∈ X.

3.3.2.7 A comment on notation

Above, I is a set with a single element and we denoted that single element
• . Mathematical notation employs symbolic ‘names’ like a , b , c , etc. in
order to distinguish between different elements of a set. There is no need to
do that when the set has a single element. We denoted the single element
of set I by • to indicate the fact that we do not need to ‘name’ it first before
we can make a reference to it.
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3.3.2.8 A comment on the meaning of identity (3.27)

Identity (3.27) expresses compatibility of the system of induced operations
µI and is a manifestation of associativity of the original binary operation.

3.3.2.9

‘Associativity’ identity (3.27) becomes more legible when we express it as
commutativity of the diagram

∏
j∈J

X Ij ∏
j∈J

X

XL X

u

u
(1.37)

w
∏j∈J µIj

u
µJ

w
µL

(3.29)

where the left vertical arrow is the canonical identification of Cartesian
products discussed in Sections 1.3.2.2 and 1.3.2.3.

3.3.2.10 Iterated operations in additive notation

If we use additive notation and terminology, then

µI
(
(xi)i∈I

)
becomes ∑

i∈I
xi

and identity (3.27) becomes

∑
j∈J

∑
ij∈Ij

xij = ∑
l∈L

xl . (3.30)

3.3.2.11

In this form associativity identity (3.27) seems much easier to comprehend
than in the original form which emplys functional notation for operations.
This illustrates the fact that the notation we use indeed is either aiding or
hindering our human comprehension.

It is one of the first duties of a professional mathematician to pay due
respect to proper notation, and to always strive for notation that is
simultaneously precise, clear, and suitable. One has to constantly
negotiate between these goals which are at times not easy to reconcile.
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3.3.3 Semigroups

3.3.3.1

An associative binary structure (X, µ) is called a semigroup.

3.3.3.2 The category of semigroups

Semigroups form a full subcategory of the category of sets with a binary
operation, and therefore also a full subcategory of the category of sets with
a ternary relation.2 The category of semigroups will be denoted Semigrp.

3.3.3.3 Subsemigroups

Subsets-with-operation (Y, µY) of a semigroup (X, µ) are called subsemi-
groups. The canonical inclusion of Y into X is then a homomorphism of
semigroups.

Exercise 56 Let (Ti)i∈I be a family of subsemigroups of a semigroup S. Show
that ⋂

i∈I
Ti

is a subsemigroup of S.

3.3.3.4 The subsemigroup generated by a subset

The set of subsemigroups of a semigroup S is contained in P(S) and
thus ordered by inclusion. It follows from Exercise 56 that, for any subset
X ⊆ S ,

〈X〉˜
⋂

T a subsemigroup of S
T⊇X

T, (3.31)

is the smallest subsemigroup of A which contains X . We call it the sub-
semigroup generated by subset X .

Exercise 57 Show that 〈X〉 = X if and only if X is a subsemigroup.

Exercise 58 Show that 〈〈X〉〉 = 〈X〉 .
2Ternary means n = 3.
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3.3.3.5 A set of generators

We say that X ⊆ A generates semigroup A , or is a set of generators for A , if
〈X〉 = A .

3.3.3.6 Semigroups as categories with a single object

When a category C has a single object, the structure of the category is
uniquely determined by the set

C1 = HomC(•, •)

where • denotes the only object of C , and the associative composition map

C2 = C2
1 → C1.

In other words, the set of morphisms forms a semigroup under compo-
sition. Vice-versa, given any semigroup (X, µ) , one can associate with it
the following category

C0˜ {•}, C1 = HomC(•, •)˜ X,

with µ playing the role of the composition map.

Exercise 59 Show that functors between categories with a single object are in
one-to-one correspondence with homomorphisms of semigroups.

3.3.4 Examples of semigroups

3.3.4.1

Exercise 60 Let X be a set. Show that the canonical projections

p1 : (x, y) 7→ x (x, y ∈ Y) (3.32)

and
p2 : (x, y) 7→ y (x, y ∈ Y), (3.33)

are associative.

Exercise 61 Show that every element in X is a right identity for (X, p1) and a
left identity for (X, p2) , and that (X, p1) has a two-sided identity precisely when
X has a single element.
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3.3.4.2 Semilattices

A partially ordered set (S,�) is called a semilattice if, for any s, t ∈ S , the
set {s, t} has supremum.

Exercise 62 Show that the operation

(s, t) 7→ s ∨ t˜ sup{s, t} (s, t ∈ S), (3.34)

is associative.

Exercise 63 Show that the semigroup (S,∨) has an identity element if and only
if semilattice S has the smallest element.

Exercise 64 Show that the semigroup (S,∨) has a sink element if and only if
semilattice S has the largest element.

Exercise 65 Let f be a map between two semilattices (S,�) and (S′,�′) . Show
that f is isotone, i.e.,

if s � t , then f (s) � f (t) (s, t ∈ S) , (3.35)

if and only if
f (s) ∨ f (t) �′ f (s ∨ t) (s, t ∈ S). (3.36)

3.3.4.3

The semigroup (S,∨) associated with a semilattice (S,�) is commutative
and every element is an idempotent.

3.3.4.4

Vice-versa, if (X, µ) is a commutative semigroup with the property that
every element is idempotent, then X equipped with relation ∼µ introduced
in Section (3.20), becomes a partially ordered set, cf. Exercises 53–55.

Exercise 66 Show that ∼∨ coincides with the original partial order relation � .

Exercise 67 Show that (X,∼µ) is a semilattice. More precisely, show that

sup{x, y} = µ(x, y) (x, y ∈ X). (3.37)
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3.3.4.5

Identity (3.37) means that the ∨ -operation corresponding to ∼µ is the
original µ -operation.

By combining everything together, we arrive at the following observa-
tion.

Proposition 3.3.1 For any set X , there exists a natural correspondence between
partial order relations which make X into a semilattice, and binary operations
which make X into a commutative semigroup where every element is idempotent.

3.3.4.6 A word of caution

Proposition 3.3.1 seems to say that there is a natural isomorphism between
the category semilattices and the category commutative semigroups in
which every element is idempotent.

This is indeed so if one properly understands what to consider to
be a morphism of semilattices. Note that a map f : X → X′ is a homo-
morphism of semigroups (X,∨) → (X′,∨′) if and only if f is a finitely
sup-continuous morphism of partially ordered sets (X,�)→ (X′,�′) , i.e.,
if

f
(

sup(X,�)A
)
= sup(X′,�′) f (A) (3.38)

for any nonempty finite subset A ⊆ X .

3.3.4.7 Right-exact maps

Let us call a map f : X → X′ between partially ordered sets right-exact
if it preserves the suprema of nonempty finite sets, i.e., it satisfies (3.38)
whenever sup A exists and A ⊆ X is nonempty and finite. According to
Exercise 65 such a map is automatically isotone.

3.3.4.8 The category of semilattices

If by the category of semilattices we understand the subcategory of the
category of partially ordered sets with morphisms being right-exact maps,
then the category of semilattices is naturally isomorphic to the full subcate-
gory of the category of commutative semigroups formed by semigroups
where every element is idempotent.
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3.3.4.9

Note that the identity

µ(x, x) = x (x ∈ X) (3.39)

which expresses the fact that every element is idempotent, like many other
such identities can be also expressed, without resorting to elements of X ,
as commutativity of a certain diagram, in this case:

X

X× X

X

‚‚‚›∆

AAAD µ

(3.40)

where ∆ : X → X× X denotes the diagonal embedding of X into X× X :

∆ : x 7→ (x, x) (x ∈ X). (3.41)

3.3.4.10 Subsemilattices

A partially ordered subset
(

A,�|A
)

of a semilattice (X,�) does not need
to be a semilattice. Indeed, the set A = {x, y} , for any two elements
x, y ∈ X which are not comparable, lacks both sup{x, y} and inf{x, y} .

If, however, it is, we should consider it to be a subsemilattice of (X,�)
only if the inclusion map A ↪→ X is a morphism in the category of
semilattices, i.e., is a right-exact map.

3.3.4.11

What we described above should be called sup-semilattices. By replacing
sup with inf, one obtains the concept of an inf-semilattice. The theories
are of course identical, since X with the reverse order,

x �rev x′ if x′ � x
(
x, x′ ∈ X

)
, (3.42)

is a sup-semilattice precisely when (X,�) is an inf-semilattice.3

Exercise 68 State for ∧ -semilattices the analog of the statement of Exercise 65.
3 sup-semilattices are also called join-semilattices, or ∨ -semilattices; inf -semilattices are

also called meet-semilattices, or ∧ -semilattices.
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3.3.4.12 The semigroup of maps with values in a semigroup

The set of maps SX from a set X into a semigroup S is naturally a semi-
group: the binary operation is applied pointwise to the values, cf. Section
3.2.3.5, and associativity is an immediate consequence of associativity of
the operation in S .

3.3.4.13

When X is equipped with a binary operation of its own, we can consider
the subset of SX formed by homomorphisms from X to S . In general,
the product of two homomorphisms is not a homomorphism, unless they
commute:

g f = g f . (3.43)

Exercise 69 Show that the product f g of two homomorphisms from a binary
structure X to a semigroup S is a homomorphism if f commutes with g.

