
Notes on Ordered Sets

Mariusz Wodzicki

October 29, 2013

1 Vocabulary

1.1 Definitions

Definition 1.1 A binary relation � on a set S is said to be a partial order if it
is reflexive,

x � x,

weakly antisymmetric,

if x � y and y � x , then x = y,

and transitive,
if x � y and y � z, then x � z

Above x , y , z , are arbitrary elements of S .

Definition 1.2 Let E ⊆ S. An element y ∈ S is said to be an upper bound for
E if

x � y for any x ∈ E. (1)

By definition, any element of S is declared to be an upper bound for ∅ , the empty
subset.

We shall denote by U(E) the set of all upper bounds for E

U(E)˜ {y ∈ S | x � y for any x ∈ E }.

Note that U(∅) = S .
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Definition 1.3 We say that a subset E ⊆ S is bounded (from) above, if
U(E) , ∅ , i.e., when there exists at least one element y ∈ S satisfying (1).

Definition 1.4 If y, y′ ∈ U(E) ∩ E, then

y � y′ and y′ � y.

Thus, y = y′ , and that unique upper bound of E which belongs to E will be
denoted max E and called the largest element of E.

It follows that U(E) ∩ E is empty when E has no largest element, and
consists of a single element, namely max E , when it does.

If we replace � by � everywhere above, we shall obtain the definitions
of a lower bound for set E , of the set of all lower bounds,

L(E)˜ {y ∈ S | x � y for any x ∈ E },

and, respectively, of the smallest element of E . The latter will be denoted
min E .

Exercise 1 Show that, for any subsets E and F, one has

L(E) ⊇ F if and only if E ⊆ U(F).

1.1.1 The Principle of Duality

Note that the relation defined by

x �rev y if x � y

is also an order relation on S . We will refer to it as the reverse ordering.
Any general statement about partially ordered sets has the correspond-

ing dual statement that is obtained by replacing (S,�) with (S,�rev) . Un-
der this “duality” upper bounds become lower bounds, maxima becoma
minima, suprema become infima, and vice-versa.

Therefore most general theorems about partially ordered sets possess
the corresponding dual theorems. Below, I will be usually formulating
those dual statements for the convenience of reference.

Exercise 2 Show that if E ⊆ S is bounded below and nonempty, then L(E) is
bounded above and nonempty.

Dually, if E is bounded above and nonempty, then U(E) is bounded
below and nonempty.
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1.1.2

If E ⊆ F ⊆ S , then
max F ∈ U(E) (2)

when max F exists, and, dually,

min F ∈ L(E)

when min F exists.

If both max E and max F exist, then

max E � max F.

Dually, if both min E and min F exist, then

min F � min E.

Exercise 3 (Sandwich Lemma for maxima) Show that if E′′ ⊆ E ⊆ E′ and
both max E′ and max E′′ exist and are equal, then max E exists and

max E′′ = max E = max E′.

Dually, if both min E′ and min E′′ exist and are equal, then min E
exists and

min E′ = min E = min E′′.

1.1.3 Supremum and infimum

Definition 1.5 When min U(E) exists it is called the least upper bound of E,
or the supremum of E, and is denoted sup E.

Dually, when max L(E) exists it is called the largest lower bound of E, or
the infimum of E, and is denoted inf E.

For the supremum of E to exist, subset E must be bounded above. The
supremum of E may exist for some bounded above subsets of S and may
not exist for others.
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1.1.4 Example

Let us consider S = Q , the set of rational numbers, with the usual order.
Both the following subset E1 ⊆ Q ,

E1˜ {x ∈ Q | x2 < 1}

and the subset E2 ⊆ Q ,

E2˜ {x ∈ Q | x2 < 2},

are simultaneously bounded above and below. None of them has either
the largest nor the smallest element but

sup E1 = 1 and inf E1 = −1

while neither sup E2 nor inf E2 exist in S = Q .

Exercise 4 Show that

sup ∅ = min S and inf ∅ = max S.

In particular, sup ∅ exists if and only if S has the smallest element;
similarly, inf ∅ exists if and only if S has the largest element.

1.1.5 Down-intervals and up-intervals

Let (S,�) be a partially ordered set. For each s ∈ S , we define the down-
interval

〈s]˜ {t ∈ S | t � s}.

and the up-interval
[s〉˜ {t ∈ S | s � t}.

Exercise 5 Show that, for E ⊆ S, one has

L(E) = 〈s] for some s ∈ S

if and only if inf E exists. In this case,

L(E) = 〈inf E].
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Dually,
U(E) = [s〉, for some s ∈ S ,

if and only if sup E exists. In this case,

U(E) = [sup E〉.

1.1.6 Example

Consider the set of natural numbers,

N˜ {0, 1, 2, . . . },

equipped with the ordering given by

m � n if m | n

(“m divides n”).

Exercise 6 Does (N, | ) have the maximum? the minimum? If yes, then what
are they?

Exercise 7 For a given n ∈N , describe intervals 〈n] and [n〉 in (N, | ) .

Exercise 8 For given m, n ∈ N , is set {m, n} bounded below? Does it possess
infimum? If yes, then describe inf{m, n} .

Exercise 9 For given m, n ∈ N , is set {m, n} bounded above? Does it possess
supremum? If yes, then describe sup{m, n} .

Exercise 10 Does every subset of N possess infimum in (N, | )? Does every
subset of N possess supremum?

1.1.7 Totally ordered sets

Definition 1.6 We say that a partially ordered set (S,�) is totally, or linearly,
ordered if any two elements s and t of S are comparable

either s � t or t � s .
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Totally ordered subsets in any given partially ordered set are called
chains.

Exercise 11 Let (S,�) be a totally ordered set and E, F ⊆ S be two subsets.
Show that

either L(E) ⊆ L(F) or L(F) ⊆ L(E) .

1.2 Observations

1.2.1

For any subset E ⊆ S , one has

E ⊆ LU(E)˜ L(U(E)) (3)

and
E ⊆ UL(E)˜U(L(E)). (4)

1.2.2

If E ⊆ F ⊆ S , then
U(E) ⊇ U(F) (5)

and
L(E) ⊇ L(F). (6)

Exercise 12 Show that if E ⊆ F and both sup E and sup F exist, then

sup E � sup F.

Dually, if both inf E and inf F exist, then

inf F � inf E. (7)

Exercise 13 (Sandwich Lemma for infima) Show that if E′′ ⊆ E ⊆ E′ and
both inf E′ and inf E′′ exist and are equal, then inf E exists and

inf E′′ = inf E = inf E′.

Dually, if both sup E′ and sup E′′ exist and are equal, then sup E exists
and

sup E′ = sup E = sup E′′.
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1.2.3

By applying (5) to the pair of subsets in (3), one obtains

U(E) ⊇ ULU(E)˜U(L(U(E)))

while (4) applied to subset U(E) yields

U(E) ⊆ ULU(E).

It follows that
U(E) = ULU(E). (8)

Dually,
L(E) = LUL(E). (9)

Note that equality (9) is nothing but equality (8) for the reverse order-
ing.

1.2.4

For any subsets E ⊆ S and F ⊆ S , one has

U(E ∪ F) = U(E) ∩U(F)

and
L(E ∪ F) = L(E) ∩ L(F).

1.2.5

For any E ⊆ S, max E exists if and only if sup E exists and belongs to E, and
they are equal

sup E = max E. (10)

Dually, min E exists if and only if inf E exists and belongs to E, and they
are equal

inf E = min E.

Indeed, if max E exists, then it is the least element of U(E) , cf. Defini-
tion (1.4).
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If sup E exists and is a member of E , then it belongs to U(E)∩ E which
as we established, cf. Definition (1.4), consists of the single element max E
when U(E) ∩ E is nonempty.

