
Notes on Topology

An annex to H104, H113, etc.

Mariusz Wodzicki

December 6, 2013

1 Five basic concepts

open sets oo //
OO

��

closed sets
OO

��

neighborhoods
''

gg

ww

77

77

ww

hh

((

interior oo // closure

(1)

1.1 Introduction

1.1.1

A set X can be made into a topological space in five different ways, each
corresponding to a certain basic concept playing the role of a primitive
notion in terms of which the other four are expressed.

Thus, one can talk of the topology on a set X in the language of
open sets, or the language of closed sets, or the language of the interior
operation, or the language of the closure operation or, finally, the language
of neighborhoods of an arbitrary point p ∈ X .
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The five ‘languages’ are completely equivalent which means, in par-
ticular, that one can faithfully translate from any one of them into any
other one.

1.1.2 The closure operation

A mapping P(X)−→P(X) , E 7−→ Ē , is said to be a (topological) closure
operation if it satisfies the following conditions for any E, F ⊆ X :

(C1) E ⊆ Ē

(C2) ¯̄E = Ē

(C3) E ∪ F = Ē ∪ F̄

(C4) ∅ = ∅

Exercise 1 Show that Ē ⊆ F̄ whenever E ⊆ F.

1.1.3 The interior operation

A mapping P(X)−→P(X) , E 7−→ E̊ , is said to be an interior operation
if it satisfies the following conditions for any E, F ⊆ X :

(I1) E̊ ⊆ E

(I2)
˚̊E = E̊

(I3) (E ∩ F)
◦
= E̊ ∩ F̊

(I4) X̊ = X

Exercise 2 Show that E̊ ⊆ F̊ whenever E ⊆ F.

1.1.4

If E 7−→ Ē is a closure operation on X , then

E 7−→ E̊˜
(
(Ec)

)c
(2)
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is an interior operation. And vice-versa, if E 7−→ E̊ is an interior operation
on X , then

E 7−→ Ē˜ ((Ec)◦)c (3)

is a closure operation.

Exercise 3 Prove the above statement.

1.1.5

The two operations are conjugate to each other. This is represented by the
commutativity of the following diagram

P(X) P(X)

P(X) P(X)

u

u

( )c

w
( )
◦

u

u

( )c

w
( )

(4)

The conjugating operation, E 7−→ Ec , is an example of anti-automorphism
of a partially ordered set: it is invertible (in fact, it is equal to its own in-
verse), but reverses the order instead or preserving it:

Ec ⊇ Fc if E ⊆ F. (5)

Moreover, it interchanges the operations of union and intersection:

(E ∪ F)c = Ec ∩ Fc and (E ∩ F)c = Ec ∪ Fc. (6)

1.1.6 Open sets

A subset T ⊆P(X) is said to be a topology on a set X if it satisfies the
following conditions

(T1) for any U ⊆ T , one has
⋃

U ∈ T

(T2) for any finite U ⊆ T , one has
⋂

U ∈ T

Members of T are referred to as open sets or, more precisely, open
subsets of X .
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1.1.7

Note that the empty set (the union of the empty family of subsets of X )
and X (the intersection of the empty family of subsets of X ) are open.

1.1.8 Closed sets

Complements of members of any topology on X form a subset Z ⊆
P(X) which possesses the following properties

(Z1) for any W ⊆ Z , one has
⋂

W ∈ Z

(Z2) for any finite W ⊆ Z , one has
⋃

W ∈ Z

Members of Z are then referred to as closed sets or, more precisely,
closed subsets of X .

1.1.9

Note that the empty set (the union of the empty family of subsets of X )
and X (the intersection of the empty family of subsets of X ) are closed.

1.1.10 Neighborhoods

A family {Np}p∈X , indexed by elements of X , of subsets Np ⊆ P(X)
is said to be a neighborhood system on a set X if it satisfies the following
conditions

(N1) if M, N ∈ Np , then M ∩ N ∈ Np

(N2) if N ∈ Np and N ⊆ N′ , then N′ ∈ Np

(N3) if N ∈ Np , then {q ∈ N | N ∈ Nq} ∈ Np

(N4) p ∈ ⋂Np

(N5) X ∈ Np

Members of Np are referred to as neighborhoods of point p .
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1.2 An interlude: Filters and filter-bases

1.2.1 Directed sets

A nonempty partially ordered set (Λ,�) is said to be directed above if

for any λ, µ ∈ Λ there exists ν ∈ Λ such that λ � ν and µ � ν (7)

or, equivalently, if any nonempty finite subset of I is bounded above.

1.2.2

By replacing � by �rev one obtains the definition of sets directed below.
Explicitly, (Λ,�) is said to be directed below if

for any λ, µ ∈ Λ there exists ν ∈ Λ such that ν � λ and ν � µ (8)

or, equivalently, if any nonempty finite subset of I is bounded below.

1.2.3 Terminology

When you encounter the expression directed set, it usually means “directed
above”. Sometimes the terminology left-directed, right-directed is used for
what we call here direceted below, directed above.

1.2.4 Filter-bases

A nonempty subset F ⊆P(X) is said to be a filter-base on a set X if it
satisfies the following conditions

(F1) for any E, F ∈ F , there exists G ∈ F such that G ⊆ E ∩ F

(F2) ∅ < F .

In other words, a filter-base on a set X is a subset F of (P(X),⊆)
which is directed below and which does not contain ∅ (recall, the small-
est element of (P(X) ⊆)).

Exercise 4 Show that the intersection of finitely many members of a filter-base
is nonempty:

E1 ∩ · · · ∩ En , ∅ (E1, . . . , En ∈ B).
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1.2.5 Filters

A filter-base that satisfies one more condition:

(F3) for any subsets E ⊆ F ⊆ X , if E ∈ F , then also F ∈ F ,

is called a filter on a set X .

1.2.6 The filter generated by a filter-base

For a given filter-base B ⊆P(X) on a set X , define

B]˜ {F ⊆ X | F ⊇ E for some E ∈ B} (9)

Exercise 5 Show that B] satisfies condtitions (F1)-(F3) above. Show that any
filter F containing B contains B] as well.

Thus, B] is the smallest filter containing B . We shall refer to it as the
filter generated by B .

1.2.7 Example: principal filters

For any nonempty subset E ⊆ X , the family PE of all subsets of X which
contain E , is a filter. In fact, it is the filter generated by the filter-base
consisting of one single set E :

PE˜ {E}]. (10)

We shall call such filters principal. In case, E is a singleton set {p} for
some p ∈ X , we may write Pp instead of P{p} .

Exercise 6 Show that any filter on a finite set X is principal.

Exercise 7 Show that if F ∈ F , then PF ⊆ F .

Exercise 8 Show that any filter F on a set X is the union of principal filters.
More precisely,

F =
⋃

F∈F

PF. (11)
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1.2.8 Example: the Fréchet filter of a directed set

Let (S,�) be a partially ordered set.

Exercise 9 Show that the image of S under the canonical emebedding of (S,�rev

) into P(S) ,
{[s〉 | s ∈ S}, (12)

is a filter-base on S if and only if (S,�) is directed.

In that case, the filter generated by (12) is called the Fréchet filter on
directed set (S,�) . We shall denote it Fr(S,�) or, simply, Fr(S) , if the
order on S is clear.

Exercise 10 Show that Fr(N,≤) consists of all subsets E ⊆ N such that the
complement, Ec , is finite.

1.2.9 Example: the direct image of a filter

Exercise 11 Let B be a filter-base on a set X and f : X−→Y be a mapping.
Show that the images of all members of B under f ,

f∗∗B˜ { f (B) | B ∈ B}, (13)

form a filter-base on Y.

In other words, filter-bases on X are sent by mappings f : X−→Y to
filter-bases on Y . If F is a filter on X , its image, f∗∗F , is only a filter-
base however: a subset G of Y which contains f (E) for some E ∈ F ,
does not have to be of the form f (F) itself for some F ∈ F . It does not
even have to be of the form f (F) for any F ∈P(X) .

For this reason, we consider instead the generated filter

f]F ˜ ( f∗∗F )] (14)

and call it the direct image of filter F under mapping f .

Exercise 12 Show that, for any filter F on a set X and for any mapping
f : X−→Y, one has

f]F = f ∗∗F (15)

where
f ∗∗F = {B ⊆ Y | f−1(B) ∈ F}. (16)
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1.2.10 Example: the elementary filter associated with a net

A net in a set X is just a family of elements of X , indexed by a certain
directed set Λ . In other words, a net ξ = (ξλ)λ∈Λ in X is the same as a
mapping

ξ : Λ−→X, i 7−→ ξλ.

1.2.11

A net indexed by the set of natural numbers, N , or by any of its subsets,
is called a sequence in X .

1.2.12 The elementary filter associated with a net

The direct image of the Fréchet filter,

ξ] Fr(Λ) (17)

is called the elementary filter associated with net ξ .

1.2.13 Example: the inverse image of a filter

In contrast with the image of a filter-base, the preimage of a filter-base is
generally not a filter-base, it is not even contained in any filter, and the
reason is clear: the preimage of a nonempty subset may be empty.