3.3.4.14

It follows that if S is a commutative semigroup, then HomBin(X, S) is a
subsemigroup of SX .

3.3.4.15 The set of endomorphisms of an object

The set of endomorphisms EndC(a) of an object a in an arbitrary category
C is a monoid.

3.3.5 Monoids

3.3.5.1

Semigroups with a two-sided identity are called monoids. A homomor-
phism of semigroups does not necessarily send the identity element to the
identity element, as the following simple example demonstrates:

X = M2(Z), Y =

{(
m 0
0 0

)∣∣∣∣m ∈ Z
}

,

and the operation is the multiplication of 2 × 2-matrices. Since Y is
a subsemigroup of X , the inclusion of Y in X is a homomorphism of
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semigroups. However, the identity element of Y ,(
1 0
0 0

)
is not the identity element of X ,(

1 0
0 1

)
.

3.3.5.2

In view of this, one additionally requires from a morphism of monoids that
it respects the identity elements. In particular, the category of monoids is a
subcategory of the category of semigroups, yet not a full subcategory. We
shall denote it Mon.

3.3.5.3 An example: EndC(a)

In a unital category, the set of endomorphisms EndC(a) of any object a is
a monoid.

3.3.5.4 Submonoids

For the same reason, submonoids of (X, µ) are not just subsemigroups
(Y, µY) which happen to be monoids, but the subsemigroups which contain
the identity element

3.3.5.5

Note that {e} is the smallest submonoid (frequently referred to as a trivial
submonoid) while ∅ is the smallest subsemigroup.

3.3.5.6

Intersection of a family of submonoids is a submonoid. In particular, for
any subset X of a monoid there exists the smallest submonoid that contains
X . We call it the submonoid generated by X . e of (X, µ) .

3.3.5.7 Monoids as categories with a single object

Monoids correspond to unital categories with a single object, and homo-
morphisms between monoids correspond to unital functors.
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3.3.5.8 Invertible elements

An element u of a monoid X is said to be a left inverse of an element x if

ux = e

where e is the identity element.

Exercise 70 Formulate the notian of a right inverse and show that in a monoid,
if u is a left inverse of x , and v is a right inverse of x , then u = v.

3.3.5.9

In particular, every element x in a monoid has no more than one two-sided
inverse. This unique element is denoted x−1 (if one uses multiplicative
notation for the operation), and x is said to be invertible.

3.3.5.10

Invertible elements in a monoid correspond to isomorphisms in the associ-
ated category.

Exercise 71 Show that any homomorphism of monoids f : (X, µ) → (Y, ν) ,
sends invertible elements in X to invertible elements in Y . More precisely, show
that for any such element, ( f (x))−1 = f

(
x−1) .

3.3.6 Groups

3.3.6.1

A monoid (X, µ) is called a group, if every element x ∈ X is invertible.
In view of the above exercise, it is natural to consider groups as the full
subcategory of the category of monoids. This category is often denoted
Grp.

In contrast to monoids, groups form a full subcategory of the category
of sets with a binary operation. In particular, Grp is a full subcategory of
the category of semigroups.

Exercise 72 Let (G, µ) and (H, ν) be two groups, and f : (G, µ)→ (H, ν) be
a homomorphism of sets with a binary operation. Show that f (eG) = eH .
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3.3.6.2 Abelian groups

Commutative groups are called abelian groups in view of a long established
tradition that predates nearly all the other terminology employed here.4

Abelian groups form, of course, a full subcategory of Grp. It is denoted
Ab.

3.3.6.3 Groupoids

Groups correspond to categories with a single object and the property that
any morphism is an isomorphism. For this reason, categories with the
same property are called groupoids.

3.3.6.4 A comment about notation

If (X, µ) is a semigroup, monoid, or a group, it is customary to refer to X
alone as a semigroup, monoid or, respectively, a group. This rarely leads to
terminological confusion if the operation is clear from the context and often
greatly simplifies notation. We shall follow this convention in the future.

3.3.6.5 A comment about terminology

The binary operation in a general semigroup, monoid, or a group, X , is
often referred to as the multiplication in X .

Exercise 73 Show that in any monoid M, the set of invertible elements G(M) is
a group with respect to the operation induced by the multiplication in M.

3.3.6.6

Combined Exercises 73 and 71 show that associating with a monoid X the
group of its invertible elements G(X) defines a functor Mon Grp.

4Named after Niels Henrik Abel (1802-1829), a Norwegian mathematician who proved
impossibility of solving by radicals a general polynomial equation of degree greater than 4.
Abel also proved that the equation was solvable by radicals if the group of automorphisms
of the equation was commutative.

Introduced by Camille Jordan (1838-1922) in 1870, who used the term groupe ablien to
denote some specific groups of matrices, this terminology is applied to general commutative
groups later, first perhaps in a 1882 article by Heinrich Martin Weber (1842-1913).
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Exercise 74 Let M be a monoid and ι : G(M) ↪→ M denote the canonical
inclusion of the group of invertible elements of M into M. Note that ι is a
homomorphism of monoids.

Show that, for any group G and any homomorphism of monoids f : G → M,
there exists a unique homomorphism of groups f̃ : G → G(M) such that f =
ι ◦ f̃ .

3.4 Sets with a pair of binary operations

3.4.1 Introduction

3.4.1.1

Structures involving a pair of binary operations on a given set are both
very common and very important. An essential feature of such structures
are ‘compatibility’ conditions that relate one of the two operations to the
other one. These conditions are usually expressed in the form of identities.

3.4.1.2 Distributivity

The most important of all of these conditions is distributivity. Given two
binary operations • and ◦ on a set X , we say that operation ◦ is left-
distributive over operation • if the following identity holds

x ◦ (y • z) = (x ◦ y) • (x ◦ z) (x, y, z ∈ X). (3.44)

Exercise 75 Formulate the definition of right-distributivity of ◦ over • .

Exercise 76 Consider union and intersection as binary operation on P(X) .
Show that ∩ distributes over ∪ and ∪ distributes over ∩ .5

3.4.1.3

Theory of Lie algebras is founded on Jacobi identity:

x • (y • z) + y • (z • x) + z • (x • y) = 0 (x, y, z ∈ X) (3.45)

One of the two operations is referred to as addition, the other—as the Lie
bracket operation: the standard notation for x • y is [x, y] .

5This is a very rare situation when two binary operations distribute over each other.
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3.4.1.4

In the context of lattices we shall encounter the pair of absorption identities,
and the modular identity.

3.4.2 Semirings

3.4.2.1 Biadditive pairings

Suppose that commutative semigroups S , T , and U be given. We shall
use additive notation and terminology throughout.

A map
µ : S× T → U (3.46)

is said to be biadditive, or a biadditive pairing, if it is additive in each
argument:

µ
(
s + s′, t

)
= µ(s, t) + µ

(
s′, t
) (

s, s′ ∈ S; t ∈ T
)

, (3.47)

and
µ
(
s, t + t′

)
= µ(s, t) + µ

(
s, t′
) (

s ∈ S; t, t′ ∈ T
)

. (3.48)

3.4.2.2

Left-additivity of (3.47) expresses the fact that µ right-distributes over
addition. Similarly, Right-additivity condition (3.48) expresses the fact that
µ right-distributes over addition.

3.4.2.3 Semirings

A commutative semigroup S equipped with a biadditive binary operation

µ : S× S→ S (3.49)

is called a semiring.

3.4.2.4 The additive semigroup of a semiring

In a semiring the original semigroup operation is referred to as addition and
the corresponding semigroup as the additive semigroup of the semiring We
shall refer to semigroup (S,+) as the additive semigroup of the semiring,
and will denote it S+ in order to distinguish it from S viewed as a semiring.
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3.4.2.5 Multiplication

We will refer to biadditive operation (3.49) as the multiplication, and will
usually denote µ(s, t) by s · t or st . Equipped with multiplication S is just
a binary structure. We will denote it S× .

3.4.2.6 The category of (nonassociative) semirings

Morphisms (S,+, ·)→ (T,+, ·) are maps S→ T which are simultaneously
homomorphisms of the additive semigroups S+ → T+ and of multiplica-
tive binary structures S× → T× . Traditionally, such maps are called
homomorphisms of semirings.

3.4.2.7

Terminology like an associative (resp. commutative, unital) semiring always
refers to the corresponding properties of the multiplication. The identity
element for multiplication is usually called identity or unit, and is most of
the time denoted 1.

3.4.2.8 A comment about terminology

Semirings form a full subcategory of the category of sets with two binary
operations. Associativity, however, is such an important property that a
common practice is to tacitly assume it when speaking of semirings. From
now on, the phrase nonassociative ring will refer to semirings that are not
assumed to be associative. Note that such a reference does not preclude
associativity.

3.4.2.9 The category of associative semirings

We shall denote the category of associative semirings by Semiring and
will refer to its object simply as ‘semirings’. It is a full subcategory of the
category of nonassociative semirings.

3.4.2.10 The multiplicative semigroup of an associative semiring

When S is an associative semiring, S× is a semigroup. We shall refer to it
as the multiplicative semigroup of S .
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3.4.2.11 Zero

If the additive semigroup of a semiring is a monoid, its identity element is
denoted 0 and referred to as zero.