The case of min E and inf E follows if we apply the already proven to
(S,�rev) .

1.2.6

For any E ⊆ S, inf U(E) exists if and only if sup E exists, and they are equal

max LU(E) = inf U(E) = min U(E) = sup E. (11)

Indeed,
inf U(E)˜max LU(E) ∈ U(E),

in view of E ⊆ LU(E) , cf., (3), combined with (2) where F = LU(E) .
Thus,

inf U(E) = min U(E)

by (10).

Dually, sup L(E) exists if and only if inf E exists, and they are equal

min UL(E) = sup L(E) = max L(E) = inf E.

1.2.7 Example: the power set as a partially ordered set

Let S = P(A) be the power set of a set A :

P(A)˜ the set of all subsets of A .

Containment ⊆ is a partial order relation on P(A) .
Subsets E of P(A) are the same as families of subsets of A . Since S =

P(A) contains the largest element, namely A , and the smallest element,
namely ∅ , every subset of P(A) is bounded above and below.

The union of all members of a family E ,⋃
E∈E

E˜ {a ∈ A | a ∈ E for some E ∈ E } (12)
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is the smallest subset of A which contains every member of family E . Hence,
sup E exists and equals (12).

Dually, the intersection of all members of family E ,⋂
E∈E

E˜ {a ∈ A | a ∈ E for all E ∈ E } (13)

is the largest subset of A which is contained in every member of family E .
Hence, inf E exists and equals (13).

The power set provides an example of a partially ordered set in which
every subset (including the empty set) possesses both suppremum and
infimum.

1.3 Completeness

1.3.1

Definition 1.7 We say that a partially ordered set (S,�) has the largest-lower-
bound property if inf E exists for every subset E ⊆ S which is nonempty and
bounded below.

Dually, we say that S has the least-upper-bound property if sup E exists
for subset E ⊆ S which is nonempty and bounded above.

1.3.2 An alternative terminology

Partially ordered sets with the largest-lower-bound property are said to be
inf-complete, and those with the least-upper-bound property are said to
be sup-complete.

Lemma 1.8 A partially ordered set S has the largest-lower-bound property if and
only if it has the least-upper-bound property.

Proof. Suppose that S is inf-complete. If E ⊆ S is bounded above and
nonempty, then the set of upper bounds, U(E) is nonempty. Since

L(U(E)) ⊇ E , ∅

subset U(E) is also bounded below. Then inf U(E) exists in view of our
assumption about (S,�) . But then it coincides with sup E in accordance
with (11). This shows that S is sup-complete.
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The reverse implication,

sup-completeness ⇒ inf-completeness

follows by applying the already proven implication

inf-completeness ⇒ sup-completeness

to the reverse order on S . �

Since sup- and inf-completeness are equivalent we shall simply call
such sets complete.

1.3.3 Lattices

Definition 1.9 A partially ordered set (S,�) is called a pre-lattice if every
nonempty finite subset E ⊆ S has supremum and infimum.

Exercise 14 Show that (S,�) is a pre-lattice if and only if , for any s, t ∈ S,
both sup{s, t} and inf{s, t} exist.

Definition 1.10 A partially ordered set (S,�) is called a lattice if every finite
subset E ⊆ S, including ∅ ⊆ S, has supremum and infimum.

1.3.4 Complete lattices

Complete partially ordered sets with the largest and the smallest elements
are the same as complete lattices. Note that in such sets every subset is
bounded below and above.

For example, the totally ordered set of rational numbers, (Q,≤) , is a
pre-lattice but not a lattice, and it is not complete.

The power set of an arbitrary set, (P(A),⊆) , is an example of a com-
plete lattice. A less obvious example is the subject of the next section.

1.4 Down-sets, up-sets

1.4.1 Down-sets

A subset L of a partially ordered set (S,�) is called a down-set if

for any s ∈ L and s′ � s , also s′ ∈ L.
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Exercise 15 Show that the union and the intersection of any family L ⊆P(A)
of down-sets is a down-set.

Exercise 16 Show that a down-set L is a down-interval if and only if sup L
exists and belongs to L.

1.4.2 Down-set closure of a subset

The family of down-sets containing a given subset E ⊆ S is nonempty
since E ⊆ S and S is a down-set. It follows that the intersection of all
down-sets L containing E ,

Cl↓(E)˜
⋂

L⊇E

L,

is the smallest down-set containing E .

1.4.3 Down-set interior of a subset

The family of down-sets contained in a given subset E ⊆ S is nonempty
since ∅ ⊆ E and ∅ is a down-set. It follows that the union of all down-sets
L contained in E ,

Int↓(E)˜
⋃

L⊆E

L,

is the largest down-set contained in E .

1.4.4

By definition, one has

Int↓(E) ⊆ E ⊆ Cl↓(E)

Exercise 17 Show that E ⊆ S is a down-set if and only if

Int↓(E) = E

if and only if
E = Cl↓(E).

Exercise 18 Any subset E ⊆ S is contained in
⋃

s∈E〈s] . Show that E is a
down-set if and only if

E =
⋃
s∈E

〈s].
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1.4.5

Let E and F be two subsets of a partially ordered set (S,�) . We may say
that F dominates E above, and express this symbolically with E J F , if

for every s ∈ E there exists t ∈ F such that s � t .

Exercise 19 Show that U(E) ⊇ U(F) whenever E J F. In particular

sup E � sup F

when both suprema exist.

Exercise 20 Show that E J F if and only if Cl↓(E) ⊆ Cl↓(F) .

1.4.6 Cofinal pairs of subsets

We shall say that subsets E and F are cofinal if E J F and F J E . For
cofinal subsets U(E) = U(F) . In particular, sup E exists if and only if
sup F exists and they are equal (cf. Ex. 19.

1.4.7

It follows that E and F are cofinal if and only if Cl↓(E) = Cl↓(F) .

1.4.8 Up-sets

Up-sets are defined, by duality, as down-sets for the reverse ordering �rev .
In particular, a subset E is an up-set if and only if

E =
⋃
s∈E

[s〉.

One can also define the corresponding notions of the up-closure, Cl↑(E) ,
and the up-interior, Int↑(E) , of a subset E .

Exercise 21 Define the dual concept

F dominates E below

(one can denote this fact by using notation F K E ).
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1.4.9

If we replace � by the reverse order, �rev , we obtain another pair of
relations between subsets of S :

E Jrev F and F Krev E.

Note that

F K E if and only if E Jrev F (not E J F !).

1.4.10

The dual concept to a cofinal pair of subsets is a coinitial pair of subsets.

1.5 Partially ordered subsets

1.5.1

In S ⊆ T is a subset of a partially ordered set (T,�) , then it can be re-
garded as a partially ordered set in its own right. One has to be cautioned,
however, that S with the induced order may have vastly different proper-
ties.

1.5.2

For a subset E ⊆ S , the sets of upper and lower bounds will generally
depend on whether one considers E as a subset of S or T . In particular,
E may be not bounded as a subset of S yet be bounded as a subset of T .

When necessary, we shall indicate this by subscript S or T . Thus,

LT(E), UT(E), infTE, supTE,

will denote the set of lower bounds, the set of upper bounds, the infimum,
and the supremum, when E is viewed as a subset of T .

Exercise 22 Show that, for E ⊆ S, one has

supTE � supSE

whenever both suprema exist.
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1.5.3

Dually, one has
infSE � infTE

whenever both infima exist.

Exercise 23 For E ⊆ S, suppose that supTE exists and belongs to S. Show
that supSE exists and

supSE = supTE.