Exercise 13 Let C be a filter-base on a set Y and f : X−→Y be a mapping.
Show that the preimages of all members of C under f ,

f ∗∗C ˜ { f−1(C) | C ∈ C }, (18)

form a filter-base on X if and only if

C ∩ f (X) , ∅ for every member C ∈ C . (19)

1.2.14

Let G be a filter on Y . If it satisfies condition (19), then the filter generated
by f ∗∗G ,

f ]G ˜
(

f ∗∗G
)
]

(20)

is called the inverse image of filter G .

8



1.3 The neighborhood filters

1.3.1

Let us return to the definition of a system of neighborhoods, cf. 1.1.10.

Exercise 14 Show conditions (N1) , (N2) , (N4) , and (N5) imply that every
Np is a filter.

Vice versa, show that any filter F on X such that

p ∈
⋂

F (for some p ∈ X ),

satisfies conditions (N1) , (N2) , (N4) , and (N5) .

1.3.2 A fundamental system of neighborhoods

Any filter-base of Np is called a fundamental system of neighborhoods
of X at point p .

The name reflects the fact that the neighborhood filters are often de-
fined as the filters generated by certain explicitly given filter-bases.

2 Different approaches to equipping a set with
a topological structure

2.1 Sets with a closure operation

Let X be a set equipped with a closure operation, cf. 1.1.2. The associated
interior operation can be defined exactly as in 1.1.4.

2.1.1

Define a subset Z ⊆ X to be closed if Z̄ = Z , and a subset U ⊆ X to be
open if its complement, Uc , is closed.

Exercise 15 Show that so defined family of closed subsets of X satisfies axioms
(Z1)-(Z2) .
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2.1.2

Neighborhoods are defined in terms of the associated interior operations,
cf. 2.2.2 below.

2.2 Sets with an interior operation

Let X be a set equipped with an interior operation, cf. 1.1.3. The associ-
ated closure operation has been defined in 1.1.4.

2.2.1

Define a subset U ⊆ X to be open if Ů = U , and a subset Z ⊆ X to be
closed if its complement, Zc , is open.

2.2.2

Let us say that a subset N ⊆ X is a neighborhood of a point p ∈ X if
p ∈ N̊ .

Exercise 16 Show that so defined family {Np}p∈X satisfies axioms (N1)-(N5) .

2.3 Sets with a topology

Let X be a set equipped with a topology, cf. 1.1.6.

2.3.1

Define a subset Z ⊆ X to be closed if its complement, Zc , is open.

2.3.2

For any E ⊆ X , define its interior as the union of all the open subsets of
E ,

E̊˜
⋃

U⊆E
U is open

U. (21)
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2.3.3

Let us say that a subset N ⊆ X is a neighborhood of a point p ∈ X if p ∈ U
for some open subset U of N .

2.3.4 A base of the topology

A subset S ⊆ T of the topology is said to be a base of the topology if
every open subset is the union of members of S .

Exercise 17 Show that S is a base of the topology if and only if the family
{Bp}p∈X ,

Bp˜ {V ∈ S | V ∈ Np} (22)

is a fundamental system of neighborhoods, i.e. is a family of filter-bases generat-
ing the neighborhood filters Np defined in 2.3.3.

2.3.5 Comparing topologies

Topologies on a a given set X form a set, denoted Top(X) , which is
partially ordered by inclusion. It is a subset of (P(P(X)),⊆) .

When T ⊆ T ′ it is common to say that topology T ′ is finer, or
stronger, than T . In the same situation one also says that T is coarser, or
weaker than T ′ .

2.3.6 The discrete topology

The set of all topologies on X has the greatest element, namely

T discr
˜P(X). (23)

This is the finest topology on X . It is called the discrete topology. In
discrete topology every subset of X is open. In paricular, every subset is
also closed.

2.3.7 The trivial topology

The set of all topologies on X has also the smallest element,

T triv
˜ {∅, X}. (24)
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This is the coarsest topology on X . It is called the trivial topology. In
trivial topology the closure of any nonempty subset equals X , and the
interior of any proper subset is empty.

2.3.8

Let T ⊆ Top(X) be any family of topologies on a set X . It follows im-
mediately from the definition that subsets of X which belong to each
member T ∈ T form a topology on X . In other words, the intersection
of any family of topologies on X ,⋂

T =
⋂

T ∈T
T (25)

is again a topology on X . In particular, the infimum of any subset of T

exists and equals (25).
It follows that Top(X) is a complete lattice.

2.3.9

We can understand better the structure of the set of all topologies on a
given set X by considering two operations on the set of all families of
subsets of X :

( )∧ : P(P(X))−→P(P(X)), E 7−→ E ∧, (26)

where E ∧ is the family formed by the intersections of arbitrary finite sub-
families E0 ⊆ E of a given family E ,

E ∧˜
{⋂

E0 | E0 ⊆ E and E0 is finite
}

, (27)

and
( )∪ : P(P(X))−→P(P(X)), E 7−→ E ∪, (28)

where E ∪ is the family formed by the unions of arbitrary subfamilies
E ′ ⊆ E of a given family E ,

E ∪˜
{⋃

E ′ | E ′ ⊆ E
}

. (29)
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2.3.10

By considering the intersection and the union of the empty subfamily
∅ ⊆ E , we deduce that, for any E ⊆P(X) ,

X = infP(X)∅ =
⋂

∅ ∈ E ∧

and, similarly,
∅ = sup

P(X)

∅ =
⋃

∅ ∈ E ∪.

2.3.11

Topologies on a set X are precisely the subsets of P(X) which are both
∧ - and ∪ -closed,

Top(X) = {∧ -closed subsets of P(X)} ∩ {∪ -closed subsets of P(X)}. (30)

2.3.12

Both of the above operations on P(P(X)) are morphisms of partially or-
dered sets, and possess the following two properties of a (formal) closure
operation, namely,

E ⊆ E − and (E −)− = E −

where E − denotes either E ∧ or E ∪ .

Exercise 18 Show that for any family E ⊆P(X) , one has

((E ∧)∪)∧ = (E ∧)∪.

Solution. For any subfamilies D and D ′ of E ∧ , one has(⋃
D
)
∩
(⋃

D ′
)
=

⋃
D∈D , D′∈D ′

D ∩ D′ (31)

and, since the intersection of any two memebers of E ∧ , belongs to E ∧ , the right-
hand-side of (31) belongs to (E ∧)∪ .

Exercise 19 Using the previous exercise, show that, for any family E ⊆P(X) ,
family (E ∧)∪ is a topology on set X.
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2.3.13 The topology generated by a family of subsets

For any family E ⊆ P(X) , the family (E ∧)∪ is the coarsest topology
containing E and E ∧ , the ∧ -closure of E , is its base.

2.3.14 A pre-base of a topology

Given a topology T on a set X , any family E ⊆P(X) such that

(E ∧)∪ = T

is referred to as a pre-base of T .

Exercise 20 For any family T of topologies on a set X, describe supTop(X)T .

2.4 Sets with a family of closed sets

Let X be a set equipped with a family of closed sets, cf. 1.1.8.

2.4.1

Define a subset U ⊆ X to be open if its complement, Uc , is closed.

Exercise 21 Show that so defined family of subsets of X is a topology on X.

2.4.2

Neighborhoods are then defined as in 2.3.3 above.

2.4.3

For any E ⊆ X , define its closure as the intersection of all the closed
oversets of E ,

Ē˜
⋂
E⊆Z

Z is closed

Z. (32)

2.5 Sets with a system of neighborhoods

Let X be a set equipped with a system of neighborhoods, cf. 1.1.10.
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2.5.1

Define a subset U ⊆ X to be open if U is a neighborhood of every p ∈ U .

Exercise 22 Show that so defined family of subsets of X is a topology on X.

2.5.2

For any E ⊆ X , define its interior, E̊ , as the set of points p ∈ X such that
N is a neighborhood of p .

Exercise 23 Show that so defined operation, E 7−→ E̊ , satisfies conditions (I1)-
(I4) .

2.5.3

Define a subset Z ⊆ X to be closed if for any p < Z , the complement Zc

is a neighborhood of p .

2.5.4

For any E ⊆ X , define its closure as the set of points p ∈ X such that every
neighborhood N of p has a nonempty intersection with E .

Exercise 24 Show that so defined operation, E 7−→ Ē , satisfies conditions
(C1)-(C4) .

2.5.5

Define a subset Z ⊆ X to be closed if its complement, Zc , is open.

2.6 Topological spaces

2.6.1

A set equipped with any of the five structures described above: a closure
operation, an interior operation, a topology, a family of closed subsets, or
a system of neighborhoods—is called a topological space. Whichever notion
is taken to be primitive, the other four are associated with it exactly as
described in Sections 2.1-2.5 above.
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2.6.2

The most common definition of a topological space in use today is 2.3.
This is probably the reason why the family of all open sets of a topological
space X is referred to as the topology of X .

2.7 Induced topology

2.7.1

Let (Y, T ) be a topological space and X be an arbitrary subset of Y .

Exercise 25 Show that the family

T|X˜ {V ∩ X | V ∈ T } (33)

satisfies conditions (T1)-(T2) , and thus is a topology on set X.

Family T|X is called the induced topology or, the topology induced by
the topology of Y .

2.7.2

When vieved as subsets of Y , members of T|X are said to be open relative
to X or, relatively open—if the subset, X , is clear from the context.

Exercise 26 Show that a subset Z′ ⊆ X is closed in the induced topology if and
only if it is of the form Z′ = Z ∩ X for some closed subset Z of Y.