3.4.2.12 Semirings with zero

A semiring with zero is a semiring whose additive semigroup is a monoid
and zero satisfies the following identity

0 · s = 0 = s · 0 (s ∈ S). (3.50)

Identity (3.50) means that 0 is a sink of the multiplicative semigroup,
cf. Section 3.3.1.5.

3.4.3 Examples of semirings

3.4.3.1 [0, ∞) and [0, ∞]

The set [0, ∞) of nonnegative real numbers equipped with usual addition
and multiplication of real numbers, forms an associative and commutative
semiring with zero.

The set [0, ∞]˜ [0, ∞) ∪∞ of extended nonnegative real numbers can
be equipped with a semiring structure by extending addition and multipli-
cation of real numbers as follows

a + ∞ = ∞ = ∞ + a and a · 0 = 0 = 0 · a (a ∈ [0, ∞]) .

Note that ∞ is a sink of the additive monoid of [0, ∞] while 0 is a sink
of the multiplicative monoid of [0, ∞] .

3.4.3.2 The near-semiring SS

The set of selfmaps S → S possesses two semigroup structures when S
is a semigroup. The first one is obtained when we consider SS as the
set of all maps from set S to semigroup S : the operation is pointwise
multiplication multiplication · , as defined in Section 3.2.3.5. The other
operation is composition of maps which endows SS with a structure of a
monoid.

Exercise 77 Show that ◦ is right-distributive over · .
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3.4.3.3

Composition in SS is practically never left-distributive over · as even the
simplest examples demonstrate.

3.4.3.4 Example demonstrating that SS is not left-distributive

The two-element set S = {±1} equipped with usual multiplication of
integers is a group. Let f : S → S be the constant map that sends both 1
and −1 to −1. Then

f ◦ ( f · f ) = f
while

( f ◦ f ) · ( f ◦ f ) = f · f
is the constant map that sends both 1 and −1 to 1.

3.4.3.5

Equipped with pointwise multiplication and composition, the SS is an
example of a near-semiring, a structure more general than a semiring. As
we shall discover in a moment, under additional hypothesis that S is
commutative, there is a true semiring inside of SS .

3.4.3.6

For any semigroup S , the set EndSemigrp(S) is a submonoid of
(
SS, ◦

)
. As

we noted in Section 3.3.4.14, it is also a subsemigroup of
(
SS, ·

)
when S is

commutative.

Exercise 78 Assuming (S,+) to be a commutative semigroup, show that compo-
sition left-distributes over addition in EndSemigrp(S) .

3.4.3.7 The semiring of endomorphisms of a commutative semigroup

It follows from Exercises 77 and 78 that
(
EndSemigrp(S),+, ◦

)
is a semiring.

It is unital: the identity morphism idS is its multiplicative identity. It is a
semiring with zero precisely when (S,+) is a monoid.

3.4.4 Rings

3.4.4.1

Semirings whose additive semigroup is a group are called rings.
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3.4.4.2 One more comment about terminology

The remarks made in Section 3.4.2.8 apply here too: it is a common practice
to tacitly assume associativity when speaking of rings, and to use the
designation nonassociative ring when associativity is not assumed.

3.4.4.3 The category of associative rings

Nonassociative rings form a full subcategory of the category of nonassocia-
tive semirings. Similarly, associative rings form a full subcategory of the
category of associative semirings.

The category of associative rings will be denoted Ring and we will
refer to its objects as ‘rings’.

3.4.5 Examples of rings

3.4.5.1 The ring of endomorphisms of an abelian group

For an abelian group (A,+) , the semiring EndAb(A) which was introduced
in Section 3.4.3.7 is a unital ring.

3.4.6 Lattices

3.4.6.1

A partially ordered set (L,�) is said to be a lattice if any nonempty finite
subset A ⊆ L has both supremum and infimum.

3.4.6.2

In particular, we obtain the binary operations on L ,

l ∨m˜ sup{l, m} (‘join’) (3.51)

and
l ∧m˜ inf{l, m} (‘meet’), (3.52)

are commutative, associative, and every element l ∈ L is an idempotent.
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3.4.6.3 Absorption identities

The two operations are related to each other through the following pair of
identities

l ∧ (l ∨m) = l (l, m ∈ L) (3.53)

and
l ∨ (l ∧m) = l (l, m ∈ L). (3.54)

Exercise 79 Prove identities (3.53)–(3.54).

3.4.6.4 Consequences of absorption identities

Let L be a set equipped with two binary operations ∨ and ∧ which satisfy
the above pair of absorption identities. Then, for any l ∈ L ,

l ∧ l
(3.53)
= l ∧ (l ∨ (l ∧ l))

(3.54)
= l.

In other words, ∧ -idempotence of all elements is a consequence of the
absorption identities.

Exercise 80 Using just absorption identies show that

l ∨ l = l (l ∈ L).

Exercise 81 Using just absorption identities show that

l = l ∧m if and only if l ∨m = m (l, m ∈ L). (3.55)

3.4.6.5

None of the two distributivity identities

l ∧ (m ∨ n) = (l ∧m) ∨ (l ∧m) (l, m, n ∈ L) (3.56)

or
l ∨ (m ∧ n) = (l ∨m) ∧ (l ∨ n) (l, m, n ∈ L) (3.57)
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holds in general. The minimal examples are two lattice structures on a set
with 5-elements whose Hasse diagrams are

1

a b c

0






[
[
[[

[
[
[[





(M5)

and
1

b

c

a

0

AA
AA

[
[
[[





‚‚‚‚

(N5)

(we denoted inf L by 0 and sup L by 1).6

Exercise 82 Show that in any lattice the following two distributivity inequalities
always hold

(l ∧m) ∨ (l ∧m) � l ∧ (m ∨ n) (l, m, n ∈ L) (3.58)

and
(l ∨m) ∧ (l ∨ n) � l ∨ (m ∧ n) (l, m, n ∈ L). (3.59)

3.4.6.6

Remarkably, if either one of identities (3.56) or (3.57) holds, the other
one holds too. This is yet another consequence of the pair of absorption
identities in combination with commutativity of ∧ and associativity of ∨ .

6Hasse diagrams are visual presentations of partially ordered sets as graphs whose nodes
correspond to the elements of the partially ordered set, and a < b if there exists a ‘path
upwards’ from node a to node b . Thus, in lattice N5 , a < b and neither one is comparable
with c .
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To derive identity (3.57) from (3.56), we note that

(l ∨m) ∧ (l ∨ n) =
(
(l ∨m) ∧ l

)
∨
(
(l ∨m) ∧ n

)
identity (3.56) (3.60)

= l ∨
(
(l ∨m) ∧ n

)
(∨)∧-absorption (3.61)

= l ∨
(
(l ∧ n) ∨ (m ∧ n)

)
identity (3.56) (3.62)

=
(
l ∨ (l ∧ n)

)
∨ (m ∧ n) associativity of ∨ (3.63)

= l ∨ (m ∧ n) ∨(∧)-absorption (3.64)

Exercise 83 Derive identity (3.56) from (3.57).

3.4.6.7

We saw that to any lattice structure on a set L corresponds a pair of
commutative and associative binary operations on L which satisfy the pair
of absorption identities. In fact, this is a bijective correspondence: every
such pair of binary operations arises from a unique lattice structure on L .

Proposition 3.4.1 For any set L, there exists a natural correspondence between
partial order relations that make L into a lattice, and pairs of commutative and
associative binary operations which satisfy absorption identities.

Proof. Suppose ∧ and ∨ is a pair of commutative and associative
operations on a set L , satisfying absorption identities. If we consider the
associated relations ∼∧ and ∼∨ , then (L,∼∧) and (L,∼∨) are partially
ordered sets. Moreover,

sup(L,∼∧){l, m} = l ∧m and sup(L,∼∨){l, m} = l ∨m (l, m ∈ L),

cf. Exercise 67. Equivalence of equalities in (3.55) means that partial order
∼∨ is the reverse of ∼w , and in the reverse partial order infimum and
supremum are switched. Thus,

inf(L,∼∨){l, m} = sup(L,∼∧){l, m} = l ∧m (l, m ∈ L)

completing the proof that (L,∼∨) is a lattice.
In the opposite direction, we already demonstrated that, for any lattice

(L,�) , operations (3.51)-(3.52) are commutative, associative, and satisfy
absorption identities (Exercise 79).

The fact that the correspondences

�  (∨,∧) and (∨,∧)  ∼∨
are mutually inverse follows from the corresponding fact established earlier
for semilattices, combined with the fact that partials orders ∼∧ and ∼∨
are reverse for each other. �
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3.4.6.8 The category of lattices

If we understand by the category of lattices the subcategory of the category
of partially ordered sets whose objects are lattices and morphisms are
supposed to be exact maps, i.e., to preserve suprema and infima of nonempty
finite subsets, then it is a corollary of Propostion 3.4.1 that the category
of lattices is isomorphic to the category of sets equipped with a pair of
commutative and associative binary operations satisfying the absorption
identities.

3.4.6.9 Sublattices

Comments made for semilattices apply here as well: A partially ordered
subset

(
X,�|X

)
of a lattice (L,�) will be called a sublattice of (L,�) if the

inclusion map X ↪→ L is a morphism in the category of lattices, i.e., is an
exact map.