1.5.4

Dually, if infTE exists and belongs to S , then infSE exists and

infSE = infTE. (14)

Exercise 24 Let E ⊆ S, and suppose that (S,�) is a partially ordered subset of
(T,�) . Show that, if infTE exists, then

L(E) = 〈infTE] ∩ S = {s ∈ S | s � infTE}. (15)

(Here L(E) = LS(E) .)

1.5.5

Dually, one has

U(E) = [supTE〉 ∩ S = {s ∈ S | supTE � s}

if supTE exists.

Exercise 25 Find examples of pairs E ⊆ Sof subsets of Q such that:
(a) E is unbounded above in S yet bounded in Q ;
(b) E is bounded in S, and supQE exists but supSE does not;
(c) E is bounded in S, and supSE exists but supQE does not;
(d) both supSE and supQE exist but supSE , supQE.
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1.5.6 Sublattices

1.5.7

A subset S of a lattice (T,�) forms a sublattice if

infSE = infTE and supSE = supTE

for any finite E ⊆ S .

1.5.8

A subset S of a complete lattice (T,�) forms a sublattice if

infSE = infTE and supSE = supTE

for any E ⊆ S .

1.5.9

If A ⊆ B , then (P(A),⊆) forms naturally a sublattice of (P(B),⊆) .

1.5.10

According to Exercise 15, the family of all down-sets (P↓(S),⊆) in a
partially ordered set (S,�) forms a complete sublattice of (P(S),⊆) .
Similarly, the family of all up-sets (P↑(S),⊆) forms a complete sublattice
of (P(S),⊆) .

1.6 Density

1.6.1

Definition 1.11 We say that a subset S ⊆ T is sup-dense if every element
t ∈ T equals

t = sup E

for some subset E ⊆ S.
By replacing sup with inf , one obtains the definition of a inf-dense subset.
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1.6.2 Example

Suppose that a partially ordered set (S,�) is the union of three subsets
S = X ∪Y ∪ Z such that

x � y and x � z for any x ∈ X , y ∈ Y , and z ∈ Z ,

and no y ∈ Y and z ∈ Z are comparable. Additionally, let us assume that
neither Y nor Z possess the minimal elements.

Let us extend the ordering relation to T = S ∪ {υ, ζ} by setting

x ≺ υ ≺ y for any x ∈ X , y ∈ Y ,

and
x ≺ ζ ≺ z for any x ∈ X , z ∈ Z ,

and making υ and ζ not comparable. Finally, denote by T′ the subset
S ∪ {υ} of T .

a) (S,�) as a subset of (T,�) . One has LT(Y) = 〈υ] and LT(Z) = 〈ζ] .
It follows that

υ = infTY and ζ = infTZ,

and therefore S is inf-dense in T . In addition,

〈υ] ∩ S = X = 〈ζ] ∩ S

but υ , ζ , they are not even comparable.

Exercise 26 Show that neither υ nor ζ equals supTE for any E ⊆ S. In
particular, S is inf-dense in T but not sup-dense.

b) (S,�) as a subset of (T′,�) . One has

υ = infT′Y

hence S is inf-dense in T′ . In addition,

L(Y) = 〈υ] ∩ S = X = L(Z)

and υ = infT′Y while infT′Z does not exist.
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Exercise 27 Let (S,�) be a partially ordered subset of (T,�) . Show that if

t = infTE

for some E ⊆ S, then
t = infT([t〉 ∩ S).

Dually, if
t = supT F (16)

for some F ⊆ S , then
t = supT(〈t] ∩ S).

Exercise 28 (A criterion of equality for infima) Let (S,�) be a partially or-
dered subset of (T,�) and E ⊆ S. Suppose that both inf E and t = infTE exist.
Show that if there exists a subset F ⊆ S such that (16) holds, then

infTE = inf E.

Exercise 29 Formulate the dual criterion of equality for suprema.

2 Mappings between partially ordered sets

2.1 Morphisms

2.1.1

Definition 2.1 Given two partially ordered sets (S,�) and (S′,�′) , a mapping
f : S−→S′ which preserves order,

if s � t , then f (s) �′ f (t) (s, t ∈ S),

is said to be a morphism (S,�)−→(S′,�′) .

2.1.2

Recall that the image of a subset E ⊆ S under f is the set

f (E)˜ {s′ ∈ S′ | s′ = f (a) for some a ∈ E},
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and the preimage of a subset E′ ⊆ S′ under f is the set

f−1(E′)˜ {s ∈ S | f (s) ∈ E′}.

Exercise 30 Show that

f is a morphism (S,�)−→(S′,�′)

if and only if

the preimage, f−1(L′) , of any down-set L′ ⊆ S′ is a down-set in S

if and only if

the preimage, f−1(U′) , of any up-set U′ ⊆ S′ is an up-set in S .

Exercise 31 Let f be a morphism (S,�)−→(S′,�′) . Show that, for any subset
E ⊆ S, one has

min f (E) = f (min E) and max f (E) = f (max E)

whenever min E or max E exists.

Exercise 32 Let f be a morphism (S,�)−→(S′,�′) . Show that, for any nonempty
subset E ⊆ S, one has

U( f (E)) ⊇ f (U(E)) and L( f (E)) ⊇ f (L(E)).

Deduce from this the inequalities

f (inf E) �′ inf f (E) �′ sup f (E) �′ f (sup E)

whenever the corresponding infima and suprema exist.

2.1.3

Definition 2.2 We say that a morphism f : (S,�)−→(S′,�′) is sup-continuous
if f preserves the suprema. More precisely, if it has the following property

for any E ⊆ S, if sup E exists, then sup f (E) exists, and

sup f (E) = f (sup E).

Exercise 33 State the dual definition of an inf-continuous morphism.
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2.2 Order embeddings

2.2.1

Definition 2.3 A mapping ι : S−→S′ is said to be an order embedding,

(S,�) ↪→ (S′,�′), (17)

if it satisfies a stronger condition

s � t if and only if ι(s) �′ ι(t) (s, t ∈ S).

Exercise 34 Show that an order embedding is injective.

Definition 2.4 A morphism f : (S,�)−→(S′,�′) is said to be an isomor-
phism if it has an inverse, i.e., if there is a morphism g : (S′,�′)−→(S,�) such
that f ◦ g = idS′ and g ◦ f = idS .

Exercise 35 Show that an order embedding, (17), is an isomorphism onto its
image, (ι(S),�′) .

Exercise 36 For any partially ordered (S,�) , let S∗ denote the subset obtained
by removing max S and min S if they exist. Show that, for any nonempty
bounded subset E of S∗ ,

supS∗E = supSE and infS∗E = infSE.

Exercise 37 (A criterion of continuity of an embedding) Let (S,�) be a sup-
dense subset of (T,�) . Show that the inclusion

(S,�) ↪→ (T,�) (18)

is inf-continuous.

Dually, if (S,�) is a inf-dense subset of (T,�) , then inclusion (18) is
sup-continuous.
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2.2.2 Example: the canonical embedding (S,�) ↪→ (P(S),⊆)

For any pair of elements s and t in a partially ordered set (S,�) , one has

s � t if and only if 〈s] ⊆ 〈t].

Thus, the correspondence

〈] : S−→P(S), s 7−→ 〈s], (19)

is an order embedding of (S,�) into (P(S),⊆) . Embedding (19) identi-
fies (S,�) with the set of down-intervals (I ↓(S),⊆) .

Exercise 38 Show that, for any E ⊆ S, one has

sup〈E] =
⋃
s∈E

〈s] = Cl↓(E)

and
inf〈E] = L(E) (20)

in (P(S),⊆) .1

It follows that
sup〈E] = 〈sup E]

in (P(S),⊆) if and only if max E exists. In particular, (19) is nearly never
sup -continuous. Indeed, sup〈E] always exists, it coincides with the down-
closure of E , and the latter is a proper subset of 〈sup E] if when E has no
maximal element.