2.7.3 Axioms of Countability

A topological space X such that every point p ∈ X admits a countable
fundamental system of neigborhoods is said to satisfy the so called First
Axiom of Countability. Informally, such spaces are referred to as being
first-countable.

If the topology, T , of X admits a countable base, then X is said to
satisfy the so called Second Axiom of Countability. Informally, such spaces
are referred to as being second-countable.

Exercise 27 Show that a second-countable space is first-countable.
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2.7.4 Isolated points of a subset of a topological space

A point p ∈ E is said to be isolated if there exists a neighborhood N ∈ Np
such that p is the only member of E which belongs to it:

N ∩ E = {p}.

Exercise 28 Show that p ∈ E is not isolated if and only if

p ∈ E \ {p}

or, equivalently, if there exists a net in E \ {p} which converges to p.

Exercise 29 Let p ∈ X. Show that p ∈ E \ {p} if and only if the family of
subsets of E∗˜ E \ {p} ,

N∗˜ N ∩ E∗ (N ∈ Np), (34)

is a filter in E∗ .

3 An interplay between filters and the topology

3.1 The partialy ordered sets of filters and filter-bases on
an arbitrary set

3.1.1 The Finite Intersection Property

Let us start from the following question:

Under what conditions a family E of subsets
of a given set X is contained in a filter on X? (35)

The answer is readily found:

A family E ⊆ P(X) is contained in a filter, if and only if the intersection of
any finite subfamily E0 ⊆ E is nonempty:⋂

E0 , ∅ for any finite subfamily E0 ⊆ E . (36)
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Condition (36) is obviously necessary. It is also sufficient: the family
of intersections of finite collections of members of E ,

BE ˜
{⋂

E0 | E0 a finite nonempty subfamily of E
}

, (37)

is clearly a filter-base. We shall call it the filter-base associated with family
E . We shall also denote by E] the filter generated by BE .

3.1.2

The set of all filter-bases on a given set X is partially ordered by inclusion
and contains as a subset the set of all filters. We shall denote the latter by
Filt(X) and the former by FB(X) .

3.1.3

It is common to say that B′ is finer or equal than B , and that B is coarser
or equal than B′ , if

B ⊆ B′.

In this case one can also say that B′ is a refinement of B .
In practice, the phrase ‘or equal’ is often dropped and one hears instead

finer, or coarser, even though the case B = B′ is not excluded.

Exercise 30 Show that the intersection of any family of filters F ,⋂
F =

⋂
F∈F

F ,

is a filter.

3.1.4

It follows that the partially ordered set of filters on a set X , Filt(X) , is
complete. The principal filter PX , consisting of just one set X ,

PX = {X},

is the smallest element of Filt(X) .
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3.1.5

The situation is different if we consider the set of all filter-bases on X .
Let B, B′ ⊆ X be two nenempty and not equal subsets of X . Then the

singleton sets B = {B} and B′ = {B′} are filter-bases whose intersection
is empty

B ∩B′ = ∅

which means that the set
{B, B′}

is not bouned below in FB(X) . It is bounded above precisely when B ∩
B′ , ∅ .

Exercise 31 Let B, B′ ⊆ X and suppose that B * B′ and B′ * B.
Show that a filter base C ∈ FB(X) is a minimal element of the set of upper

bounds of {B, B′} if and only if

C = {B, B′, C}

where C is a nonempty subset of B ∩ B′ .

Exercise 32 Deduce from this that supFB(X){B, B′} exists if and only if B ∩
B′ is a singleton set.

In particular, the partially ordered set of filter-bases, FB(X) , is not
complete if X has at least 4 elements.

Exercise 33 Let X be a 4-element set {a, b, c, d} . Find two filter-bases B and
B′ on X such that the set {B, B′} is bounded below yet infFB(X){B, B′} does
not exist.

3.1.6 Suprema in Filt(X)

A subset F ⊆ Filt(X) is bounded above if and only if the union of all
members of F ,

V =
⋃

F =
⋃

F∈F
F (38)

is a family of subsets of X which satisfies the Finite Intersection Property,
cf. (36) above. In that case, the supremum of the family of filters, F , is
the filter generated by (38),

supFilt(X)F = V].
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3.1.7 The join of two filters

In the special case of F consisting of just two filters,

F = {F , G },

we shall call the supremum of {F , G } — the join of F and G , and will
denote it

F ∨ G ˜ supFilt(X)F. (39)

The join of F and G exists if and only if

F ∩ G , ∅ for any F ∈ F and G ∈ G . (40)

Exercise 34 Let E and F be two nenempty subsets of a set X. Show that
PE ∨PF exists if and only if E ∩ F , ∅ . What is it equal to?

3.1.8

We are ready now to make the following important observation.

Proposition 3.1 For any filter F on a set X and any subset A ⊆ X, there exists
a refinement F ′ of F which contains A or its complement Ac as a member.

Proof. Suppose that no refinement of F contains A . This happens
precisely when

A ∩ E = ∅ (41)

for some member E ∈ F . One can restate (41) as

E ⊆ Ac

which in turn implies that Ac ∈ F . �

3.1.9

The above propositions asserts that for any filter F on a set X and any
subset A ⊆ X , always at least one of the following two refinements of F
exists: F ∨PA or F ∨PAc .
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3.1.10 Example: the preimage of a filter-base revisited

If f : X−→Y is a mapping and C a filter-base on Y , then f ∗∗C is a filter-
base on X precisely when the the set {C , P f (X)} is bounded above in
FB(Y) . This is equivalent to the existence of the join C] ∨P f (X) . cf. 1.2.13.

3.1.11 Two representations of an arbitrary filter

We have seen, cf. (11), that any filter is the supremum in P(P(X)) of
the family of principal filters {

PF
}

F∈F
.

In particular, the set of principal filters{
PE
}

E∈P(X)\{∅}

is sup-dense in the set of all filters, Filt(X) .
We shall see next that the set of elementary filters is inf-dense in Filt(X) .

3.1.12

The Axiom of Choice asserts guarantees that, for any filter-base B on a
set X , the set of all choice functions (also known as selectors) for family
B ,

Sel(B)˜ {ξ : B−→X | ξB ∈ B for each B ∈ B}, (42)

is nonempty. Recall that (B,⊇) is a directed set, thus every choice func-
tion for B is a B -indexed net in X .

Proposition 3.2 For any filter-base on a set X, the filter generated by B is the
intersection of the elementary filters associated with the choice function for B :

B] =
⋂

ξ∈Sel(B)

ξ] Fr(B). (43)

Proof. By definition, ξB ∈ B for any B ∈ B and any choice function
ξ ∈ Sel(B) . Hence the set

ξ([B〉) = {ξB′ | B′ ⊆ B} (44)
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is contained in B . Sets (44) form a base of the elementary filter, ξ] Fr(B) ,
associated with net ξ , and therefore

B] ⊆
⋂

ξ∈Sel(B)

ξ] Fr(B), (45)

If E < B] , then, for every B ∈ B , one has B * E . In particular, the family
of sets

B′˜ {B \ E | B ∈ B}
consists of nonempty subsets of X . Let χ be any choice function for
family B′ . Since

B \ E ⊆ B (B ∈ B),

χ induces a choice function for B :

φ : B 7−→ χB\E.

Since
(B \ E) ∩ E = ∅,

set E does not belong to the elementary filter, φ] Fr(B) , associated with
with φ . In particular,

E <
⋂

ξ∈Sel(B)

ξ] Fr(B). (46)

This proves the reversed containment

B] ⊇
⋂

ξ∈Sel(B)

ξ] Fr(B). (47)

�

3.1.13 Ultrafilters

Maximal elements in Filt(X) are traditionally referred to as ultrafilters.
Proposition 3.1 applied to an ultrafilter produces the following corol-

lary.

Corollary 3.3 Let M be an ultrafilter on a set X and A any subset of X . Then
either A, or its complement, Ac , belongs to M .

22



Indeed, either M ∨PA or M ∨PAc exists by Proposition 3.1. Each
is a refinement of M when it exists, but M is maximal, hence

M = M ∨PA

if M ∨PA exists, and
M = M ∨PAc

if M ∨PAc exists. In the former case, PA ⊆ M which means that A
is a member of M , in the latter, PAc ⊆ M which means that Ac is a
member of M .

Exercise 35 Show the the hypothesis and conclusion in Corollary 3.3 can be
reversed:

Let E be any family of subsets of a set X which satisfies the Finite
Intersection Property, (36). If, in addition,

for any subset A ⊆ X, either A ∈ E or Ac ∈ E , (48)

then E is an ultrafilter.

Exercise 36 Let M be an ultrafilter on a set X and f : X−→Y be any mapping.
Show that the image, f]M , is an ultrafilter on set Y. (Hint: Show that, for any
subset B ⊆ Y, either B or Bc belongs to f]M .)

Exercise 37 Show that, for any p ∈ X, the principal filter Pp is an ultrafilter.

Exercise 38 Show that any ultrafilter on a finite set X is of the form Pp for a
unique p ∈ X. Thus, there exists a bijective correspondence between a finite set
X and the set of ultrafilters on X.

Principal ultrafilters are sometimes referred to as trivial ultrafilters.