3.4.6.10 Bounded lattices

A bounded lattice is a lattice that contains the largest and the smallest
elements.

3.4.6.11 Complete lattices

A partially ordered set is a complete lattice if every subset has supremum
and infimum.

Exercise 84 Let f be a map between two complete lattices (S,�) and (S′,�′) .
Show that f is isotone if and only if

sup(S′,�′) f (E) �′ f
(
sup(S,�)E

)
(E ⊆ S), (3.65)

if and only if

f
(
inf(S,�)E

)
�′ inf(S′,�′) f (E) (E ⊆ S). (3.66)

3.4.7 Distributive lattices

3.4.7.1

We saw above that if ∧ distributes over ∨ , then ∨ distributes over ∧ .
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3.4.7.2

The class of distributive lattices constitutes an ‘intersection’ between the
class of commutative semirings and the class of lattices.

3.4.8 Examples of distributive lattices

3.4.8.1 P(X)

The set of subsets of a set X provides perhaps the most important example
of a complete distributive lattice. Note that semirings (P(X),∪,∩) and
(P(X),∩,∪) are isomorphic: the ‘complement-of-a-subset’ map, (2.25)
provides an isomorphism between the two.

3.4.8.2 Linearly ordered sets

A partially ordered set (L,�) is said to be linearly ordered if any two
elements are comparable, i.e.,

l � m or m � l (l, m ∈ L).

In a linearly ordered set, l ∨m = max{l, m} and l ∧m = min{l, m} .

3.4.8.3 The set of natural numbers ordered by divisibility

Consider the relation of divisibility on the set of natural numbers:

l � m if l | m (l, m ∈ N). (3.67)

Here l ∨m is the greatest common multiple of l and m , while l ∧m is their
greatest common divisor. Note that natural number 1 is the smallest element
while 0 is the largest element, thus (N, |) is an example of a bounded
distributive lattice. In fact, lattice (N, |) is complete.

Exercise 85 Show that (N, |) is a complete lattice.

3.4.9 Algebraic structures

3.4.9.1

The general notion of an algebraic structure on a set X is usually formulated
as a sequence of operations (µ1, . . . , µl) on X satisfying an explicit list of
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properties that can be expressed as identities involving any number of
those operations and arbitrary elements of set X .

Associativity and commutativity of a single binary operation are ex-
amples of such properties, as is left- and right-distributivity of one binary
operation over another one.

3.4.9.2

For every operation its place on the list of operations forming the structure
does matter. For example, if both µ and ν are binary operations, then
(X, µ, ν) is a different structure from (X, ν, µ) unless µ = ν .

3.4.9.3 The signature of an algebraic structure

We say that an algebraic structure (X, µ1, . . . , µl) has signature (n1, . . . , nl)
if µi is an ni -ary operation, 1 � i � l . The signature is a sequence of
natural numbers.

For example, an algebraic structure of signature

(0, . . . , 0)︸       ︷︷       ︸
l times

is the same as a set with a sequence of l distinguished points (not all
necessarily distinct).

3.4.9.4 Morphisms

A morphism between two structures of the same signature,

(X, µ1, . . . , µl) → (Y, ν1, . . . , νl),

is a map f : X → Y such that

f : (X, µi) → (Y, νi)

is a homomorphism for each 1 � i � l .
In particular, algebraic structures of a given signature and satisfying a

given set of identities, form a (unital) category.
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3.4.9.5 Substructures of algebraic structures

We say that (Y, ν1, . . . , νl) is a substructure of (X, µ1, . . . , µl) , if each opera-
tion µi induces operation νi on Y , cf. Section 3.2.2.4. This is frequently if
not entirely correctly expressed by saying that Y is closed under each µi
and that νi is the restriction of µi to Y .

Note that any identities satisfied by operations µ1, . . . , µl and elements
of X are automatically satisfied by operations ν1, . . . , νl and elements of Y .

3.4.9.6

The intersection of any family of substractures of an algebraic structure is a
substructure itself. Thus, for any subset A ⊆ X , there exists the smallest
substructure of (X, µ1, . . . , µl) which contains A . We shall denote it 〈A〉 .
If 〈A〉 = (X, µ1, . . . , µl) , we shall say that subset A generates structure
(X, µ1, . . . , µl) .

3.4.9.7

Properties of an algebraic structure that ascertain existence of certain ele-
ments can often be expressed as identities, if one introduces appropriate
operations.

For example, existence of a left identity for a binary operation µ on a set
X can be expressed as a 0-ary operation e : X0 → X , i.e., a distinguished
element e ∈ X 7 such that

µ(e, x) = x (x ∈ X). (3.68)

3.4.9.8

Identity (3.68) can be also expressed as commutativity of the following
diagram

X0 × X X× X

X X

u

u
(1.38)

w
e×idX

u
µ (3.69)

where the left vertical arrow is the canonical identification of X∅ × X{1}
with X∅∪{1} which itself is identified with X .

7We identify a map X0 → X with its single value.
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3.4.9.9

Thus, one can define a monoid as a set X equipped with two operations
(µ, e) , one binary, the other 0-ary, which satisfy two identities: (3.21), (3.68),
and the right analog of (3.68)

µ(x, e) = x (x ∈ X). (3.70)

3.4.9.10

In the similar vain, one can define a group as a set X equipped with
three operations (µ, e, ι) , a binary, 0-ary, and unary, which satisfy identities
(3.21), (3.68), (3.70), and the identities

µ(ι(x), x) = x (x ∈ X) (3.71)

and
µ(x, ι(x)) = x (x ∈ X), (3.72)

the meaning of which should be obvious.

Exercise 86 Express identity (3.71) as commutativity of a certain diagram.

3.4.9.11

Existence of a left sink in a binary structure (X, µ) can be expressed as a
0-ary operation z : X0 → X such that

µ(z, x) = z (x ∈ X). (3.73)

3.4.9.12

Identity (3.73) is expressed also by commutativity of the following diagram

X0 × X X× X

X0 X

u

u
(1.38)

w
z×idX

u
µ

w
z

(3.74)

3.4.9.13

I will leave it to you to describe semirings with zero and rings as algebraic
structures.
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3.4.10 Fields

3.4.10.1 Domains

A ring R is a domain if the subset of non-zero elements R \ {0} forms a
subsemigroup of R× . This is usually expressed by saying that R \ {0} is
closed under multiplication.

3.4.10.2 Division rings

A unital ring R is a division ring if R \ {0} is a group.

3.4.10.3

A commutative division ring is called a field.

3.4.10.4

Domains, division rings, fields are all special kinds of rings. They differ
from all the previously encountered kinds of algebraic structures: the
property of being a domain, a division ring, or a field cannot be described
in terms of a certain number of operations on a set which are supposed to
obey a certain number of identities involving arbitrary elements of that set.

3.4.11 Sets with an infinitary operation

3.4.11.1

In Section 3.3.2.4 we saw how iterating a commutative and associative
binary operation generates I -ary operations

µI : X I → X

for arbitrary finite nonempty index sets I . This way however one cannot
construct I -operations for infinite sets of indices.

3.4.11.2

This leads to an idea of defining an infinitary operation on a set X as a
system of independent I -ary operations

µI : X I → X,
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where I is an arbitrary nonempty set no more assumed to be finite, which
satisfy the compatibility conditions expressed through commutativity of
diagram (3.29) and of the diagram

X I′

X

X I
u

ρ∗

‚‚‚›µI′

A
AAC

µI

(3.75)

where ρ : I → I′ is an arbitrary bijection between indexing sets, cf. diagram
(3.3).

3.4.11.3

Any system of operations µI : X I → X for which diagrams (3.29) and (3.75)
cummute will be called an infinitary operation on a set X .

3.4.11.4

If diagram (3.29) expresses associativity of the infinitary operation, then
diagram (3.75) expresses its commutativity.

3.4.11.5

An infinitary operation on X is not a set since its ‘components’ are indexed
by the class of all nonempty sets. One should think of it as a functor from
the category of nonempty sets with morphisms being bijections, to the
comma category Set→X , cf. Section 1.4.8.4,

I 7→
(
µI : X I → X

)
( I any nonempty set).

3.4.11.6 An infinitary operation with identity

If also µ∅ is present and diagram (3.29) commutes for arbitrary sets, some
of which may be empty, then we obtain a definition of an infinitary operation
with identity. Note that operation µ∅ provides a distinguished element
e ∈ X which indeed is an identity element for the binary operation µ{1,2} ,
cf Section 3.4.9.8 and commuting diagram (3.69).
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3.4.11.7 An infinitary semigroup

A set equipped with an infinitary operation will be called an infinitary
semigroup. One should think of it as a commutative semigroup whose
operation can be performed on arbitrary families of elements.

3.4.11.8 An infinitary monoid

A set equipped with an infinitary operation with identity will be called an
infinitary monoid.

3.4.11.9 Variants of the definition: restrict the size of I

Limiting oneself to finite indexing sets in the definition of an infinitary
operation yields a system of operations induced from a single commutative
and associative binary operation

µ˜ µ{1,2}

as described in Section 3.3.2.4. Thus we obtain a structure which is equiva-
lent to the structure of a commutative semigroup.