On the other hand, the canonical embedding is inf-continuous.

Exercise 39 Show that the canonical embedding, (19), is inf-continuous.

Exercise 40 Explain why I ↓(S),⊆) = 〈S] is, generally, neither sup- nor inf-
dense in P(S) .

1Here 〈E] denotes the image of a subset E ⊆ S under the canonical embedding, (19),
not the interval, 〈E] = {X ∈ P(S) | X ⊆ E} , in partially ordered set (P(S),⊆) . The
latter coincides with P(E) , the set of all subsets of E .
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2.3 Galois connections

2.3.1 Residuated mappings

If f is a morphism, then the preimage, f−1 (〈s′]) , of any interval 〈s′] ⊆ S′

is a down-set in (S,�) but not necessarily a down-interval. Mappings
f : S−→S′ which have the property that the preimage of any down-interval
〈s′] in (S′,�′) is a down-interval in (S,�) are said to be residuated.

Exercise 41 Show that a residuated mapping is a morphism.

Exercise 42 Show that f1 ◦ f2 is residuated if both f1 and f2 are residuated.

2.3.2 Residual mappings

Dually, we say that a mapping f is residual, if the preimage, f−1 ([s′〉) , of
any up-interval [s′〉 ⊆ S′ is an up-interval in (S,�) .

2.3.3

The following proposition gives a simple but very useful characterization
of residuated mappings.

Proposition 2.5 A mapping f : S−→S′ is residuated if and only if it is a mor-
phism with the property that the preimage of any down-interval has supremum in
(S,�) and,

f
(

sup f−1(〈s′])
)
�′ s′ (s′ ∈ S′). (21)

We shall prove each implication separately.

Necessity. If f is residuated, then f−1(〈s′]) = 〈t] , for some t ∈ S , and
therefore sup f−1(〈s′]) , which coincides with t , exists.

Noting that 〈t] ⊆ f−1(〈s′]) is equivalent to f (〈t]) ⊆ 〈s′] , we infer that
f (t) �′ s′ . This is inequality (21).

Sufficiency. Denote sup f−1(〈s′]) by t and note that

f−1(〈s′]) ⊆ 〈t]

is the obvious containment E ⊆ 〈sup E] for E = sup f−1(〈s′]) .
The preimage f−1(〈s′]) is a down-set since f is assumed to be a mor-

phism, while inequality (21) means that t ∈ f−1(〈s′]) . Hence

f−1(〈s′]) ⊇ 〈t].

�
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Exercise 43 Formulate the dual of Proposition 2.5.

2.3.4 The residual of a residuated mapping

A residuated mapping f : S−→S′ defines a mapping g : S′−→S by setting

g(s′)˜ t where f−1 (〈s′]) = 〈t].
Exercise 44 Show that

f (s) �′ s′ if and only if s � g(s′) (s ∈ S, s′ ∈ S′) (22)

and deduce that g is a residual mapping.

Exercise 45 Show that, for a given mapping g : S′−→S, there exists a residuated
mapping f : S−→S′ such that g is the residual of f if and only if g−1 ([s〉) is
an up-interval in (S′,�) for any s ∈ S. Show that in this case

g−1 ([s〉) = [ f (s)〉 (s ∈ S).

2.3.5 Galois connections

2.3.6

A pair of mappings

f : S−→S′ and g : S′−→S

satisfying condition (22) is called a Galois connection between partially
ordered sets (S,�) and (S′,�′) .

2.3.7 Terminology

If ( f , g) forms a Galois connection, f is referred to as the lower (or, left)
adjoint of g , and g is called the upper (or, right) adjoint of f .

Exercise 46 Let ( f , g) be a Galois connection between (S,�) and (S′,�′) ,
and (h, k) be a Galois connection between (S′,�′) and (S′′,�′′) . Show that
(h ◦ f , g ◦ k) is a Galois connection between (S,�) and (S′′,�′′) .
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2.3.8 Duality between residuated and residual mappings

A pair ( f , g) is a Galois connection between (S,�) and (S′,�′) if and
only if (g, f ) is a Galois connection between (S′, (�′)rev) and (S,�rev) .
Reversing simultaneously the orderings on S and S′ exchanges the roles
of the residual and the residuated mapping.

Exercise 47 Show that

idS � g ◦ f and f ◦ g �′ idS′

Exercise 48 Show that if f is an isomorphism between (S,�) and (S′,�′) ,
then

(
f , f−1) is a Galois connection between these sets.

Exercise 49 Show that if ( f , g) is a Galois connection between (S,�) and
(S′,�′) , and (g, f ) is a Galois connection between (S′,�′) and (S,�) , then
g = f−1 . In particular, f and g are isomorphisms of partially ordered sets.

Exercise 50 Show that if ( f , g) is a Galois connection, then mapping f is resid-
uated and g is the residual of f .

2.3.9

By combining Exercises 44 and 50, we obtain the following proposition.

Proposition 2.6 A mapping f : S−→S′ is residuated if and only if there exists
g : S′−→S such that ( f , g) is a Galois connection. In particular, there is a natural
correspondence{

residuated mappings
f : (S,�)−→(S′,�′)

}
←→

{
Galois connections ( f , g)

between (S,�) and (S′,�′)

}
.

2.3.10

Dually, there is a natural correspondence{
Galois connections ( f , g)

between (S,�) and (S′,�′)

}
←→

{
residual mappings

g : (S′,�′)−→(S,�)

}
.
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Proposition 2.7 Let ( f , g) be a Galois connection between partially ordered sets
(S,�) and (S′,�′) . Then, for any E′ ⊆ S′ ,

sets g(L(E′)) and L(g(E′)) are cofinal (23)

and, for any E ⊆ S,

sets f (U(E)) and U( f (E)) are coinitial. (24)

Proof. Let s ∈ L(g(E′)) . Since g is a morphism from (S′,�′) to (S,�) ,
one one has f (s) ∈ L(E′) . Noting that g( f (s)) ∈ L(g(E′)) and combining
this observation with inequality s � g( f (s)) shows that the set g(L(E′))
dominates the set L(g(E′)) from above. Since the latter set contains the
former, the two sets are cofinal.

Statement (24) is statement (23) for the reverse ordering. �

Corollary 2.8 Let ( f , g) be a Galois connection between partially ordered sets
(S,�) and (S′,�′) . Then, f is sup-continuous and g is inf-continuous.

Equivalently, any residuated mapping is sup-continuous and any residual
mapping is inf-continuous. �

2.3.11

Corollary 2.8 provides necessary conditions for a given mapping to be the
left or the right component of a Galois connection. When (S,�) is a com-
plete lattice, those conditions are also sufficient as we will now demon-
strate.

Corollary 2.9 Suppose that (S,�) is a complete lattice, cf. 1.3.4, i.e., every
subset of S has supremum.2 Then a mapping f from S to S′ is residuated if and
only if it is a sup-continuous morphism (S,�)−→(S′,�′) .

Proof. In view of Corollary 2.8 it suffices to show that a sup-continuous
morphism is residuated. We will demonstrate that f satisfies the equiva-
lent condition of Proposition 2.5.

For any s′ ∈ S′ , supremum sup f−1(〈s′]) of course exists and

f
(

sup f−1(〈s′])
)
= sup f

(
f−1(〈s′])

)
,

by sup-continuity of f , and

sup f
(

f−1(〈s′])
)
�′ sup〈s′] = s′,

since f
(

f−1(〈s′])
)
⊆ 〈s′] . �

2Note that in that case every subset has also infimum.
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2.3.12

Expressed succinctly,{
residuated
mappings

}
=

{
sup-continuous

morphisms

}
and, by duality, {

residual
mappings

}
=

{
inf-continuous

morphisms

}
whenever their domain is a complete lattice.