3.1.14

By using Axiom of Choice one can show that any element F of Filt(X)
admits a refinement which is an ultrafilter, i.e., there exeists an ultrafilter
M on X such that F ⊆M .
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3.2 Convergence and limits

3.2.1 A limit of a filter-base

Let B be a filter-base on a topological space X . We say that B converges
to a point p ∈ X if B contains a fundamental system of neighborhoods of
p . Equivalently: if the generated filter B] contains the filter of neighborhoods,
Np , of point p :

Np ⊆ B]. (49)

In this case, we say that point p is a limit of filter-base B , and denote
this by

B−→p. (50)

The set of such points will be denoted Lim(B) since a filter-base may
converge to more than one point.

3.2.2

In fact, a filter-base can even converge to every point of the topological
space. This is so if X is equipped with trivial topology: in this case, the
neighborhood filter of every point p ∈ X is the smallest filter {X} , and
therefore any filter-base on X converges to every point of X .

3.2.3

The filter of neighborhoods, Np , is obviously the smallest filter converg-
ing to p , and the set of filters in X which converge to a point p is the
interval

[Np〉
in the set of all filters on X which is partially ordered by inclusion.

Exercise 39 Let p and q be arbitrary points of a topological space X. Prove
that the following three conditions are equivalent

(a) Np ⊆ Nq ;

(b) p ∈ {q} ;

(c) q ∈ ⋂Np .
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3.2.4 A limit of a mapping along a filter-base

Suppose that f : X−→Y be a mapping of a set X into a topological space
Y . Let B be a filter-base on X . We say that a point q ∈ Y is a limit of f
along filter-base B if f∗∗B converges to q , i.e., when

Nq ⊆ f]B. (51)

3.2.5

Suppose that X is a topological space. We say that a point p ∈ X is a
limit of a net ξ if p is a limit of mapping ξ : Λ−→X along the Fréchet
filter Fr(Λ) . In this case, we also say that net ξ = (ξλ)λ∈Λ converges to
point p ∈ X .

Exercise 40 Using the above definition, show that a net ξ converges to p if and
only if

for any neighborhood N of p, there exists µ ∈ Λ such that ξλ ∈ N for all λ � µ .
(52)

In the above formulation one can replace the filter of all neighborhoods
of p by any fundamental system of neighborhoods of p .

Exercise 41 Let B be a fundamental system of neighborhoods of a point p ∈ X.
Show that a net ξ converges to p if and only if

for any B ∈ B , there exists µ ∈ Λ such that ξλ ∈ B for all λ � µ . (53)

3.2.6

Since a net may converge to more than one point, we cannot use the
familar notation

lim
λ∈Λ

ξλ = p.

Sometimes notation ξ−→p , or even ξλ−→p , is used. One has to be care-
ful not to confuse it with the notation employed to denote mappigs.
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3.3 Two characterizations of the topological structure in
terms of net convergence

3.3.1

The following proposition shows that the filter of neighborhoods of a
point p in a topological space is the infimum of the elementary filters
of the nets that converge to p . In particular, the neighborhood structure
of a topological space can be fully recovered if we are told which nets
converge to which points.

Proposition 3.4 Let B be a fundamental system of neighborhoods of a point
p ∈ X. The neighborhood filter, Np , is the intersection,

Np =
⋂

ξ∈Map(B,X)
ξ−→p

ξ] Fr(B) (54)

of the elementary filters associated with nets converging to p and indexed by the
directed set (B,⊇) .

Proof. Since Np ⊆ ξ] Fr(B) , for each B -indexed net that converges
to p , we have

Np ⊆
⋂

ξ∈Map(B,X)
ξ−→p

ξ] Fr(B).

Any choice function of family B is a net convergent to p and indexed by
(B,⊇) . Hence

Np ⊆
⋂

ξ∈Map(B,X)
ξ−→p

ξ] Fr(B) ⊆
⋂

ξ∈Sel(B)

ξ] Fr(B) = Np (55)

where the last equality in (55) is supplied by Proposition 3.2. �

3.3.2

If space X is first-countable at point p , then there exists a nested sequence
of neighborhoods:

C0 ) C1 ) C2 ) · · ·
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which forms a fundamental system of neighborhoods of p . Indeed, if

B = {Bn | n ∈N}

is any countable base of filter Np , then consider the nested sequence

B0 ⊇ B0 ∩ B1 ⊇ · · · ⊇ (B0 ∩ · · · ∩ Bn) ⊇ · · ·

and remove from it all the ‘duplicates’.
The obtained partially ordered set ({Cn | n ∈ N},⊇) is then isomor-

phic to a subset of the linearly ordered set of natural naumbers with its
standard ordering. In particular, nets indexed by ({Cn | n ∈ N},⊇) are
the same as sequences—infinite or finite, and we obtain the following
corollary of Proposition 3.4.

Corollary 3.5 If a topological space X is first-countable at a point p ∈ X, then
the neighborhood filter, Np , is the intersection of the elementary filters associated
with all sequences ξ = (ξn)n∈N which converge to p,

Np =
⋂

ξn−→p

ξ] Fr(B). (56)

3.3.3

Our next Proposition demonstrates how, using the knowledge of which
nets converge to which points, to recover the closure operation.

Proposition 3.6 Let E be a subset of a topological space X. A point p belongs
to Ē if and only if there exists a net ξ in E which converges to p in X.

Proof. Let B be any fundamental system of neighborhoods of p and
suppose that p ∈ Ē . Then, for every B ∈ B , set B ∩ E is nonempty, and
any choice function χ for the family

{B ∩ E | B ∈ B}

induces a net in E ,

ξ : B 7−→ χB∩E (B ∈ B),
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which converges to p since ξB ∈ B for every B ∈ B .1

Vice-versa, if ξ = (ξλ)λ∈Λ is any net in E which converges to p in X ,
then any neighborhood N of p contains at least one ξi , cf. Exercise 40. In
particular, N ∩ E is not empty, i.e., p ∈ Ē . �

Corollary 3.7 Let E be a subset of a topological space X. Its closure consists of
all points p ∈ X such that there exists a net in E which converges to p in X.

Corollary 3.8 Let E be a subset of a topological space X which is first-countable
at a point p ∈ X. Then p ∈ Ē if and only if there exists a sequence ξ = (ξn)n∈N

in E which converges to p in X.

Corollary 3.9 Let E be a subset of a second-countable topological space X. Its
closure consists of all points p ∈ X such that there exists a sequence in E which
converges to p in X.

3.4 Adherence

3.4.1 A point of adherenece of a filter-base

A filter-base B on a topological space X may not converge to a point
p ∈ X , but some refinement C of B may do so.

In this case we say that B adheres to p , and call p a point of adherence
of B .

3.4.2

If C is a refinement of B which converges to p , then the generated filter,
C] , is a common refinement of B] and the neighborhood filter, Np . In
particular, the join B] ∨Np exists. Vice-versa, if B] ∨Np exists, then it
is a refinement of B which converges to point p .

We arrive at the following reformulation of the definition of adher-
ence:

A filter-base B on a topological space X adheres to a point
p ∈ X if and only if the join of filters B] and Np exists. (57)

1Note the similarities with the proof of Proposition 3.2.
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Equivalently, we have

A filter-base B on a topological space X adheres to a point
p ∈ X if and only if

B ∩ N , ∅ for any B ∈ B and N ∈ Np .
(58)

3.4.3

Note that the condition in (58) means that p ∈ B̄ for any B ∈ B . Thus
we obtain one more characterization of adherence:

A filter-base B on a topological space X adheres to a point
p ∈ X if and only if

p ∈
⋂

B∈B

B̄.
(59)

In particular, the set Adh(B) of points of adherence of a filter-base B
equals

Adh(B) =
⋂

B∈B

B̄. (60)

Exercise 42 Show that if B ⊆ B′ , then

Adh(B) ⊇ Adh(F ).

Exercise 43 Show that the set of points of adherence of a filter-base B coincides
with the set of points of adherence of the generated filter

Adh(B) = Adh(B]).

Exercise 44 Show that the closure of a subset E ⊆ X coincides with the set of
points of adherence of the associated principal filter

Ē = Adh(PE).

Exercise 45 Prove that p ∈ Adh(Nq) if and only if q ∈ Adh(Np) .
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3.4.4 Points of adherence of a net

A point p in a topological space X is said to be a point of adherence of
a net ξ = (ξλ)λ∈Λ in X , if it is a point of adherence of the associated
elementary filter, ξ] Fr(Λ) .

The set of points of adherence of net ξ will be denoted Adh(ξ) .

3.4.5 Adherence for ultrafilters

If p is a point of adherence of an ultrafilter M , then every neighborhood
N ∈ Np has nonempty intersection with every member of M . It fol-
lows that M ∨PN exists which is then a refinement of M . In view of
maximality of M , one has M = M ∨PN which implies in turn that
N ∈M .

We have established the following important fact.

Proposition 3.10 A point p ∈ X of a topological space X is a point of adher-
ence of an ultrafilter if and only M converges to p.

3.4.6

In other words, for ultrafilters their points of adherence are precisely their
limit points, and adherence is equivalent to convergence.