3.4.11.10 σ -operations

Limiting oneself to countable indexing sets in the definition of an infinitary
operation, yields the definition of a σ -operation on X .

3.4.11.11 A σ -semigroup

A set equipped with a σ -operation will be called σ -semigroup.

3.4.11.12 A σ -monoid

A set equipped with an infinitary operation with identity will be called a
σ -monoid.

3.4.12 Examples of infinitary semigroups and monoids

3.4.12.1 The semigroup of maps with values in an infinitary semigroup

The set of maps SX from a set X to an infinitary semigroup S is naturally
an infinitary semigroup. If µI : SI → S is the corresponding I -ary operation
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on S , then
νI :
(
SX)I → SX (3.76)

is the composition of the canonical identifications(
SX)I ←→ SX×I ←→

(
SI)X

with operation µI performed ‘pointwise’ at every x ∈ X

(
SI)X

SXw

∏
x∈X

µI

.

If e ∈ S is the identity element for S , then the constant map

X → S, x 7→ e (x ∈ X),

is the identity element for SX .

3.4.12.2 A complete lattice

Exercise 87 Let F ⊆ P(S) be a family of subsets of a partially ordered set
(S,�) such that sup F exists for every F ∈ F . Show that the following two sets
of upper bounds coincide

U
(⋃

F
)
= U ({sup F | F ∈ F}) . (3.77)

Deduce that sup
⋃

F exists if and only if sup{sup F | F ∈ F} exists and the
two are equal

sup {sup F | F ∈ F} = sup
⋃

F . (3.78)

3.4.12.3

Given an I -indexed family (li)i∈I of elements of a complete lattice (L,�) ,
let

µI
(
(li)i∈I

)
˜ sup{li | i ∈ I}. (3.79)

In view of identity (3.78), the system of maps µI defined in (3.79) forms
an infinitary operation with identity on L . The identity is the supremum
of the empty family of elements of L , i.e., the smallest element of L .
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3.4.13 Ordered binary structures

3.4.13.1

A binary structure (X, µ) equipped with a partial order � is said to be an
ordered binary structure if the operation respects the order

µ(x, y) � µ(x′, y′) whenever x � x′ and y � y′.

Ordered binary structures naturally form a category.

Exercise 88 Let A and B be subsets of an ordered binary structure X . Suppose
that sup A, sup B, and

sup{µ(a, b) | a ∈ A, b ∈ B}

exist. Show that

sup{µ(a, b) | a ∈ A, b ∈ B} � µ(sup A, sup B). (3.80)

3.4.13.2

In multiplicative notation inequality (3.80) becomes

sup AB � (sup A)(sup B), (3.81)

where

AB = {x ∈ X | x = µ(a, b) for some a ∈ A and b ∈ B}, (3.82)

cf. Section 3.2.3.6.

3.4.13.3 Distributivity properties of binary structures

We say that an ordered binary structure is left-distributive if

sup{µ(a, b) | b ∈ B} = µ(a, sup B) (a ∈ X; ∅ , B ⊆ X) (3.83)

whenever sup{µ(a, b) | b ∈ B} and sup B exist.

3.4.13.4

In multiplicative notation identity (3.83) becomes

sup aB = a(sup B) (a ∈ X). (3.84)

Exercise 89 Formulate the definition of a right-distributive ordered binary struc-
ture.
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3.4.13.5

We shall say that a binary structure is distributive if it is left- and right-
distributive.

3.4.13.6 An example: [0, ∞]

Lemma 3.4.2 Both
(
[0, ∞],+,�

)
and

(
[0, ∞], · ,�

)
are distributive ordered

monoids.

Proof. The obvious inequality

sup B � sup(a + B) (a ∈ [0, ∞])

shows that sup(a + B) = ∞ if sup B = ∞ .
Assuming β = sup B < ∞ we note that, for any 0 � ε � β , there exists

b ∈ B such that β− ε � b , and therefore

a + (β− ε) � a + b � sup(a + B).

It follows that

a + sup B = sup{a + (β− ε) | 0 � ε � β} � sup(a + B)

which completes the proof of distributivity of ([0, ∞],+,�) .

Turning to
(
[0, ∞], · ,�

)
, we note that, for a ∈ (0, ∞) , inequality (3.81)

yields the following inequality

sup B = sup
(

1
a
· aB

)
� 1

a
sup aB.

After multiplying both sides by a we obtain the desired inequality.
For a = ∞ , we note that

sup ∞B =

{
0 if B = {0}
∞ if B contains b > 0

and equality (3.84) holds in either case. For a = 0 equality (3.84) is trivially
satisfied. �

Exercise 90 Show that the product of any family of distributive ordered binary
structures

(
Xi, µi,�i

)
is distributive.
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3.4.13.7

In particular, the set of maps XY from any set Y to a distributive or-
dered binary structure is distributive when equipped with the ‘pointwise’
multiplication and pointwise order.

3.4.13.8

If we limit identity (3.83) to finite (respectively, countable) nonempty subsets
B ⊆ X , then we obtain the definition of a finitely (respectively, countably)
left-distributive ordered binary structure.

3.4.13.9

We shall say that a binary structure is finitely distributive (respectively,
countably distributive) if it is finitely left- and right-distributive, (respectively,
countably left- and right-distributive).8

Lemma 3.4.3 Suppose an ordered binary structure (X, µ,�) be distributive, and
the ordered set (X,�) be a complete lattice. Then inequality (3.80) becomes
equality

sup{µ(a, b) | a ∈ A, b ∈ B} = µ(sup A, sup B) (∅ , A, B ⊆ X), (3.85)

valid for any pair of nonempty subsets of X .

3.4.13.10

In multiplicative notation identity (3.85) becomes

sup AB = (sup A)(sup B) (∅ , A, B ⊆ X). (3.86)

Proof. To ease comprehension, we will employ multiplicative notation
in the proof. Note that

AB =
⋃

a∈A
aB

and therefore

sup AB = sup
(⋃

a∈A
aB
)
= sup{sup aB | a ∈ A} (3.87)

8We could also refer to distributive binary structures as completely distributive, and use
the term distributive without any adjective to describe finitely distributive binary structures.
The latter would be in exact agreement with terminology prevalent in Lattice Theory.
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by identity (3.78). Denote sup B by b̄ . Complete left-distributivity identity
(3.84) yields

{sup aB | a ∈ A} = {a sup B | a ∈ A} = {ab̄ | a ∈ A} = Ab̄. (3.88)

By combining (3.87) with (3.88) we obtain

sup AB = sup Ab̄ = (sup A) b̄ = (sup A)(sup B)

aided by right-distributivity of (X, µ,�) . �

3.4.13.11

Note that identity (3.85) holds when B = ∅ if and only if (X,�) has the
smallest element and that element is a left sink of binary structure (X, µ) .

3.4.13.12

By replacing two sets in identity (3.86) by n sets, we obtain the following
corollary of Lemma 3.4.3.

Corollary 3.4.4 Under hypotheses of Lemma 3.4.3 one has

sup(A1 · · · An) = (sup A1) · · · (sup An) (∅ , A1, . . . , An ⊆ X). (3.89)

3.4.13.13 A positively ordered binary structure

An ordered binary structure (X, µ,�) is said to be positively ordered, if it
also satisfies the following inequality

x � µ(x, y) and y � µ(x, y) (x, y ∈ X).

3.4.13.14 Example: [0, ∞]

Additive monoid
(
[0, ∞],+

)
is positively ordered while multiplicative

monoid
(
[0, ∞], ·

)
is not. The latter, however, contains two positively

ordered submonoids: [1, ∞] and [0, 1] except that the latter is positively
ordered with respect to the reverse order �rev .

Exercise 91 Show that if e is a left identity element in a positively ordered binary
structure (X, µ,�) , then e is the smallest element of X .

Exercise 92 Let (X, µ) be a binary structure. Show that P(X) is a positively
ordered binary structure when equipped with the induced multiplication, cf. (3.82)
above, and ordered by ⊆ .
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3.4.13.15 A construction of an infinitary operation

We shall now extend the binary operation on a commutative positively
ordered semigroup to an infinitary operation if the former is a complete
lattice under the partial order. The exposition will be easier to follow if we
adopt additive notation for the binary operation and for operations µI .

Suppose (S,+,�) is a commutative positively ordered semigroup and
assume that (S,�) is a complete lattice. The iterated operations ∑i∈I , in-
troduced for fininite nonempty sets I in Section 3.3.2.4, satify the following
formula

∑
i∈I

si = sup
I′⊆I

∑
i∈I′

si ( I finite nonempty). (3.90)

Exercise 93 Let (S,+,�) be any commutative positively ordered semigroup (not
necessarily a complete lattice when viewed as a partially ordered set). Demonstrate
identity (3.90)

3.4.13.16

Formula (3.90) suggests a natural method to extend ∑i∈I from finite to
arbitrary nonempty sets of indices:

∑
i∈I

si˜ sup
I′⊆I

I′ finite

∑
i∈I′

si. (3.91)

Exercise 94 Given two I -indexed families (si)i∈I and (ti)i∈I of elements of S
show that

∑
i∈I

si �∑
i∈I

ti (3.92)

whenever si � ti for all i ∈ I .