2.4 Galois connections between power sets

2.4.1 sup-continuous morphisms (P(X),⊆)−→(P(Y),⊆)

Every subset A ⊆ X can be represented as the union of the family of
single-element subsets A ˜ {{x} | x ∈ A} ,

A =
⋃

x∈A

{a} = supP(X)A .

Note that A is a subset of P(X) .
If F is a sup-continuous morphism from (P(X),⊆) to (P(Y),⊆) ,

then

F(A) = F(sup A ) = supP(Y) {F({x}) | x ∈ A} =
⋃

x∈A

F({x}). (25)

This shows that F is uniquely determined by its restriction to single-
element subsets of X .

Vice-versa, one can use identity (25) to extend an arbitrary mapping
ϕ : X−→P(Y) to a mapping F : P(X)−→P(Y) .

Exercise 51 For an arbitrary mapping ϕ : X−→P(Y) , let F : P(X)−→P(Y)
be defined by the formula

F(A)˜
⋃

x∈A

ϕ(x).

Show that F is a morphism from (P(X),⊆) to (P(Y),⊆) and is sup-continuous.
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2.4.2

We obtain the following natural correspondence{
sup-continuous morphisms
(P(X),⊆)−→(P(Y),⊆)

}
←→

{
mappings

X−→P(Y)

}
. (26)

2.4.3

Any mapping ϕ : X−→P(Y) defines a subset of X×Y ,

Γϕ˜
⋃

x∈X

(
{x} × ϕ(x)

)
.

We shall refer to Γϕ as the graph of ϕ .
Vice-versa, any subset Γ of X×Y is of this form for a unique ϕ : X−→P(Y) ,

namely
ϕ(x)˜ {y ∈ Y | y ∈ ϕ(x)}.

Recall that subsets of X × Y correspond to binary relations between
elements of X and elements of Y ,{

binary relations between
elements of X and elements of Y

}
←→ P(X×Y),

via the identification

a relation ∼ ←→ {(x, y) ∈ X×Y | x ∼ y}.

In terms of the corresponding relation the associated mapping F : P(X)−→P(Y)
can be expressed as

F(A) = {y ∈ Y | there exists x ∈ A such that x ∼ y}. (27)

Let us denote this mapping by F∼ . The correspondence

a relation ∼ ←→ F∼

thus provides a natural correspondence between binary relations and sup-
continuous mappings of the power sets involved{

binary relations between
elements of X and elements of Y

}
←→

{
sup-continuous morphisms
(P(X),⊆)−→(P(Y),⊆)

}
.
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2.4.4 inf-continuous morphisms (P(Y),⊆)−→(P(X),⊆)

Every subset E′ ⊆ Y can be obtained from Y by removing all elements y <
B . In other words, B is the intersection of the family B′˜{Y \ {y} | y < B}
of complements of single-element subsets formed by elements of Y not be-
longing to B ,

B =
⋂
y<B

(Y \ {y}) =
⋂
y<B

{y}c = infP(X)B
′.

If G is an inf-continuous morphism from (P(Y),⊆) to (P(X),⊆) ,
then

G(B) = G(inf B′) = infP(X) {G({y}c) | y < B} =
⋂
y<B

G ({y}c) . (28)

Like before, an inf-continuous mapping G is uniquely determined by its
restriction to the complements of single-element subsets of X . And vice-
versa, one can use identity (28) to extend an arbitrary mapping ψ : Y−→P(X)
to a mapping G : P(Y)−→P(X) where set Y is identified with a subset
of P(Y) via the order-reversing embedding

y 7−→ {y}c = Y \ {y}.

Exercise 52 For an arbitrary mapping ψ : Y−→P(X) , let G : P(Y)−→P(X)
be defined by the formula

G(B)˜
⋂
y<B

ψ(y).

Show that G is a morphism from (P(Y),⊆) to (P(X),⊆) and is inf-continuous.

2.4.5

We obtain the following natural correspondence{
inf-continuous morphisms
(P(Y),⊆)−→(P(X),⊆)

}
←→

{
mappings

Y−→P(X)

}
.

The G ↔ ψ correspondence is dual to the F ↔ ϕ correspondence, cf. (26).
In the latter X is identified with the subset of all single-element subsets
of X while in the former Y is identified with the set of complements of
single-element subsets of Y .
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2.4.6 The relation associated with an inf-continuous mapping

Given an inf-continuous mapping G from (P(Y),⊆) to (P(X),⊆) , de-
fine the binary relation between elements of X and Y by

x ∼ y if x < ψ(y) (x ∈ X, y ∈ Y), (29)

where ψ(y) = G({y}c) . In terms of relation (29), mapping G : P(Y)−→P(X)
can be expressed as

G(B) = {x ∈ X | for every y < B one has x � y} (30)

where � denotes the negation of relation ∼ ,

x � y if and only if ¬(x ∼ y).

Let us denote this maping by G∼ . The correspondence

a relation ∼ ←→ G∼

thus provides a natural correspondence between binary relations and inf-
continuous mappings of the power sets involved{

binary relations between
elements of X and elements of Y

}
←→

{
inf-continuous morphisms
(P(Y),⊆)−→(P(X),⊆)

}
.

2.4.7 Galois connections

According to Corollary 2.9, residuated mappings between power sets are
precisely the sup-continuous mappings and residual mappings are pre-
cisely inf-continuous mappings. We described the sup- and inf-continuous
mappings above, and we will use these descriptions to describe Galois
connections between power sets.

Exercise 53 Let ∼ be a binary relation between elements of a set X and elements
of a set Y . Show that (F, G) is a Galois connection between (P(X),⊆) and
(P(Y),⊆) where F is defined by equality (27) and G is defined by equality
(30).

In view of the already established fact that every residuated mapping
F between (P(X),⊆) and (P(Y),⊆) is of the form (27) for a unique
binary relation ∼ , we obtain the following
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Proposition 2.10 There is a natural correspondence{
Galois connections (F, G) between

(P(X),⊆) and (P(Y),⊆)

}
←→

{
binary relations ∼ between

elements of X and Y

}
where the pair of mappings, (F, G) ,

A � F // {y ∈ Y | ∃x∈A x ∼ y}

{x ∈ X | ∀y<B x � y} B�Goo

(31)

corresponds to a relation ∼ .3

2.4.8 The Galois connection associated with a mapping

Exercise 54 Let f : X−→Y be an arbitrary mapping between sets X and Y.
Show that the pair of mappings

F : P(X)−→P(Y), A 7−→ f (A) (A ⊆ X),

and
G : P(Y)−→P(X), B 7−→ f−1(B) (E′ ⊆ Y),

forms a Galois connection between (P(X),⊆) and (P(Y),⊆) . It corresponds
to the graph-of-a-function relation

x ∼ y if and only if y = f (x) (x ∈ X, y ∈ Y).

2.4.9 The (Conjunction, Implication) Galois connection

Exercise 55 Given a subset B of an arbitrary set X , let

F : A 7−→ A ∩ B and G : C 7−→ B⇒C (A, C ⊆ X)

where
B⇒C˜ Bc ∪ C = (X \ B) ∪ C.