3.5 Continuity of mappings

3.5.1 Mappings continuous at a point

Let f : X−→Y be a mapping between topological spaces. We say that f is
continuous at point p ∈ X if the image of Np under f generates a filter
finer than N f (p) , i.e.,

N f (p) ⊆ f]Np. (61)

3.5.2

Note that (61) is equivalent to saying that

for any neighborhood N of f (p) , there exists
a neighborhood M of p such that f (M) ⊆ N . (62)
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3.5.3

For any subsets A ⊆ X and B ⊆ Y , one has

f (A) ⊆ B if and only if A ⊆ f−1(B). (63)

Thus, we can rephrase the definition of continuity at point p ∈ X as
follows:

the preimage f−1(N) of any neighborhood
N of f (p) is a neighborhood of p .

(64)

3.5.4

As usual, one can replace the full neighborhood filters by any fundamen-
tal systems of neighborhoods.

Exercise 46 Let E be an arbitrary fundamental system of neighborhoods of
point f (p) ∈ Y. Show that f : X−→Y is continuous at p if and only if

the preimage f−1(N) of any N ∈ E is a neighborhood of p. (65)

Exercise 47 Let D and E be arbitrary fundamental systems of neighborhoods of
points p ∈ X and f (p) ∈ Y, respectively. Show that f : X−→Y is continuous
at p if and only if

for any N ∈ E , there exists M ∈ D such that f (M) ⊆ N . (66)

3.5.5

Exercise 48 Let f : X−→Y be a mapping between topological spaces. Show that
if f is continuous at p ∈ X and ξ is a net convergent to p, then f ◦ ξ is a net
convergent to f (p) .

Exercise 49 Let f : X−→Y be a mapping between topological spaces. Show
that if f is continuous at p ∈ X and p ∈ Ē for some subset E ⊆ X, then
f (p) ∈ f (E) .
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3.5.6

The assertion of Exercise 48 can be reversed:

if f sends any net which converges to p in X to a net which
converges to f (p) in Y , then f is continuous at point p . (67)

Indeed, if f is not continuous, then there exists a neighborhood E of
f (p) such that

f (N) * E

for every neighborhood N of p . Equivalently,

N * f−1(E)

for all N ∈ Np . It follows that the family of subsets of X ,

{N \ f−1(E)}N∈Np , (68)

which is indexed by elements of the neighborhhod filter, Np , consists of
nonempty sets. Let ξ be any choice function for family (68). It is a net in
X which converges to p but since

f (ξN) ∈ f (N) \ E

no f (ξN) belongs to E . In particular, f ◦ ξ does not converge to f (p) .

3.5.7

Exercise 50 Consider a pair of composable mappings f : X−→Y and g : W−→X
between topological spaces such that g is continuous at p ∈W and f is contin-
uous at q = g(p) . Show that f ◦ g is continuous at p.

3.5.8 Continuous mappings

When f : X−→Y is continuos at every point p ∈ X , then we say that f is
continuous everywhere or, simply, that f is a continuous mapping.

Proposition 3.11 For any mapping f : X−→Y between topological spaces X
and Y, the following conditions are equivalent:

(a) f is continuous;
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(b) the preimage, f−1(V) , of any open subset V ⊆ Y is open in X;

(c) the preimage, f−1(W) , of any closed subset W ⊆ Y is closed in X;

(d) for any E ⊆ X, one has f (Ē) ⊆ f (E) .

Condition (b) can be also expressed as:

f ∗∗TY ⊆ TX (69)

while Condition (c) can be expressed as:

f ∗∗ZY ⊆ ZX (70)

where TX and TY denote the topologies, and ZX and ZY denote the
families of all closed subsets — of X and Y , respectively.

Proof. Suppose that the preimage of any open subset of Y is open
in X . Let p be a point of X . It follows that the preimage of any open
neighborhood V of f (p) is a neighborhood of p . Open neighborhoods
form a base of the neighborhood filter. Thus (b) implies (a).

For any subset V ⊆ Y , one has

( f−1(V))c = ( f−1(V))c in Y. (71)

This establishes equivalence of (b) and (c).
Suppose f satisfy Condition (d). Then, for any closed subset W of Y ,

one has
f
(

f−1(W)
)
⊆ f ( f−1(W)), (72)

while
f ( f−1(W))) ⊆W

implies that
f ( f−1(W)) ⊆W = W. (73)

By combining (72) with (73), we obtain

f
(

f−1(W)
)
⊆W

which is equivalent to
f−1(W) ⊆ f−1(W).
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Since f−1(W) is obviously contained in its closure, this shows that f−1(W) =
f−1(W) , i.e., f−1(W) is closed. We proved that Condition (d) implies
Condition (c).

Earlier we established that (a) implies (d), cf. Exercise 49. �

Exercise 51 Let (X, TX) and (Y, TY) be topological spaces, and E be a pre-
base of TY . Show that a mapping f : X−→Y is continuous if and only if

f−1(V) is open for any V ∈ E . (74)

3.5.9

If we consider two topologies T1 and T2 on a set X , then the identity
mapping

idX : (X, T1)−→(X, T2), idX : x 7−→ x,

is continuous if and only if T2 ⊆ T1 , i.e., when the topology on the
source, T1 , is finer than T2 , the topology on the target.

3.5.10 Homeomorphisms

A mapping between topological spaces f : X−→Y is said to be a homeo-
morphism, if there exists a continuous mapping g : Y−→X such that

f ◦ g = idY and g ◦ f = idX .

This is equivalent to f being bijective and both f and f−1 being contin-
uous.

3.5.11

Continuity of f usually does not guarantee that f−1 is continuous. Take
for example, f to be the identity mapping, idX , where the topology on
the source X is strictly finer than the topology on the target X .

3.5.12 Open mappings

A mapping between topological spaces is said to be open if

f
(
TX
)
⊆ TY, (75)
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i.e., when the image of any open subset in X is an open subset in Y .
A bijective continuous mapping f : X−→Y is a homeomorhism if and

only if it is an open mapping.

3.5.13

It follows directly from the definition that if a mapping f : X−→Y is con-
tinuous for given topologies TX and TY on X and Y , respectively, then
it is also continuous for any topology T on set X which is finer than TX ,
and for any topology T ′ on set y which is coarser than TY .

3.6 Natural topologies

3.6.1

Let f : X−→Y be a continuous mapping between two topological spaces.
The same mapping remains continuous if we replace the topology on the
source, TX , by any finer topology,

T ′X ⊇ TX,

or, if we replace the topology on the target, TX , by any coarser topology

T ′Y ⊆ TY.

Exercise 52 Let X be a set, and (Y, TY) be a topological space. Show that, for
any mapping f : X−→Y, the family

f ∗∗TY =
{

f−1(V) | V ∈ TY
}

(76)

is a topology on X. (Hint: Use the result of Exercise 51.)

3.6.2 Initial topologies

Topology (76) is the coarsest topology on X so that f is continuous.
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3.6.3

Its generalization involves a family of topological spaces {(Yi, Ti)}i∈I and
an arbitrary family of mappings fi : X−→Yi :

T ˜ supTop(X)

{
f ∗∗Ti | i ∈ I

}
=

((⋃
i∈I

f ∗∗Ti

)∧)∪
(77)

Since f ∗∗Ti ⊆ T , each fi is continuous in topology (77). The latter is
usually referred to as the coarsest topology on X such that all fi : X−→Yi are
continuous.

Exercise 53 Let W be a topological space and X be equipped with topology (77).
Show that a map g : W−→X is continuous if and only if g composed with each
fi : X−→Yi ,

fi ◦ g : W−→Yi (i ∈ I),

is continuous.

3.6.4 Example: the topology induced on a subset revisited

If X ⊆ Y is a subset of a topological space (Y, T ) and ι : X ↪→ Y denotes
the canonical inclusion mapping, then ι−1(T ) is the induced topology,
T|X , cf. 2.7.

3.6.5 Example: the product of topological spaces

The product of a family of topological spaces {(Xi, Ti)}i∈I is defined as
the product of sets,

X = ∏
i∈I

Xi, (78)

equipped with the coarsest topology for which the canonical projections

πj : ∏
i∈I

Xi � Xj (j ∈ I),

are continuous.
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3.6.6

Suppose a base Si ⊆ Ti is given for each member-topology Ti . Consider
the family of products

∏
i∈I

Ui (79)

where
Ui ∈ Si,

for finitely many i ∈ I , and
Ui = Xi

for all the remaining i ∈ I . Family (79) is a base of the product topology.

3.6.7 The neighborhood filters of the product topology

By the defition of the product topology, the neighborhood filter, Np , of
a point p = (pi)i∈I in the product space, (78), is the supremum of the
inverse images of all filters Npi :

Np = supFilt(X)

{
π∗i
(
Npi

)
| i ∈ I

}
(80)

3.6.8 Convergence of filters in the product topology

In particular, a filter F on the product space contains Np if and only if
it contains each π∗i

(
Npi

)
or, equivalently, if and only if

(πi)]F ⊇ Npi (i ∈ I).

In other words, we obtain the following convenient characterization
of convergence of filters in the product topology

a filter F on ∏i∈I Xi converges to a point p = (pi)i∈I
if and only if each ‘projection’ (πi)]F converges to the
corresponding component of p:

(πi)]F−→pi (i ∈ I).

(81)
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3.6.9 Convergence of nets in the product topology

As a corollary of (81), we obtain the following simple characterization of
convergence of nets in the product topology

a net ξ = (ξλ)λ∈Λ in ∏i∈I Xi , where ξλ = (ξλi)i∈I ,
converges to a point p = (pi)i∈I if and only if it converges
componentwise, i.e., for every i ∈ I , the i -th component of
ξ converges to pi

ξi = {ξλi}λ∈Λ−→pi.