Lemma 3.4.5 Operations ∑i∈I defined in (3.91) satisfy inequality

∑
l∈L

sl �∑
j∈J

∑
ij∈Ij

sij where L = ä
j∈J

Ij. (3.93)

Proof. Any subset L′ of the disjoint union of family of indexing sets
(Ij)j∈J is the disjoint union

L′ = ä
j∈J

I′j

of sets I′j = {ij ∈ Ij | (j, ij) ∈ L′} consisting of elements contributed by Ij

to L′ .
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Let J′ ⊆ J be the set of j ∈ J such that I′j , ∅ . If L′ is finite, then each
I′j is finite, J′ is finite, and

∑
l∈L′

sl = ∑
j∈J′

∑
ij∈I′j

sij � ∑
j∈J′

∑
ij∈Ij

sij �∑
j∈J

∑
ij∈Ij

sij . (3.94)

Inequality (3.94) holds for any finite subset L′ ⊆ L , hence it holds if we
replace the sum over L′ by

∑
l∈L

si = sup
L′⊆L

L′ finite

∑
l∈L′

sl .

�

Lemma 3.4.6 Inequality in (3.93) becomes equality if ordered semigroup (S,+,�
) is distributive. In particular, operations defined in (3.91) transform S into an
infinitary semigroup.

Proof. Denote ∑l∈L sl by u . For any J′ ⊆ J and any I′j ⊆ Ij let

L′˜ä
j∈J

I′j .

Associativity and commutativity of addition in S mean that, when L′ is a
finite nonempty set, then

∑
j∈J′

∑
ij∈I′j

sij = ∑
l∈L′

sl � u. (3.95)

Let Aj be the set formed by the sums

∑
ij∈I′j

sij

where I′j are arbitrary finite nonempty subsets of Ij . Then the set ∑j∈J′ Aj
is formed by the sums

∑
j∈J′

∑
ij∈I′j

sij .

where finite set J′ is fixed and I′j are arbitrary finite nonempty subsets of
Ij .
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Distributivity of (S,+,�) yields with help of Corollary 3.4.4

∑
j∈J′

∑
ij∈Ij

sij = ∑
j∈J′

sup Aj = sup
(
∑j∈J′ Aj

)
where

∑j∈J′ Aj =
{
∑j∈J′ ∑ij∈I′j

sij

∣∣ I′j ⊆ Ij finite nonempty
}

.

Inequality (3.95) implies that

sup
(
∑j∈J′ Aj

)
� u (3.96)

which, combined with (3.96), implies

∑
j∈J′

∑
ij∈Ij

sij � u

for all finite nonempty J′ ⊆ J . Passing to the supremum over J′ we obtain
the inequality

∑
j∈J

∑
ij∈I′j

sij = ∑
l∈L

sl .

The reverse inequality holds without any distributivity hypotheses, cf. Lemma
3.4.5. �

3.4.14 Example: [0, ∞]X

The additive monoid of semiring [0, ∞]X is distributive and positively
ordered. According to Lemma 3.4.6 it becomes an infinitary monoid.

Exercise 95 Show that if ∑i∈I ai < ∞ , then the support of family (ai)i∈I ,

supp(ai)i∈I˜ {i ∈ I | αi , 0} (3.97)

is countable.

Exercise 96 Show that, for a sequence (an)n∈N ,

∑
n∈N

an =
∞

∑
n=0

an. (3.98)

In other words, show that the sum of elements of family (an)n∈N coincides with
the value of the corresponding infinite series.
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3.4.14.1 A variant: construction of a σ -operation

By replacing arbitrary sets of indices in (3.91) by countable ones we obtain a
variant of the previous construction which produces a σ -operation.

Countable distributivity of an ordered semigroup (S,+,�) guarantees
that identities S becomes a σ -semigroup. The proof of this fact is word by
word the same

3.4.15 Infinitary semirings

3.4.15.1

3.5 Sets with an action

3.5.1 Sets with an action of another set

3.5.1.1

We say that a set G acts on a set X if we associate with every element
g ∈ G , a selfmap λg : X → X . The family of selfmaps

(
λg
)

g∈G is a map

λ : G → XX, g 7→ λg (g ∈ G). (3.99)

3.5.1.2

The action of G on X can be also given in the form of a pairing

λ̃ : G× X → X, (3.100)

where λ̃ and λ are linked by the identity

λ̃(g, x) = λg(x) (g ∈ G; x ∈ X). (3.101)

Using identity (3.101) one can recover λ from λ̃ .

3.5.1.3 Simplified notation

A common practice is to denote λg(x) by gx as if we are multiplying x by
g on the left.
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3.5.1.4 The category of G -sets

Sets equipped with an action of a given set G naturally form a category.
Morphisms (X, λ) → (Y, µ) are maps f : X → Y which are compatible
with G -action. This translates into f satisfying the equalities

f ◦ λg = µg ◦ f (g ∈ G). (3.102)

Explicitly,
f
(
λg(x)

)
= µg ( f (x)) (g ∈ G; x ∈ X) (3.103)

or, in simplified notation,

f (gx) = g f (x) (g ∈ G; x ∈ X).

The category of G -sets will be denoted G -Set.

3.5.1.5

In the language of commuting diagrams identity (3.103) is equivalent to
commutativity of the square diagram

G× X X

G×Y Y
u

idG × f

w
λ̃

u

f

w
µ̃

(3.104)

3.5.1.6 Equivariant maps

Traditionally, morphisms in the category of G -sets are called equivariant
maps.

3.5.2 Objects with an action of a set

3.5.2.1

This is an obvious generalization of the previous structure. We say that a
set G acts on an object a of a category C if we associate with every element
g ∈ G , an endomorphism λg : a → a . The family of endomorphisms(
λg
)

g∈G is a map

λ : G → EndC(a), g 7→ λg (g ∈ G). (3.105)
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3.5.2.2 The category of G -objects

Objects of a category C equipped with an action of a given set G form a
category. Morphisms (a, λ) → (b, µ) are morphisms α : a → b which are
compatible with G -action. This translates into α satisfying the identity

α ◦ λg = µg ◦ α (g ∈ G) (3.106)

The category of G -objects for a category C will be denoted G -C .

3.5.3 Sets with an action of a semigroup

3.5.3.1

When a set G that acts on a set X , is equipped with a binary operation, it
is natural to require that the operation and the action are compatible. This
translates into saying that map (3.99) should be a homomorphism,

λgh = λg ◦ λh (g, h ∈ G) (3.107)

or, using simplified notation, that the identity

(gh)x = g(hx) (g, h ∈ G; x ∈ X). (3.108)

3.5.3.2

Noting that (3.108) closely resembles the associativity condition, it is not
surprising that this definition is particularly well suited to the case when
multiplication in G is associative, i.e., when G is a semigroup.

3.5.3.3

In the context of semigroups, the phrase ‘a G -set’ always means

a set equipped with an action of set G such that the structural
map, (3.99), is a homomorphism of semigroups. (3.109)

In this restricted sense, G -sets form a full subcategory of the category of
G -sets where G is simply considered to be a set.

3.5.3.4

Similarly, we say that a semigroup G acts on an object a of a category C , if
a homomorphism of semigroups (3.105) is given.
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3.5.3.5 Notation

Notation G -Set and G -C will be used to denote the corresponding cate-
gories of G -sets and G -objects.

3.5.3.6 The case of a monoid

We have seen above that a homomorphism of semigroups does not preserve
the identity elements, in general. A homomorphism of monoids is explicitly
required to preserve the identity elements.

Note that XX and EndC(a) are monoids. If G is a monoid G , we
require that the structural maps, (3.99) and (3.105) are homomorphisms of
monoids. In other words, we require them to be homomorphisms of the
corresponding binary operations and, additionally to preserve the identity:

λe = idX (in the case of an action on a set X) (3.110)

and

λe = ida (in the case of an action on an object a). (3.111)

3.5.3.7 Group actions

This case is of particular importance. The role played by groups in Math-
ematics and its applications to Physics, Chemistry, and Engineering, is
primarily as groups of symmetries of various objects.

3.5.4 Semimodules

3.5.4.1

The set of endomorphisms EndSemigrp(A) of a commutative semigroup A
is a unital semiring, cf. Section 3.4.3.7. We will say that a semiring R acts
on a commutative group A if a homomorphism of semirings

λ : R→ EndSemigrp(A) (3.112)

is given.

3.5.4.2 The action of a semiring analyzed

Let us translate into concrete identities the fact that (3.112) defines an
action of semiring R on semigroup A . We will be using simplified notation
throuout: ra˜ λr(a) .
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3.5.4.3

Let us begin from the fact that, for each r ∈ R , map λr is supposed to be
an endomorphism of semigroup A . This is expressed by the identity

r(a + b) = ra + rb (r ∈ R; a, b ∈ A). (3.113)

3.5.4.4

Map (3.112) is supposed to be a homomorphism of the additive semigroup
R+ of R into the addititive semigroup of semiring EndSemigrp(A) . This is
expressed by the identity

(r + s)a = ra + sa (r, s ∈ R; a ∈ A). (3.114)

3.5.4.5

Finally, map (3.112) is supposed to be also a homomorphism of the multi-
plicative semigroup R× of R into the multiplicative semigroup of semiring
EndSemigrp(A) . This is expressed by the identity

(rs)a = r(sa) (r, s ∈ R; a ∈ A). (3.115)

3.5.4.6

If we diregard the fact that the left multiplier in the expression ra belongs
to R while the right multiplier belongs to A , then we can interpret identity
(3.113) as left-distributivity of multiplication by elements of R over addition
in A .