Show that (F, G) is a Galois connection on (P(X),⊆) . It corresponds to the
relation

x ∼ y if and only if x = y ∈ B (x ∈ X, y ∈ Y).
3To make notation more compact we used symbolic notation: ∃ (“there exists”) and ∀

(“for all”).
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2.5 Order reversing Galois connections between power sets

2.5.1

A Galois connection (Φ, Ψ) between (P(X),⊆) and (P(Y),⊇) is a pair
of mappings Φ : P(X)−→P(Y) and Ψ : P(Y)−→P(X) such that

Φ(A) ⊆ B if and only if Ψ(B) ⊆ A (A ⊆ X, E′ ⊆ Y)

(note the symmetry between Φ and Ψ ).
Since passing-to-the-complement induces an isomorphism between par-

tially ordered sets (P(Y),⊆) and (P(Y),⊇) , whose inverse is given by
the same operation, by taking into account that composition of Galois con-
nections is a Galois connection, cf. Exercise 46, we obtain from (Φ, Ψ) the
Galois connection (F, G) ,

F˜ ( )c ◦Φ and G˜Ψ ◦ ( )c,

between (P(X),⊆) and (P(Y),⊆) .
All such connections were described in Proposition 2.10. Noting that

Φ = ( )c ◦ F and Ψ = G ◦ ( )c,

we arrive at the complete description of arbitrary order reversing Galois
connections between power sets.

Corollary 2.11 There is a natural correspondence{
Galois connections (Φ, Ψ) between

(P(X),⊆) and (P(Y),⊇)

}
←→

{
binary relations ∼ between

elements of X and Y

}
(32)

where the pair of mappings, (Φ, Ψ) ,

A � Φ // {y ∈ Y | ∀x∈A x ∼ y}

{x ∈ X | ∀y∈B x ∼ y} B�Ψoo

(33)

corresponds to a relation ∼ .

Proof. If F = ( )c ◦Φ and G = Ψ ◦ ( )c are given by (31), then

Φ(A) = {y ∈ Y | ∀x∈A x � y} and Ψ(B) = {x ∈ X | ∀y∈B x � y}
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and every Galois connection between between (P(X),⊆) and (P(Y),⊇)
is of this form for a unique binary relation ∼ . By composing this corre-
spondence between Galois connections and relations with the involution
on the set of relations

∼ ←→ �,

we obtain correspondence (32)–(33). �

2.5.2 The canonical Galois connection associated with a partial order

Note that, for any pair of subsets A and B of a partially ordered set (S,�) ,
one obviously has

E ⊆ U(B) if and only if L(A) ⊇ B.

This means that (U, L) forms a Galois connection between (P(S),⊆) and
(P(S),⊇) . We shall refer to it as the canonical Galois connection of (S,�) .
Fittingly, Galois connection (U, L) corresponds, under (32)–(33), to rela-
tion � .

2.6 Closure and interior operations

2.6.1 The floor mapping

Let (S,�) be a partially ordered set and E be a subset of S . It follows
from Proposition 2.5 that the canonical inclusion ιE : E ↪→ S is a residuated
mapping (E,�)−→(S,�) if and only if , for every s ∈ S ,

〈s] ∩ E is a down-interval in (E,�) ,

i.e., 〈s] ∩ E has a maximum element. In this case we shall say that E is a
floor subset of (S,�) , and the right adjoint

s 7−→ bscE˜max 〈s] ∩ E,

will be called the floor mapping associated with subset E of (S,�) .

2.6.2 The ceiling mapping

Similarly, the inclusion map, E ↪→ S , is residual if and only if

[s〉 ∩ E is an up-interval in (E,�) ,
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i.e., [s〉 ∩ E has a minimum element. In this case we shall say that E is a
ceiling subset of (S,�) , and the left adjoint

s 7−→ dseE
˜min [s〉 ∩ E,

will be called the ceiling mapping associated with subset E of (S,�) .

2.6.3 Closure operations on a partially ordered set

Definition 2.12 Let (S,�) be a partially ordered set. A self-mapping

s 7−→ s̄, S−→S,

is said to be a closure operation if it enjoys the following three properties

s � s̄, (34)

if s � t , then s̄ � t̄ , (35)

and
¯̄s = s̄ (36)

where s and t denote arbitrary elements of S.
In this case, we say that an element s ∈ S is closed if s̄ = s .

2.6.4

Denote by Z ⊆ S the set of closed elements. If z ∈ [s〉 ∩ Z , then s � z ,
and hence

s̄ � z̄ = z,

in view of equality (36). But s̄ ∈ [s〉 , in view of inequality (34), and s̄ ∈ Z ,
in view of equality (36) again. Thus

s̄ = min([s〉 ∩ Z)

which means that Z is a ceiling subset of (S,�) and the closure operation
is the associated ceiling mapping

s̄ = dseZ (s ∈ S).

32



Exercise 56 Let Z be a ceiling subset of a partially ordered set (S,�) . Show
that

s 7−→ dseZ (s ∈ S)

satisfies conditions (34)–(36), i.e. it defines a closure operation on (S,�) .

We obtain

Proposition 2.13 There is a natural correspondence between closure operations
on a partially ordered set (S,�) and ceiling subsets of (S,�) ,{

ceiling subsets
Z ⊆ S

}
←→

{
closure operations

on (S,�)

}
,

where
Z ←→ d eZ .

2.6.5

Let Z′ ⊆ Z be any subset of the set of closed elements, and suppose that
ζ = inf Z′ exists. Then, for any z′ ∈ Z′ , the inequality ζ � z′ implies that

ζ̄ � z̄′ = z′,

i.e., ζ̄ is a lower bound of set Z′ . In particular, ζ̄ � ζ . By combining this
with inequality (34), we obtain ζ̄ = ζ , i.e., inf Z′ is a closed element of S .
Note that this argument applies also for Z′ = ∅ since in this case inf Z′ is
the greatest element of (S,�) and the greatest element is closed.

Exercise 57 Show that the greatest element of (S,�) is closed when it exists.

We established the following interesting fact

Proposition 2.14 For any subset Z′ ⊆ Z of the set of closed elements of a closure
operation, if inf Z′ exists in (S,�) , then it belongs to Z. �

2.6.6 Interior operations on a partially ordered set

Closure operations for the reversed order are sometimes called interior
operations. In this case, notation s 7−→ s̊ or s◦ is used and elements s ∈ S
such that s̊ = s are said to be open.

Exercise 58 State the dual version of Proposition 2.14 for an interior operation
and the associated set T of open elements.
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2.6.7 Example: closure and interior operations associated with a Galois
connection

Let ( f , g) be a Galois connection between partially ordered sets (S,�)
and (S′,�′) .

Exercise 59 Show that

f ◦ g ◦ f = f and g ◦ f ◦ g = g.

Exercise 60 Show that

s 7−→ (g ◦ f )(s) (s ∈ S)

is a closure operation on (S,�) and

s′ 7−→ ( f ◦ g)(s′) (s′ ∈ S′)

is an interior operation on (S′,�′) .

2.6.8

It follows that a Galois connection ( f , g) between partially ordered sets
(S,�) and (S′,�′) induces a closure operation on (S,�) and an interior
operation on (S′,�′) . Denote by Z ⊆ S and by T′ ⊆ S′ the corresponding
sets of closed and, respectively, open elements.

Exercise 61 Show that an element s ∈ S is closed if and only if s is in the image
of g , i.e., s = g(s′) for some s′ ∈ S′ . Likewise, show that an element s′ ∈ S′ is
open if and only if s′ is in the image of f , i.e., s′ = f (s) for some s ∈ S.

Exercise 62 Show that the restriction of f to Z and the restriction of g to T are
mutually inverse. In particular, pair ( f , g) induces an isomorphism of partially
ordered sets (Z,�) and (T′,�′) .