(82)

3.6.10 Final topologies

Let X be a set, let {Wj}j∈J be a family of topological spaces, and {gj : Wj−→X}j∈J
be a family of mappings with target X .

Exercise 54 Show that the family of subsets of X

T ˜ {U ⊆ X | g−1
j (U) is open in Wj for every j ∈ J} (83)

is a topology on X.

3.6.11

Topology (83) is the finest topology on X for which all mappings gj : Wj−→X
are continuous.

Exercise 55 Let Y be a topological space and X be equipped with topology (83).
Show that a map f : X−→Y is continuous if and only if f composed with each
gj : Wj−→X,

f ◦ gj : Wj−→Y (j ∈ J),

is continuous.

3.6.12 Example: the quotient topology

Let (X, T ) be a topological space and ∼ be an equivalence relation on
set X . If π : X � X/∼ denotes the canonical quotient map,

π(x)˜ the equivalence class of x ,
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then π•(T ) is called the quotient topology. It is the finest topology on X/∼
for which the canonical quotient map, π , is continuous.

3.6.13 Example: the union of topological spaces

The union ⋃
j∈J

Xj (84)

of a family of {Xj}j∈J of topological spaces, can be equipped with the
finest topology for which all inclusion mappings

εi : Xi ↪→
⋃
j∈J

Xj (85)

are continuous.
Despite its name, the resulting topology may be very weak if few

subsets of intersections
Xj1 ∩ · · · ∩ Xjn

are simultaneosly relatively open with respect to Xj1 , . . . Xjn .

3.6.14 Example: the disjoint union of topological spaces

For a family of {Xj}j∈J of topological spaces, their disjoint union is the
disjoint union of the corresponding sets,⊔

j∈J

Xj, (86)

equipped with the finest topology for which the canonical inclusions

ιi : Xi ↪→
⊔
j∈J

Xj

are continuous.
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3.6.15

Note that (84) is the quotient of the disjoint union, (86), by the obvious
equivalence relation:

x ∈ Xi is equivalent to x′ ∈ Xj if both x and x′ represent
the same element of Xi ∩ Xj .

Thus, one can equip (84) also with the quotient topology obtained
from the topology of the disjoint union. The result is the same topology,
since each is the finest topology on (84), for which all inclusion mappings,
(85), are continuous.

3.7 Metric spaces

3.7.1 A semi-metric

A semi-metric on a set X is a function ρ : X × X−→[0, ∞) which satisfies
the following three conditions

(M1) ρ(p, r) ≤ ρ(p, q) + ρ(q, r)

(M2) ρ(p, q) = ρ(q, p)

(M3) ρ(p, p) = 0

for any elements p, q, r ∈ X .2

3.7.2 A metric

If ρ additionally separates points, i.e., if

(M4) ρ(p, q) = 0 implies p = q ,

then it is called a metric.

3.7.3

Axiom (M1) is by far the most important one. It is referred to as the
Triangle Inequality.

2A function satisfying Conditions (M1)–
(
M3
)

is often called a pseudo-metric in liter-
ature.
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3.7.4

Given any function f : X×X−→[0, ∞) which vanishes on the diagonal

∆ = {(p, q) ∈ X×X | p = q}, (87)

one can produce a semi-metric on X by first symmetrizing it:

f 7−→ f s, f s(p, q)˜
1
2
(

f (p, q) + f (q, p)
)
, (88)

and then enforcing the Triangle Inequality:

f 7−→ f t, f t(p, q) = inf
{ l

∑
i=1

f (xi−1, xi) | x0 = p, xl = q
}

, (89)

where the infimum is taken over all finite sequences {xi}i∈{0,...,l} of ele-
ments of X of any length which start at p and terminate at q .

3.7.5

Note that
f s = f if and only if f is symmetric.

3.7.6

Note also that, by definition,

f t(p, q) ≤ f (p, q) (p, q ∈ X). (90)

In particular,

f s = f if and only if f satisfies Triangle Inequality.

3.7.7

It follows that
f 7−→ f st

˜
(

f s)t
=
(

f t)s

is a retraction of the set of all functions f : X×X−→[0, ∞) vanishing on ∆ ,
onto the subset of semi-metrics on X .

41



3.7.8

A set X equipped with a metric is called a metric space.

3.7.9 The family of open balls

For any p ∈ X and a positive number ε > 0 define the open ball

Bp(ε)˜ {q ∈ X | ρ(p, q) < ε}. (91)

Point p is called its center and number ε its radius.

3.7.10 The topology associated with a semi-metric

Exercise 56 Show that the family of balls with center at p,

Bp˜ {Bp(ε)},

is a filter-base.

Proposition 3.12 The family of filters {Np}p∈X generated by the family of
filter-bases {Bp}p∈X is a neighborhood system.

Proof. We only need to show that Axiom (N3) is satisfied. If N ∈ Np ,
then N contains a ball Bp(ε) for some ε > 0.

For a point q ∈ Bp(ε) , put

δ˜ ε− ρ(p, q).

Note that δ > 0. Then for any point r ∈ Bq(δ) ,

ρ(p, r) ≤ ρ(p, q) + ρ(q, r) < ρ(p, q) + δ = ε,

which shows that
Bq(δ) ⊆ Bp(ε).

This proves that Bp(ε) ∈ Nq for each q ∈ Bp(ε) . In particular, the set

{q ∈ N | N ∈ Nq} (92)

contains Bp(ε) which in turn implies that (92) belongs to Np . �
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3.7.11

Note that in the proof of Proposition 3.12 we used exclusively the Triangle
Inequality, (M1) .

According to Proposition 3.12, families of balls {Bp(ε)}ε>0 form fun-
damental systems of neighborhoods of a topology. We call this topology
the topology associated with the semi-metric, or the metric topology.

3.7.12

We can also introduce the metric topology by defining the corresponding
interior operation:

E̊˜ {p ∈ E | Bp(ε) ⊆ E for some ε > 0}. (93)

Exercise 57 Using only the axioms of a semi-metric show that (93) satisfies the
axioms of an interior operation.

3.7.13

Alternatively, we can define the family T of open sets by declaring a
subset of X to be open if it can be represented as the union of a family of
balls.

Exercise 58 Using only the axioms of a semi-metric show that so defined family
T satisfies the axioms of a topology.

By definition, then, the family of all balls {Bp(ε)}p∈X, ε>0 forms a base
of the metric topology.

3.7.14 Example: Euclidean spaces Rn

Euclidean n-dimensional space Rn equipped with the Euclidean distance
function,

ρEucl(x, y)˜
√
(x1 − y1)2 + · · ·+ (xn − yn)2 (94)

is a metric space.

Exercise 59 Show that the topology of Rn coincides with the product topology
of

R× · · · ×R︸           ︷︷           ︸
n

.
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3.7.15 Limits of functions in Calculus

Limits of functions f : E−→R in Calculus,

lim
x−→a

f (x), (95)

where E , the domain of f , is a subset of Rn , are precisely limits of f
(restricted to E∗ ) along the filter

N ∗
p ˜ {N∗}

defined in (34). For (95) to be well defined, point a must belong to the
closure of E∗ = E \ {a} .

4 Separability properties

4.1 T0 -spaces

4.1.1

A topological space X which satisfies the following property:

for any points p, q ∈ X, if p , q, then there exists an
open set U ⊂ X which contains only one of those points, (96)

is referred to as a space of type T0 , or as a T0 -space.

Exercise 60 Let p and q be two points in a topological space X. Show that

there exists an open set U ⊂ X which contains only one of those points, (97)

if and only if
Np , Nq. (98)

4.2 T1 -spaces

4.2.1

A topological space X which satisfies the following property:

for any points p, q ∈ X, if p , q, then there exists an
open set U ⊂ X which contains p but not q, and an open
set U ⊂ X which contains q but not p,

(99)

is referred to as a space of type T1 , or as a T1 -space.
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Exercise 61 Show that X is a T1 -space if and only if any singleton subset {p}
is closed.

Exercise 62 Provide an example of a finite space (X, T ) which is T0 but not
T1 , and another example of a finite space (X′, T ′) which is not T0 .

4.2.2

In an arbitrary space X , if Np ⊆ Nq , then any neighborhood N of p
contains q , and thus p ∈ {q} .

Vice-versa, if p ∈ {q} , then any neighborhood N of p intersects {q}
which implies that N 3 q . Since

{x ∈ X | N ∈ Nx} (100)

is a neighborhood of p , we infer that set (100) contains q which means
that N is a neighborhood of q .

4.2.3

We demonstrated the following fact:

p ∈ {q} if and only of Np ⊆ Nq . (101)

In other words,

p ∈ {q} if and only of filter Nq converges to point p. (102)

4.2.4

Equipped with (101), we can provide an equivalent definition of T1 -
spaces:

a topological space X is T1 if and only if, for every
p ∈ X, point p is the only limit of filter Np . (103)
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4.3 T2 -spaces

4.3.1

A topological space X which satisfies the following property:

for any points p, q ∈ X, if p , q, then there exist open
sets U, V ⊂ X such that

U 3 p, V 3 q, and U ∩V = ∅,
(104)

is referred to as a space of type T2 , or as a T2 -space.