Similarly, identity (3.114) can be interpreted as right-distributivity of
multiplication by elements of A over addition in R .

Finally, identity (3.115) looks like associativity of multiplication, except
that the left-hand-side of (3.115) involves two diferent ‘multiplications’: of
two elements of R , and of an element of R and an element of A .

3.5.4.7 R -semimodules

A short name for a semiring R acting on a commutative semigroup is
an R-semimodule or, to be precise, a left R -semimodule—since there is a
version of the semimodule definition in which R acts from the right. An
alternative way to say the same: a semimodule over R .
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3.5.4.8 The category of R -semimodules

Given two R -semimodules, a morphism A → B is a morphism of semi-
groups f : A→ B , i.e., an additive map, which is compatible with actions
of R on A and B . This last requirement is expressed as the identity

f (ra) = r f (a) (r ∈ R; a ∈ A). (3.116)

Maps between commutative semigroups f : A→ B which satisfy identity
(3.116) are said to be homogeneous (of degree 1).

Thus, morphisms between R -semimodules are maps that are additive
and homogeneous of degree 1. Maps with these two properties are also
called R-linear or, simply, linear, when the semiring of coefficients is clear
from the context.

3.5.4.9 Terminology

Given an R -semimodule A , if we need to refer to the underlying structure
of a semigroup forgetting the action of R , then we call it the additive
semigroup of A .

If we need to refer to R , we call it the semiring of coefficients, or the
ground semiring.

3.5.4.10 Subsemimodules

Let us look at the additive semigroup A+ of an R -semimodule A . Suppose
that a subsemigroup B be of A+ atisfies the property

rb ∈ B for any r ∈ R; and ; b ∈ B. (3.117)

Then one can consider B , equipped with the R -action induced from A , as
an R -semimodule. Such a semimodule is called a subsemimodule of A .

3.5.4.11

Exercise 97 For any subset X of an R-semimodule A, let RX be the set formed
by sums in A

ξ = ∑
x∈X′

rxx (3.118)

where X′ is any finite nonempty subset of X and (rx)x∈X′ is any family of
elements of R, indexed by set X′ . Show that RX is a subsemimodule of A.
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3.5.4.12

Note that R∅ = ∅ .

Exercise 98 Show that the intersection of any family (Bi)i∈I of subsemimodules
of A is a subsemimodule.

Exercise 99 Show that RX coincides with the intersection of the family of sub-
semimodules of A which contain subset X .

3.5.4.13 The subsemimodule generated by a subset

Subsemimodule RX is the smallest subsemimodule of A which contains
subset X . We shall refer to it as the subsemimodule generated by X ⊆ A .

3.5.4.14 Sets of generators

If RX = A , we say that X is a set of generators for R -semimodule A .

Exercise 100 Suppose that z ∈ R is a right zero, i.e.,

r + z = r and rz = z (r ∈ R).

Show that the set
zA˜ {za | a ∈ A} (3.119)

is a subsemimodule of A and every element in zA is an additive idempotent

b + b = b (b ∈ zA).

3.5.4.15 Semimodules over a semiring with zero

When A is a commutative monoid, then EndMon(A) is a semiring with
zero: the constant map A→ A which sends every element of A to 0 ∈ A
playing the role of the zero element.

If the ground semiring itself has zero, then in the definition of a semi-
module we additionally request that 0 ∈ R acts on elements of A via the
zero map

0R · a = 0A (a ∈ A)

or, in simplified notation,

0a = 0 (a ∈ A).
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3.5.4.16 The category of semimodules over a semiring with zero

This is a subcategory of the category of semimodules whose objects are
commutative monoids instead of commutative semigroups, and morphisms
are supposed to be homomorphisms of commutative monoids, i.e., be
additive maps and additionally send 0 to 0.

This is an example of a not full subcategory.

3.5.4.17 Unitary semimodules

Suppose that the ground ring is unital. If 1 ∈ R acts on A as the identity
endomorphism, then A is said to be a unitary R -semimodule.

3.5.4.18 Example: unitary Z+ -semimodules

Consider the set of positive integers

Z+˜ {1, 2, . . . } (3.120)

equipped with usual addition and multiplication. It is a unital semiring.
For any unitary semimodule over Z+ , one has

na = (1 + · · ·+ 1)︸            ︷︷            ︸
n times

a = a + · · ·+ a︸         ︷︷         ︸
n times

(a ∈ A) (3.121)

which means that a structure of a unitary Z+ -semimodule on a semigroup
A is completely determined by the structure of A as a semigroup. In
particular, there is only one structure of a unitary Z+ -semimodule on any
given commutative semigroup.

Vice-versa, for any commutative semigroup A , formula (3.121) defines
an action of the semiring of positive integers on A making it a unitary
Z+ -semimodule.

Exercise 101 Show that any homomorphism of commutative semigroups is auto-
matically a homomorphism of Z+ -semimodules.

3.5.4.19

It follows that the category of unitary Z+ -semimodules is isomorphic to
the category of commutative semigroups.
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3.5.4.20 Example: unitary N-semimodules with zero

Consider the set of natural numbers

N˜ {0, 1, 2, . . . } (3.122)

equipped with usual addition and multiplication. It is a unital semiring
with zero which contains Z+ as a subsemiring.

Let A be a unitary N -semimodule with zero. Thus, 0 ∈ N acts by
sending any element a ∈ A to 0 ∈ A while any positive integer acts on A
by formula (3.121). Accordingly, a structure of a unitary N -semimodule
with zero on a monoid A is completely determined by the structure of
A as a monoid. In particular, there is only one structure of a unitary
N -semimodule on any given commutative monoid.

Vice-versa, for any commutative monoid A , formulae (3.121) and

0a = 0

define an action of the semiring of natural numbers on A making it a
unitary N -semimodule with zero.

Any homomorphism of commutative monoids is automatically a ho-
momorphism of N -semimodules. It follows that the category of unitary
N -semimodules with zero is isomorphic to the category of commutative
monoids.

3.5.4.21 Modules over a ring

When A is an abelian group, then EndGrp(A) is a unital ring. If the
ground semiring is a ring, then any homomorphism of semirings (3.112) is
automatically also a homomorphism of rings (rings form a full subcategory
in the category of semirings). In this case we speak of R -modules, or
modules over R , rather than semimodules.

3.5.4.22 The category of R -modules

The category of R -modules is a full subcategory of the category of R -
semimodules.

3.5.4.23 The category of unitary R -modules

The most frequently encountered is the category of unitary modules over a
unital ring R . It is this category that is usually denoted R-mod.
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3.5.4.24 Vector spaces

Unitary modules over a field F are called F-vector spaces or vector spaces
over F .

3.5.4.25

As we noted above, a semimodule A over a ring R is a module precisely
when the additive semigroup of A is a group. When the ground ring is
unital and A is a unitary R -semimodule, then the additive semigroup of
A is forced to be a group.

Observation 3.5.1 Any unitary semimodule is automatically a module. More
precisely, for any a ∈ A, the element (−1)a is the additive inverse to a .

Indeed, for any a ∈ A , one has

0 = 0a = (1 + (−1)) a = 1a + (−1)a = a + (−1)a,

i.e., (−1)a is the right inverse of a in the additive semigroup of A (it is
automatically a two-sided inverse since addition in A is commutative).

Exercise 102 Let A be an R-semimodule over a nonunital ring R. Show that,
for any a ∈ A, the following subset of A

Ra˜ {ra | r ∈ R}

is a subgroup of the aditive group of A.

3.5.4.26 Example: unitary Z-modules

Consider the set of integers

N˜ {0,±1,±2, . . . } (3.123)

equipped with usual addition and multiplication. It is a unital ring which
contains N as a subsemiring with zero.

Let A be a unitary Z -module. Action of positive integers is governed
by identity (3.121).
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3.5.5 Semialgebras

3.5.5.1

We defined semirings as commutative semigroups equipped with a biad-
ditive binary operation. It happens very often that the semigroup is a
semimodule over certain semiring, and that the operation is bilinear.

3.5.5.2 Bilinear pairings

Suppose that R -semimodules A , B , and C be given. A biadditive pairing

µ : A× B→ C (3.124)

is said to be R-bilinear, or a R-biadditive pairing, if it is homogeneous of
(degree 1) in each argument:

µ(ra, b) = rµ(a, b) (r ∈ R; a ∈ A; b ∈ B), (3.125)

and
µ(a, rb) = rµ(a, b) (r ∈ R; a ∈ A; b ∈ B). (3.126)

3.5.5.3

The notion of of a bilinear pairing makes sense for semimodules over any
semiring. When R is not commutative, however, its usefulness is limited. A
proper context for ‘bilinear’ and, more generally, multilinear maps requires
replacing semimodules by semibimodules. This will not be discussed here,
so from now on we shall assume that the ground ring is commutative.