2.6.9

Note that if we denote the induced isomorphism from (Z,�) to (T′,�′)
by φ , then

f = φ ◦ d eZ and g = φ−1 ◦ b cT′ .
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Indeed, g ◦ f = d eZ and f ◦ g = b cT′ , while φ = f|g(S′) and φ−1 = g| f (S) .
Hence

φ
(
dseZ

)
= f (g( f (s)) = f (s) and φ−1 (bs′cT′

)
= g( f (g(s′)) = g(s′).

Exercise 63 Let Z be an arbitrary ceiling subset of a partially ordered set (S,�) ,
let T′ be an arbitrary floor subset of a partially ordered set (S′,�′) , and let φ
be an arbitrary isomorphism between partially ordered sets (Z,�) and (T′,�′) .
Show that the pair of mappings

f ˜ φ ◦ d eZ and g˜ φ−1 ◦ b cT′ (37)

forms a Galois connection between (S,�) and (S′,�′) .

By combining Exercise 63 with the previous argument, cf. 2.6.9, we
obtain

Proposition 2.15 There is a natural correspondence between Galois connections
and triples (Z, T′, φ){

Galois connections ( f , g)
between (S,�) and (S′,�′)

}
←→

{
triples

(Z, T′, φ)

}
, (38)

where Z ⊆ S denotes any ceiling subset, T′ ⊆ S′ denotes any floor subset,
and φ is an arbitrary isomorphism between partially ordered sets (Z,�) and
(T′,�′) . Correspondence (38) associates with a Galois connection ( f , g) the
triple (g(S′), f (S), f|g(S′) . The inverse correspondence associates with a triple
(Z, T′, φ) the pair ( f , g) defined in (37).

2.6.10 Example: a structure of a topological space on a set

To equip a set X with a structure of a topological space is the same as to
equip (P(X),⊆) with the closure operation which is inf-continuous,

for any family E ⊆P(X) , one has

inf E = inf Ē

where Ē is the family of the closures of subsets be-
longing to E .

and finitely sup-continuous,

for any finite family E ⊆P(X) , one has

sup E = sup Ē .
(39)
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Exercise 64 Show that for any closure operation on (P(X),⊆) which satisfies
(39), one has

∅ = ∅.

Hint. Consider the empty family of subsets.

2.6.11

An equivalent way to equip a set X with a structure of a topological space
is to equip (P(X),⊆) with an interior operation which is sup-continuous,

for any family E ⊆P(X) , one has

sup E ◦ = sup E̊

where E̊ is the family of the interiors of subsets be-
longing to E .

and finitely inf-continuous,

for any finite family E ⊆P(X) , one has

inf E ◦ = inf E̊ .

2.7 Closure and interior operations on the power set of a par-
tially ordered set

2.7.1 Down- and up-closure operations

Both
E 7−→ Cl↓(E) and E 7−→ Cl↑(E)

are closure operations. The first one is sup-continuous, the second one is
inf-continuous.

2.7.2 LU - and UL -closure operations

A partial ordering (S,�) induces two closure operations on (P(S),⊆) ,
the LU -closure,

E 7−→ ĒLU
˜ LU(E),
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and the UL-closure,
E 7−→ ĒUL

˜UL(E).

Indeed, for the LU -closure, (3) is property (34), property (35) follows
from the combination of (5) and (6), while (9) implies property (36).

Note that, according to (9), a subset F of S is LU -closed if and only if
it is of the form F = L(E) for some E ⊆ S .

Note that

LU(∅) =

{
∅ if S has no least element
{min S} otherwise.

Dually,

UL(∅) =

{
∅ if S has no largest element
{max S} otherwise.

It follows that ∅ is LU -closed (respectively, UL -closed) if and only if S
has no least element (respectively, no largest element).

On the other hand, S is always both LU - and UL -closed.

3 Dedekind-MacNeille Completion of a Partially Or-
dered Set

3.1 The set of LU -closed subsets as a partially ordered set

3.1.1

Let (S,�) be a partially ordered set. Let Z (S) ⊆ P(S) be the subset of
the power set which consists of all LU -closed subsets of S . Recall that
F ⊆ S is LU -closed if and only if it has the form

F = L(E)

for some E ⊆ S . In fact, one can take E = U(F) .

Exercise 65 Show that, for any family E ⊆ Z (S) of LU -closed subsets of S,
the supremum of E in Z (S) exists and equals

sup E = LU
(⋃

E∈E

E
)

,
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i.e., supZ (S)E is the LU -closure of supP(S)E ,

supZ (S)E = supP(S)E
LU

.

Exercise 66 Show that

min Z (S) =

{
∅ if S has no least element
{min S} otherwise

.

Thus, every family E ⊆ Z (S) is bounded below and, obviously, the
infimum of the empty family exists and is equal to

inf ∅ = max Z (S) = S.

By invoking Lemma 1.8 we deduce that the infimum of every family
E ⊆ Z (S) exists in Z (S) , and we established the following fact.

Proposition 3.1 For any partially ordered set (S,�) , the set of LU -closed sub-
sets, (Z (S),⊆) is a complete lattice. �

Exercise 67 Show that in Z (S) one has

sup〈E] = LU(E)

and
inf〈E] = L(E).

3.1.2

Since intervals 〈s] are LU -closed,

〈s] = L({s}),

the image of set S under the canonical embedding, (19), is contained in
Z (S) .

Exercise 68 Show that 〈S] is both sup- and inf-dense in Z (S) .
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Exercise 69 Show that the embedding

〈] : (S,�) ↪→ (Z (S),⊆) (40)

is both sup- and inf-continuous.
In other words, show that in Z (S) one has

supZ (S)〈E] = 〈sup E]

whenever sup E exists in (S,�) , and

infZ (S)〈E] = 〈inf E]

whenever inf E exists in (S,�) .

By combining the results of Exercises 68 and 69 with Proposition 3.1,
we establish the following important fact.

Theorem 3.2 Any partially ordered set (S,�) admits an embedding onto a
dense subset of a complete lattice, and this embedding preserves suprema and
infima (i.e., is sup- and inf-continuous). �

The lattice Z (S),⊆) is called the Dedekind-Macneille envelope of a
partially ordered set (S,�) , or the Dedekind-Macneille completion of
(S,�) . Strictly speaking, the latter should apply to the embedding, (40),
of (S,�) into Z (S),⊆) .

It is worth noticing that for any subset E ⊆ S which is not bounded
above in (S,�) , one has

sup〈E] = max Z (S) = S

and, for a subset not bounded below

inf〈E] = min Z (S) = ∅

(note that min Z (S) = ∅ in this case).

3.2 An important variant

3.2.1

Dedekind-MacNeille completion adds to any partially ordered set all the
“missing” suprema and infima, including the suprema and infima for un-
bouded sets.
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A simple modification provides a variant of the above construction
allows to “add” only the suprema of nonempty subsets that are bounded
above, and the infima of nonempty subsets which are bounded below while
leaving unbounded sets not bounded.

Let (S,�) be a partially ordered set. Let us consider the subset Z ∗(S) ⊆
Z (S) which consists of the LU -closures of nonempty subsets of S which
are bounded above.

Exercise 70 Show that ∅ < Z ∗(S) .

Exercise 71 Show that S ∈ Z ∗(S) if and only if S has the largest element.

It follows that

Z (S) =


Z ∗(S) if both min S and max S exist
Z ∗(S) ∪ {S} if min S exists and max S does not
Z ∗(S) ∪ {∅} if max S exists and min S does not
Z ∗(S) ∪ {∅, S} if neither min S nor max S exist

.

Thus, Z ∗(S) has the same elements as Z (S) except possibly for the
two extremal ones: ∅ and S .

Exercise 72 Show that 〈S] ⊆ Z ∗(S) .

By Exercise 36, suprema and infima in Z ∗(S) coincide for nonempty
bounded subsets of Z ∗(S) with those in Z (S) , hence (Z ∗(S),⊆) is a
complete partially ordered set.