4.3.2

Spaces of type T2 are also frequently referred to as Hausdorff spaces, in
honor of one of the pioneers of Topology, or, simply, as separable spaces.3

Exercise 63 Show that a finite T1 -space X is automatically a T2 -space.

Exercise 64 Let X be an arbitrary set equipped with the coarsest T1 -topology:

T = {U ⊆ X | Uc is finite} ∪ {∅}. (105)

Show that (X, T ) is T1 and, if X is infinite, is not T2 .

Exercise 65 Show that X is a T2 -space if and only if Np ∨Nq exists for no
p , q. In other words, if no subset of the set of all neighborhood filters, {Np |
p ∈} , which has at least wto elements, is bounded above in P(P(X)) .

Exercise 66 Show that

a topological space X is T2 if and only if, for each p ∈ X, point p is
the only point of adherence of filter Np . (106)

4.3.3

Compare the above characterisation of T2 -spaces with the characterisa-
tion of T1 -spaces provided in (103).

3The term separable is used in several other situations in Mathematics, so T2 - or
Hausdorff, is to be preferred.
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4.3.4

We finish with the following interesting characterisation of the T2 -property.

Exercise 67 Show that a topological space is T2 if and only if the diagonal, ∆ ,
cf. (87), is closed in the product topology of the Cartesian square X×X.

4.4 T3 -spaces

4.4.1

A topological T1 -space X which satisfies the following property:

for any point p ∈ X and a closed subset Q ⊂ X which
does not contain p, there exist open sets U, V ⊂ X such
that

U 3 p, V ⊇ Q, and U ∩V = ∅,

(107)

is referred to as a space of type T3 , or as a T3 -space.

4.5 Regular spaces

Condition (107) does not guarantee that X is even a T0 -space since sin-
gleton subsets {p} need not be closed. For example, (107) is obviously
satisfied when ∅ and X are the only closed subsets of X .

Spaces satisfying (107) are sometimes referred to as regular, and we
will follow this practice here. More often, however, regular is used as a
synomym for T3 .

4.6 Inseparable pairs of points in a regular space

If p < {q} , which we know is equivalent to Np * Nq , then the Regularity
Condition, (107), guarantees existence of a pair of open subsets U, V ⊂ X
such that

U 3 p, V ⊇ {q}, and U ∩V = ∅.

In particular, pair (p, q) satisfies the separability condition in (104).
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This shows that if a pair of points in a regular space does not satisfy
the T2 -separability condition, then both p ∈ {q} and q ∈ {p} which
means that the closures of the singleton sets {p} and {q} coincide,

{p} = {q},

or, equivalently, that
Np = Nq.

4.6.1

We have thus proved that in a regular space:

the partially ordered set ({Np | p ∈ X},⊆) is discrete, i.e., no two
Np , Nq are comparable. (108)

Compare this to the characterisation of T1 -spaces given in (103).

4.6.2

The language of filters provides again a key to understanding the mean-
ing of the condition of regularity, (107).

Proposition 4.1 A point p of a topological space X possesses a fundamental
system of closed neighborhoods if and only

for any closed subset Q ⊂ X which does not contain p,
there exist open sets U, V ⊂ X such that

U 3 p, V ⊇ Q, and U ∩V = ∅.
(109)

Proof. Sufficiency. Let N be any open neighborhood of p . Its comple-
ment Q˜Uc is closed and does not contain p .

Let U and V be disjoint open subsets containing p and Q , respec-
tively. Then

U ⊆ Vc ⊆ Qc = (Nc)c = N

which shows that Vc is both a neighborhood of p and is contained in the
given open neighborhood N .
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Necessity. Closed neighborhoods of any point p obviously always
form a filter-base. Let us assume that this filter-base generates the neigh-
borhood filter Np .

A closed subset Q ⊆ X does not contain p precisely when its comple-
ment, Qc , is an open neighborhood of p . Take any closed neighborhood
Z ⊆ Qc , and set

U˜ Z̊ and V˜ Zc.

Sets U and V are open and obviously disjoint:

U ∩V = Z̊ ∩ Zc ⊆ Z ∩ Zc = ∅,

and
V = Zc ⊇ (Qc)c = Q.

�

Corollary 4.2 A topological space is regular if and only if every point p ∈ X
possesses a fundamental system of closed neighborhoods.

�

4.7 T4 -spaces

4.7.1

A topological T1 -space X which satisfies the following property:

for any disjoint closed subsets P, Q ⊆ X, there exist open
sets U, V ⊂ X such that

U ⊇ P, V ⊇ Q, and U ∩V = ∅,
(110)

is referred to as a space of type T4 , or as a T4 -space.
Spaces satisfying (110) are sometimes referred to as normal. More of-

ten, however, normal is used as a synomym for T4 .

4.8 Normal spaces

Condition (110) does not guarantee that X is even a T0 -space since sin-
gleton subsets {p} need not be closed. For example, (107) is obviously
satisfied when ∅ and X are the only closed subsets of X .
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Spaces satisfying (110) are sometimes referred to as normal, and we
will follow this practice here. More often, however, normal is used as a
synomym for T4 .

4.9 Neighborhood filter of a subset of a topological space

Let us call a subset N of a topological space X a neighborhood of a subset
P ⊆ X if

A ⊆ N̊.

Exercise 68 Show that the set of neighborhoods of any subset P ⊆ X,

NP˜ {N ∈P(X) | N̊ ⊇ P}, (111)

is a filter.

Exercise 69 Show that a topological space satisfies Regularity Condition (107)
if and only if every closed subset Z ⊆ X is the intersection of its closed neigh-
borhoods

Z =
⋂

N∈NZ
N is closed

N.

Exercise 70 A subset P of a topological space X possesses a fundamental system
consisting of closed neighborhoods if and only

for any closed subset Q ⊂ X which is disjoint with P,
there exist open sets U, V ⊂ X such that

U 3 P, V ⊇ Q, and U ∩V = ∅.
(112)

4.9.1

In particular, we obtain a characterisation of normal spaces analogous to
the characterisation of regular spaces, cf. Corollary 4.2:

a topological space X is normal if and only if the neighborhood
filter, NP , of any closed subset P ⊆ X is generated by closed sets. (113)
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5 Compactness

5.1 Compact subsets

5.1.1 Covers

We say that a family C ⊆P(X) of subsets of X covers a subset K ⊆ X if

K ⊆
⋃

C =
⋃

C∈C

C.

5.1.2 Subcovers

A subfamily C ′ of C which covers K , is referred to as a subcover of C .

5.1.3

Note that
K *

⋃
C =

⋃
C∈C

C

precisely when

∅ ,
( ⋃

C∈C

C
)c

∩ K =
⋂

C∈C

(Cc ∩ K). (114)

It follows that C ⊆ P(X) is a cover of K without finite subcovers if
and only if the family of complements,

C c = {Cc | C ∈ C },

satisfies the Finite Intersection Property, (36), of Section 3.1.1.
The latter is equivalent to saying that the family

{Cc ∩ K | C ∈ C }

generates a certain filter F on K , and C covers K precisely when⋂
F =

⋂
C∈C

(Cc ∩ K) = ∅.
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5.1.4 Open covers

Suppose X is a topological space. A family U ⊆ T of open subsets of
X which covers a subset K ⊆ X is called an open cover of K .

5.1.5 Compact subsets of a topological space

We arrive at a very important definition.

Definition 5.1 (Borel-Lebesgue) A subset K of a topological space X is said
to be compact if any open cover U of K admits a finite subcover.

5.1.6

Finite subsets of a topological space are obviously compact. In particular,
every subset of a finite topological space is compact.

5.1.7 Compact Spaces

When we apply the above definition to K = X , then we obtain the defi-
nition of a compact space.

5.1.8 Compact subsets versus compact spaces

Any subset K of a topological space becomes a topological space on its
own when equipped with the induced topology, T|K , cf. 2.7.

If U is any open cover of subset K , then the family of intersections
with K

U ′
˜ {U ∩ K | U ∈ U }

still covers K since
K ⊆

⋃
U∈U

U

implies

K = K ∩ K ⊆
( ⋃

U∈U

U

)
∩ K =

⋃
U∈U

(U ∩ K),

and every U ∩ K is relatively open, i.e., is open in the topology, T|K , in-
duced by T on K .
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5.1.9

Vice-versa, every open cover of space K arises this way. Indeed, if U ′ is
a cover of K by relatively open subsets U′ ⊆ K , then each U′ is of the
form U ∩ K for some open subset U of X . By chosing one such U for
each member U ′ of U ′ we obtain a family U ˜ {U} of open sets which
covers K if U ′ does.4

5.1.10

By combining together the above remarks, we infer that any cover of K
by open subsets of X admits a finite subcover if and only if any cover of
K by relatively open subsets of K admits a finite subcover.

In other words, we established the following fact:

A subset K of a topological space (X, T ) is compact
if and only if topological space (K, T|K) is compact. (115)

Compactness of a subset K ⊆ X is thus a property that depends only
on the induced topology T|K .