3.5.5.4 Semialgebras: terminology and notation

A semimodule equipped with a bilinear multiplication

µ : A× A→ A

is called a semialgebra. There is a tradition to denote by k the ground
semiring which, as you remember, is assumed to be commutative. If one
needs to be more specific, terms like ‘a k -semialgebra’ or ‘a semialgebra
over k ’ are used as well.
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3.5.5.5

All the terms applicable to semirings continue to be applicable to semialge-
bras: ‘associative’, ‘commutative’, ‘with zero’, ‘unital’, etc.

3.5.5.6 Example: semirings as Z+ -semialgebras

Every semiring is automatically a semialgebra over Z+ , cf. The category of
semirings and the category of Z+ -semialgebras are isomorphic.

3.5.5.7 Example: kX

The set of maps X → k with values in a commutative semiring, with
pointwise addition and multiplication is naturally a k -semialgebra.

3.5.5.8 Example: semirings with zero as N-semialgebras

Every semiring with zero is automatically a semialgebra over N , cf. The
category of semirings with zero and the category of N -semialgebras are
isomorphic.

3.5.5.9 Algebras

‘Semialgebras’ are called algebras, if k is a ring and A is a k -module.

3.5.5.10 Morphisms

Morphisms between semialgebras A→ B are maps f : A→ B which are
simultaneously homomorphisms of the corresponding additive semimod-
ules and of the multiplicative binary structures. Like for other algebraic
structures, they are usually called homomorphisms.

3.5.5.11

Morphisms A→ B between semialgebras with zero are of course expected
to send 0A to 0B .

3.5.5.12

We said it already twice before: associativity is of such importance that it
became a standard practice to tacitly assume associativity when talking
about semialgebras and algebras.
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The category of associative semialgebras over k will be denoted k -semialg,
and the category of associative algebras will be denoted k -alg.

3.5.5.13 Terminology: a warning

The term ‘algebra’ is used in Mathematics in at least two different ways: as
a special kind of algebraic structure, and as a branch of Mathematics. In
the latter sense I suggest to always capitalize it: Algebra.

Term ‘algebra’ can be also used in a loose sense of anything that involves
extensive manipulations of symbolic expressions.

You have to be aware that various structures, not necessarily strictly
algebraic, were designated with term ‘algebra’ before the latter became
attached to that particular algebraic structure we call now an algebra.

For example, neither Boolean algebras nor σ -algebras are algebras in
the sense given above. Both, however, are semirings of special kind.

3.5.5.14 Example: P(X) as an F2 -algebra

The set of all subsets of any set X is only a semiring when considered with
operations ∪ and ∩ . If one replaces union by disjoint union,

A | B˜ (A ∪ B) \ (A ∩ B), (3.127)

then (P(X), | ,∪) becomes a commutative unital algebra over the field
with two elements F2 = {0, 1} .

Exercise 103 Show that ∩ distributes over | .
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Chapter 4

Universal constructions

4.1 Universal properties

4.1.1 Initial and final objects

4.1.1.1

An object u in a category C is initial if, for any object c , there is a unique
morphism u→ c .

Exercise 104 Show that any two initial objects u and u′ are isomorphic by a
unique isomorphism.

4.1.1.2

Dually, an object v in a category C is final if, for any object c , there is a
unique morphism c→ v . Note that v is final precisely when vop is initial
in the opposite category, Cop .

4.1.1.3

The empty set is a unique initial object in the usual category of sets, Set,
while single-element sets are the final objects.

4.1.1.4

The empty set is simultaneously a unique initial and a unique final object in
the category of sets and multimaps, Setmult , and in the isomorphic category
of sets and binary relations, Setrel .
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4.1.1.5

If we view a partially ordered set as a category, then the least element is
an initial object, and the greatest element is a final object. Note that in this
case an initial, as well as a final, objects are unique when they exist.

4.1.1.6

In the category of groups, Grp, a one-element group is simulateneously an
initial and a final object.

4.1.1.7

In the category of unital rings, Ring1 , the ring of integers, Z , is an initial
object.

Exercise 105 Show that there is no final object in Ring1 .1 (Hint. Show that for
any unital ring R there are at least two different ring homomorphisms R× R→ R.)

4.1.2 The quotient of a set by a relation

4.1.2.1

Let R ⊆ E× E be a binary relation on a set E . Let us consider the category
whose objects are maps f : E→ X , where X denotes an arbitrary set, such
that

f (a) = f (b) whenever a ∼R b (a, b ∈ E).

Morphisms from E
f→ X to E

g→ Y are maps φ : X → Y such that g = φ ◦ f
which may be expressed by commutativity of the diagram

E Y

X

w
g

[
[]

f ff
fffi

φ
.

4.1.3 Product

4.1.3.1

Let
(ai)i∈I (4.1)

1Note: a ring is unital if it possesses a nonzero identity element.
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be a family of objects in a category C . Given a morphism α : x → y , and a
family of morphisms gi : y→ ai , we can form the family of morphisms

fi = gi ◦ α (i ∈ I). (4.2)

The family ( fi)i∈I is said to be induced from family (gi)i∈I by morphism α .

4.1.3.2 A universal family

We say that an object p ∈ ObC equipped with a family of morphisms
(πi : p→ ai)i∈I , is a product of family (4.1) if any family of morphisms (4.2)
can be induced from family (πi)i∈I by a unique morphism α : x → p .

Exercise 106 Show that if (πi : p → ai)i∈I and (π′i : p′ → ai)i∈I are products
of family (ai)i∈I , then p and p′ they are isomorphic.

4.1.3.3 Terminology and notation

Morphisms πi : p → ai are referred to as the canonical projections. Even
though the term ‘product’ is often applied just to object p , the canonical
projections form a part of the product structure.

4.1.3.4 Example: the category of fields

A product may fail to exist. This happens, in particular, when for a given
family of objects (4.1) there is no object x ∈ ObC such that

HomC(x, ai) , ∅.

This situation may occur, e.g., in the category of fields where any morphism
E→ F is an injective map between the underlying sets. Thus, a product of
F2 and F3 = {0, 1,−1} does not exist.

Exercise 107 Show that F2 is a product of F2 and F2 in the category of fields,
with the ‘canonical projections’ being the identity maps F2 → F2 .

4.1.3.5 Example: a partially ordered set viewed as a category

Here, a product of family (4.1) exists if and only if the set

{ai | i ∈ I}
has infimum. In this case product is unique, namely

inf {ai | i ∈ I}.

Exercise 108 Prove the above two assertions.
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4.1.3.6

When a product of (4.1) exists it is not unique if there exists p′ ∈ ObC and
a non-identity isomorphism p ' p′ . However, any two solutions to the
problem of existence of a product of family (ai)i∈I are isomorphic, and
there exists only one such isomorphism which is compatible with all the
projection morphisms.

4.1.3.7 Functorial products

When a product exists for any family of objects in a category C , it frequently
happens, that there is a functorial solution to the problem of existence of
a product. This means that there exists a functor, denoted ∏ , from the
category of I -indexed families (ai)i∈I of objects in C to the category of I -
indexed families of morphisms ( fi : x → ai)i∈I whose ‘values’ are products
of the corresponding families.

There is no need to say more about it now. We will signal such functorial
constructions of products when we encounter them.

4.1.3.8 Product of a family of sets

For a family of sets (Xi)i∈I , let

X =
⋃
i∈I

Xi,

and let
∏
i∈I

Xi˜ {ξ : I → X | ξ(i) ∈ Xi}. (4.3)

Set (4.3) is called the Cartesian product of family (Xi)i∈I . Usual interpreta-
tion of elements of the Cartesian product is as families (xi)i∈I of elements
of X such that xi ∈ Xi . The maps that forget all but one component of
(xi)i∈I are the canonical projections.

4.1.3.9

Given any family of maps fi : W → Xi , define

f̃ : W →∏
i∈I

Xi w 7→ ( fi(x))i∈I .
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4.1.3.10 Functoriality of the Cartesian product

A morphism (Xi)i∈I → (Yi)i∈I is a family of maps { fi : Xi → Yi} . It
induces the map

∏
i∈I

fi : ∏
i∈I

Xi →∏
i∈I

Yi, (xi)i∈I 7→ ( fi(x)i)i∈I . (4.4)

which is compatible with the composition of morphisms of families of sets.

4.1.3.11 Alternative notation

If I is a finite linearly ordered set like {1, . . . , n} , an alternative notation is
frequently used

X1 × · · · × Xn and f1 × · · · × fn

instead of
n

∏
i=1

Xi and
n

∏
i=1

fi.

4.1.3.12 Product of a family of algebraic structures

Consider a family of algebraic structures

((Xi, µi1, . . . , µil))i∈I

of signature (n1, . . . , nl) . We shall equip the Cartesian product of sets
∏i∈I Xi with the structure of the same signature by applying corresponding
operations componentwise:

νj ((xi)i∈I , (yi)i∈I)˜
(
µij(xi, yi)

)
i∈I (j = 1, . . . , l).

This construction depends functorially on the family of structures and one
can easily verify that the

4.1.3.13 Product of a family of topological spaces

4.1.3.14 Product of a family of measurable spaces
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