In particular, the embedding

〈] : (S,�)−→(Z ∗(S),⊆)

is both sup- and inf-continuous.
Finally, since 〈S] is sup- and inf-dense in Z (S) it is dense also in

Z ∗(S) .

We established thus the following variant of Theorem 3.2.

Theorem 3.3 Any partially ordered set (S,�) admits an embedding onto a
dense subset of a complete partially ordered set, and this embedding preserves
suprema and infima (i.e., is sup- and inf-continuous), and also unboundedness
of subsets:

if E ⊆ S is not bounded above (below) in S, then E is not
bounded above (resp., below) in the completion.

�
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3.2.2

It follows from Exercise 11 that (Z (S),⊆) , and therefore also (Z ∗(S),⊆) ,
are totally ordered if (S,�) is totally ordered. Thus one can strengthen
the statements of Theorems 3.2 and 3.3 by adding that the corresponding
completions of totally ordered sets are themselves totally ordered.

3.2.3 R and R = [−∞, ∞]

In the case of (Q,≤) we obtain two totally ordered completions

(Z ∗(Q),⊆) is a model for the set of real numbers,

while

(Z (Q),⊆) is a model for the set of extended real numbers

R = R∪ {−∞, ∞} = [−∞, ∞].

4 Universal Properties of the Dedekind-MacNeille Com-
pletion

In this section (S,�) denotes a subset of (T,�) .

4.1 Extending the Canonical Embedding

4.1.1

The correspondence

t 7−→ 〈t] ∩ S = {s ∈ S | s � t} (41)

defines a morphism (T,�)−→(P(S),⊆) which extends the canonical em-
bedding, (S,�) ↪→ (P(S),⊆) , cf. (19), to (T,�) .

Exercise 73 Show that (41) is an order embedding if (S,�) is sup-dense in
(T,�) .
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In particular,

morphism (41) is injective if (S,�) is sup-dense in (T,�) .

If (S,�) is not sup-dense, then (41) is generally not injective.
Thus,

〈υ] ∩ S = 〈ζ] ∩ S

in Example 1.6.2.a but υ , ζ .

4.1.2

If t = infTE for some E ⊆ S , then

〈t] ∩ S = L(E) ∈ Z (S),

according to (15). It follows that

the image of morphism (41) is contained in Z (S)
if (S,�) is inf-dense in (T,�) .

The following example demonstrates that the image of morphism (41)
may be contained in Z (S) even though no element of T \ S may be of the
form infTE for some E ⊆ S .

4.1.3 Example

Let T˜Q{0, 1} equipped with the usual order. Let

S˜ {x ∈ Q | x < 0 or x > 1} = Q<0 ∪Q>1.

Then, all t ∈ T \ S = {x ∈ Q | 0 < x < 1} are being sent by morphism
(41) to one and the same LU -closed subset of S :

〈t] ∩ S = Q<0 = L(Q>1).

Exercise 74 Show that every t ∈ T \ S is neither of the form infTE nor of the
form supTE for some E ⊆ S.
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4.1.4

When (S,�) is inf-dense in (T,�) , then one can easily describe the image
of T under morphism (41):

a subset F of Z (S) is in the image if and only if it
is of the form

〈infTE] ∩ S = LT(E) ∩ S = L(E)

for some E ⊆ S which possesses infimum in T .

(42)

This is so since every element of T equals infTE for a suitable subset
E ⊆ S and then 〈t] = LT(E) .

Note, however, that L(E) , for a particular subset E , may belong to the
image of morphism (41) while infTE may not exist. We only know that
there must be another subset E′ ⊆ S such that

L(E) = L(E′) and infTE′ exists.

In Example 1.6.2.b, one has

L(Z) = 〈υ] ∩ S = L(Y)

where Y possesses infimum in the larger set, which is denoted there T′ ,
while Z does not.

4.1.5

By combining (42) with the assertion of Exercise 73, we deduce the follow-
ing important universal property of the Dedekind-MacNeille completion.

Theorem 4.1 If (S,�) is a subset of (T,�) which is both inf- and sup-dense,
then morphism (41) embeds (T,�) isomorphically onto the subset of Z (S) :

{F ∈ Z (S) | F = L(E) for some E ⊆ S which possesses infimum in T}.

In particular, if every subset of S possesses infimum in T , then (41) establishes a
canonical isomorphism between (T,�) and the Dedekind-MacNeille completion,
(Z (S),⊆) which extends the embedding of (S,�) into (Z (S),⊆) . �
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4.2 Completing a subset in a bigger partially ordered set

4.2.1

In general, there is no largest subset T′ ⊆ T such that (S,�) would be
sup-dense, inf-dense, or both sup- and inf-dense in (T′,�) .

4.2.2 Example

Let S = Q \ {0} be equipped with usual order and T = S ∪ {a, b} with

x < a < y and x < b < y

for any x ∈ Q<0 and y ∈ Q>0 . In this case, S is both sup- and inf-dense
in T1 = S ∪ {a} and T2 = S ∪ {b} but is neither sup-dense nor inf-dense
in T = T1 ∪ T2 .

Exercise 75 Show that neither a nor b is of the form infT E or supT E for any
subset E ⊆ S.

Thus, T1 and T2 are two distinct maximal subsets of T in which S is
dense in any of the three spelled out senses.

4.2.3

For any partially ordered set (T,�) containing (S,�) , there is, however,
a subset that is a perfect analog of the Dedekind-MacNeille completion:

ST̂˜ {t ∈ T | t = infTU(E) for some E ⊆ S}.

If we identify S with its isomorphic image 〈S] in P(S) , then

SP̂(S) = Z (S)

since every F ∈ Z (S) is of the form

F = LU(E) = infP(S)U(E),

cf. equalities (9) and (20).
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4.2.4

If t = infTU(E) , then

E ⊆ LU(E) = LT(U(E)) ∩ S ⊆ LT(U(E)) = 〈t]

This shows that t ∈ UT(E) .
If another element of ST̂ , say t′ = infTU(E′) , belongs to UT(E) , then

x � t′ � y

for any x ∈ E and y ∈ U(E′) . It follows that

U(E′) ⊆ U(E)

and hence
t = infTE � infTE′ = t′,

cf. (7). Thus, t is the smallest element of UT(E) ∩ ST̂ = UŜT
(E) , i.e.,

supŜT
E exists and equals t :

supŜT
E = infTU(E).

Note that, in view of (14), the infimum of U(E) in ST̂ exists and coin-
cides with infTU(E) ,

infŜT
U(E) = infTU(E).

In particular,
supŜT

E = infŜT
U(E).

We established the following fact.

Proposition 4.2 Any subset S of a partially oredered set (T,�) is both sup-
and inf-dense in (ST̂,�) . �

4.2.5

By the Universal Property of the Dedekind-MacNeille completion cf. The-
orem 4.1, the order embedding of (S,�) into Z (S),⊆) then extends to
an order embedding

(ST̂,�) ↪→ (Z (S),⊆). (43)
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4.2.6

If (T,�) is a complete lattice, then embedding (43) is surjective since, for
every E ⊆ S , one has

LU(E) = 〈infTU(E)] ∩ S,

cf. Exercise 24.
In particular, (ST̂,�) is isomorphic to the Dedekind-MacNeille com-

pletion.

This way we arrive at our final result.

Theorem 4.3 Any order embedding (S,�) ↪→ (T,�) into a complete lattice
induces an order embedding of the Dedekind-MacNeille completion,

(Z (S),⊆) ↪→ (T,�)

which identifies (Z (S),⊆) with (ST̂,�) . In particular, (ST̂,�) is itself a com-
plete lattice. �
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