5.2 Elementary properties of compact subsets

5.2.1

The union of two compact subsets is compact. (116)

Indeed, for arbitrary subsets K1 and K2 , any open cover U of their union,
K ∪ L , is automatically an open cover of K1 and of K2 . If K1 and K2 are
compact, then there are finite subsets U1, U2 ⊆ U , such that U1 covers
K1 and U2 covers K2 . It follows that U1 ∪U2 ⊆ U is finite and covers
K1 ∪ K2 .

5.2.2

The intersection of a compact subset with a closed subset is compact. (117)

4Note that the existence of such a family U ˜{U} follows from the Axiom of Choice.
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Let K ⊆ X be compact and Z ⊆ X be closed. If U is an open cover of
K∩Z , then by adding just one more open subset, namely the complement
of Z , we obtain an open cover of K :

U ∪ {Zc}. (118)

Indeed, K is the disjoint union of K ∩ Z and K ∩ Zc = K \ Z . The latter
is contained in Zc , the former is contained in

⋃
U .

Let U ′ be a finite subfamily of (118) which covers K . Let U ′′ =
U ′ \ {Zc} . Then

K ⊆
⋃

U ′ =
(⋃

U ′′
)
∪ Zc,

implies that

K ∩ Z ⊆
((⋃

U ′′
)
∩ Z

)
∪ (Zc ∩ Z) =

(⋃
U ′′
)
∩ Z ⊆

⋃
U ′′.

Thus, U ′′ is a finite subfamily of U which covers K ∩ Z , and assertion
(117) is proven.

5.2.3

As a corollary we obtain, that in a compact space X all closed subsets are
compact. On the other hand a compact subset may not be closed: con-
sider, for example, a finite set X equipped with a non-discrete topology.
Then every subset of X is compact but not every one is closed.

5.2.4

Let f : X−→Y be a continuous mapping and K ⊆ X be a compact subset.
For any family V = {Vi}i∈I of subsets of Y , the family

f ∗∗V = { f−1(V) | V ∈ V }

covers K if and only if V covers f (K) .
In particular, if U = { f−1(V1), . . . , f−1(Vn)} is a finite subcover of

f ∗∗V then {V1, . . . , Vn} is a finite subfamily of V which covers f (K) ⊆ Y .
If V consists of open subsets of Y , then f ∗∗V consists of open subsets

of X .
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5.2.5

We established another important fact:

The image, f (K) , of a compact subset K ⊆ X under a
continuous mapping f : X−→Y is a compact subset of Y . (119)

5.3 Characterisation of compactness via filters

5.3.1

Let X be a non-compact topological space. There exists an open cover U
of X without a finite subcover. Then the family of complements,

U c = {Uc | U ∈ U },

satisfies the Finite Intersection Property, cf. 5.1.3.
In particular, U c generates a certain filter F on X , and

⋂
F∈F

F̄ ⊆
⋂

U∈U

Uc =
⋂

U∈U

Uc =

( ⋃
U∈U

U
)c

= ∅

in view of the fact that each Uc is closed and U covers X . In other
words, filter F has no points of adherence.

5.3.2

Vice-versa, if B is any filter-base without points of adherence on X , then
the family of complements of the closures of members of B ,

U ˜ {Bc | B ∈ B},

is an open cover of X without a finite subcover.

5.3.3

We have established an important characterisation of compact spaces.

Proposition 5.2 A topological space X is compact if and only if any filter-base
B on X has a point of adherence.
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Corollary 5.3 A topological space X is compact if and only if any ultrafilter
M on X converges to some point of X .

Proof. If X is compact, then any filter, in particular any ultrafilter, has
a point of adherence. But an ultrafilter converges to each of its points of
adherence.

Vice-versa, if F is a filter on X , it is contained in some ultrafilter M ,
and

Adh(F ) ⊇ Adh(M ) , ∅.

�

5.3.4

If B is any filter-base, and ξ : B : −→X is any choice function for B ,
then the filter associated with ξ is finer than than the filter generated by
B :

B] ⊆ ξ] Fr(B).

Hence,
Adh(B) = Adh(B]) ⊇ Adh(ξ] Fr(B)) = Adh(ξ),

which demonstrates that if ξ has a point of adherence, so does filter-base
B .

The above remark combined with Proposition 5.2 provides a charac-
terisation of compact spaces in terms of nets.

Proposition 5.4 A topological space X is compact if and only if any net ξ in
X has a point of adherence.

5.3.5 Compactness of the product: Tichonov’s Theorem

Corollary 5.3 leads to a remarkably simple proof of the following cele-
brated theorem of Tichonov.

Theorem 5.5 (Tichonov) The product ∏i∈I Xi of a family of topological spaces
{Xi}i∈I is compact if and only if each component-space Xi is compact.
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Proof. Each component-space Xj is the image of the product space,
∏i∈I Xi , under the corresponding canonical projection mapping

πj : ∏
i∈I

Xi � Xj. (120)

Projection mappings (120) are continuous, so, if the product space is com-
pact, each component-space Xj is compact.

Vice-versa, an ultrafilter M on the product space converges if and
only if its direct image under projection (120), Mi = (πi)]M , converges
in the corresponding component-space Xi for every j ∈ I , cf. (82).

Each Mi , being the direct image of an ultrafilter, is an ultrafilter itself.
So, if component-space Xj is compact, then Mi converges in Xi , in view
of Corollary 5.3. This in turn implies that M converges in the product
space. By Corollary 5.3 again, this implies that the product space is com-
pact. �

5.4 Separation properties of compact spaces

5.4.1

A compact space need not have any reasonable separation properties: it
suffices to invoke that arbitrary finite spaces as well as the space equipped
with the coarsest topology T = {∅, X} are compact.

Just by looking at finite sets we encounter compact T0 -spaces which
are not T1 , and any infinite set equipped with the coarsest T1 -topology,
cf. Exercise 64, is compact but not T2 .

Exercise 71 Show that the topological space of Exercise 64, is compact. Show
that it is not T2 if set X is infinite.

5.4.2

We shall prove, however, that a compact T2 -space is automatically T4 .

Theorem 5.6 Let X be a Hausdorff space and K, L ⊆ X be a pair of disjoint
compact subsets. Then, there exist open subsets

U ⊇ K, V ⊇ L, and U ∩V = ∅.

57



5.4.3

In a Hausdorff space every point is closed, and of course compact. By
applying the above theorem to the case L = {p} , for p < K , we conclude
that if p < K , then p < K̄ .

Corollary 5.7 Every compact subset of a Hausdorff space is closed.
�

5.4.4

In fact, a direct proof of the above corollary will form the first step in the
proof of Theorem 5.6.

Step 1. Suppose that K ⊆ X is compact and p < K . For each point
q ∈ K , there exist open sets such that

Vq 3 p, Uq 3 q, and Vq ∩Uq = ∅.

The family
U ˜ {Uq | q ∈ K}

is an open cover of K . Let U0 = {Uq1 , . . . , Uqn} be a finite subcover.
Denote by U its union

U˜Uq1 ∪ · · · ∪Uqn ,

and by V the intersection

V˜Vq1 ∩ · · · ∩Vqn .

Both are open, U contains K , point p is an element V , and their inter-
section is empty:

V ∩U = (Vq1 ∩ · · · ∩Vqn) ∩ (Uq1 ∪ · · · ∪Uqn)

=
n⋃

i=1

(Vq1 ∩ · · · ∩Vqn) ∩Upi ⊆
n⋃

i=1

Vqi ∩Upi = ∅.

This demonstrates the desired separation property in the case when
one of the two sets consists of a single point.

58



Step 2. Suppose that K and L form a pair of disjoint compact subsets
of X .

By Step 1, for any point p ∈ L , there exists a pair of disjoint open
neighborhoods of K and p , respectively,

Up ⊇ K, Vp 3 p, and Up ∩Vp = ∅.

Like in Step 1, the family

V ˜ {Vp | p ∈ L}

is an open cover of K , and by following what we did in Step 1, we con-
struct desired open neighborhoods U of K and V of L .

Exercise 72 Provide the missing details needed to complete the proof of Theorem
5.6.

5.4.5 Automatic continuity of the inverse

As an application of Theorem 5.6 we shall now demonstrate that the
inverse of the bijective continuous mapping f : X−→Y is automatically
continuous if the source space, X , is compact, and the target space, Y , is
Hausdorff.

Theorem 5.8 Let f : X−→Y be a bijective continuous mapping between a com-
pact space X and a Hausdorff space Y. Then the inverse mapping

f−1 : Y−→X, (121)

is continuous.

Proof. Let Z be a closed subset of X . It is compact, in view of (117).
Its preimage under f−1 coincides with the image f (Z) and the latter is
compact in view of (119).

Since Y is Hausdorff, the set

f (Z) = ( f−1)−1(Z)

is closed. Now, invoking Proposition 3.11 completes the proof of continu-
ity of (121). �
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5.4.6

Theorem 5.8 says that a bijective continuous mapping between a compact
and a Hausdorff spaces is automatically a homeomorphism.

5.4.7

By applying Theorem 5.8 to the identity mapping idX when the ‘source’
X and the ‘target’ X may have different topologies, we deduce the fol-
lowing two corollaries.

Corollary 5.9 Let (X, T ) be a Hausdorff space. If X is compact in some topol-
ogy T ′ which is finer than T , then T ′ = T .

Corollary 5.10 Let (X, T ) be a compact space. If X is Hausdorff in some
topology T ′′ which is coarser than T , then T ′′ = T .
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