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1 Three natural ways to form the category of sets

1.1 The category of sets and mappings

1.1.1

The objects of the standard category of sets, which will be denoted Set, is
formed by the class of all sets and the set of morphisms from a set X to a
set Y is the set of all mappings from X to Y ,

HomSet(X, Y) ˜ YX = {mappings f : X → Y}.

1.1.2

The word “mapping” is often abbreviated to “map”.

1.2 The category of sets and multivalued maps

1.2.1 Multivalued maps

A multivalued map φ : X( Y from a set X to a set Y , is a map

φ : X −→P(Y).

Multivalued maps will be also called multimaps.

1.2.2 Maps versus multimaps

Every map f : X → Y defines the multimap

x 7→ φ f (x) ˜ { f (x)} (x ∈ X).

The correspondence f 7→ φ f identifies maps f : X → Y with multimaps
φ : X( Y satisfying the property

|φ(x)| = 1 (x ∈ X). (1)

1.2.3 Composition of multimaps

Given multimaps φ : X ( Y and ψ : W ( X , we denote by φ ◦ ψ the
multimap

w 7−→ (φ ◦ ψ)(w)˜
⋃

x∈ψ(w)

φ(x), (w ∈W). (2)
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1.2.4 Associativity of the composition of multimaps

Exercise 1 Gven υ : W ( X , φ : X( Y and χ : Y( Z, show that

(χ ◦ φ) ◦ υ = χ ◦ (φ ◦ υ).

1.2.5 Setmult

The objects of Setmult are sets and

HomSetmult(X, Y) ˜ {multimaps φ : X( Y}.

Exercise 2 Show that the canonical embedding X ↪→P(X) ,

ιX : x 7−→ {x} (x ∈ X)

is the identity morphism of X in Setmult .

1.3 The category of sets and binary relations

1.3.1

Exercise 3 For A ⊆ X and B ⊆ Y, show that the map

A× B −→ X×Y, (a, b) 7−→ (a, b),

identifies A× B with the set

p−1
X (A) ∩ p−1

Y (B) (3)

where pX and pY are the canonical projections

X×Y

X Y



flfl
pX

[
[
[]]
pY . (4)

1.3.2 Multiplication of binary relations

Given D ⊆ X×Y and E ⊆ Y× Z , we define

D ·E ˜ {(x, z) ∈ X×Z | there exists y ∈ Y such that (x, y) ∈ D and (y, z) ∈ E}.
(5)
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Exercise 4 Show that

D · E = pŶ

(
p−1

Ẑ
(D) ∩ p−1

X̂
(E)
)

(6)

where p with the corresponding index denotes one of the 6 canonical projections
in the diagram

X×Y X

Y X×Y× Z X× Z

Y× Z Z

u u
pY

ww
pŶ

‚
‚
‚
‚
‚
‚‚““

pẐ

‚
‚
‚
‚
‚
‚‚››

pZ

A
A
A
A
A
AADD

pX̂

A
A
A
A
A
AACC

pX

. (7)

1.3.3 Associativity of the multiplication of relations

Exercise 5 Given C ⊆W × X , D ⊆ X×Y and E ⊆ Y× Z, show that

(C · D) · E = C · (D · E).

1.3.4 Setrel

The objects of Setrel are sets and

HomSetrel(X, Y) ˜ P(X×Y).

Note that the composition E ◦ D of morphisms D ∈ HomSetrel(X, Y) and
E ∈ HomSetrel(Y, Z) is given by

E ◦ D ˜ D · E.

Exercise 6 Show that the diagonal

∆˜ {(x0, x1) ∈ X× X | x0 = x1}

is the identity morphism of X in Setrel .
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2 A few functors associated with various categories
of sets

2.1 The canonical embedding functor ι : Set Setmult

2.1.1

Assigning to a map f : X → Y the multimap

φ f : x 7−→ { f (x)}, (x ∈ X) (8)

defines a functor from the standard category of sets to the category of
sets and multimaps. This functor is the identity on the class of objects
and one-to-one on the class of morphisms. It allows to view Set as a
subcategory of Setmult .

2.2 The graph functor Γ : Setmult  Setrel

2.2.1

The graph of a multimap φ : X( Y is the relation

Γφ ˜ {(x, y) ∈ X×Y | φ(x) 3 y} =
⋃

x∈X

{x} × φ(x). (9)

2.2.2

Exercise 7 Show that
Γφ◦ψ = Γψ · Γφ. (10)

Instead of the fact that Γ reverses the order in which the multimaps are
composed, Γ is a covariant functor from Setmult to Setrel . This is due to
how the composition of morphisms is defined in Setrel .

2.2.3

When φ = φ f is the multimap associated with a map f , we shall denote
Γφ by Γ f and refer to Γ f as the graph of f .
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2.3 The power functors

2.3.1

The correspondence between a set and its set of subsets,

X 7−→P(X),

gives rise to two functors Setrel  Set, one covariant, the other one con-
travariant.

2.3.2 The covariant power functor Setrel  Set

The covariant power functor sends D ∈P(X×Y) to the map

·D : P(X) −→P(Y), A 7−→ A ·D˜{y ∈ Y | (x, y) ∈ D for some x ∈ A}.
(11)

2.3.3 The contravariant power functor Setrel  Set

The contravariant power functor sends D ∈P(X×Y) to the map

D· : P(Y) −→P(X), B 7−→ D · B˜{x ∈ X | (x, y) ∈ D for some y ∈ B}.
(12)

Exercise 8 Show that

A · D = pY

(
p−1

X (A) ∩ D
)

and D · B = pX

(
D ∩ p−1

Y (B)
)

where pX and pY are the projections in diagram (4).

2.3.4

The set A · D consists of right relatives of elements of A ⊆ X with respect
to relation D while D · B consists of left relatives of elements of B ⊆ Y with
respect to the same relation.

If one identifies X with 1× X and Y with Y× 1 , where

1 ˜ {0} and 0 ˜ ∅, (13)

then we may view A ⊆ X and B ⊆ Y as subsets of 1× X and Y × 1 ,
respectively, and (11)–(12) then describe the maps of right and, respectively,
left multiplication by D .
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Exercise 9 Show that the correspondence D 7→ φD , where

φD(x) : X( Y, x 7−→ φD(x)˜ {x} · D, (14)

defines a functor Setrel  Setmult . Show that it is the inverse to the graph functor
Γ .

2.3.5

The category of sets and multimaps and the category of sets and relations
are therefore isomorphic and henceforth we shall not be distinguishing
between the two. Situations like this are surprisingly rare: much more
common is when the two categories are equivalent.

2.3.6

From now on we shall be refering to either of them as the category of sets in
the extended sense while for Set we shall reserve the terminology the category
of sets or, for emphasis, the category of sets in the narrow sense.

2.3.7

When we need to distinguish between the two power functors we shall
denote one by Pcov and the other one by Pctr .

Exercise 10 Show that the composite covariant functor Pcov ◦ Γ ◦ ι : Set Set
sends f : X → Y to the “image of f ” map

f∗ : P(X) −→P(Y), A 7−→ f (A)˜ {y ∈ Y | y = f (x) for some x ∈ A}
(15)

while the composite contravariant functor Pctr ◦ Γ ◦ ι : Set Set sends f to the
“inverse image of f ” map

f ∗ : P(Y) −→P(X), B 7−→ f−1(B)˜ {x ∈ X | f (x) ∈ B}. (16)

In other words, show that

f (A) = A · Γ f and f−1(B) = Γ f · B (17)

for A ⊆ X and B ⊆ Y.
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3 Natural ways to form a category of spaces

3.1 “Spaces”

3.1.1

Below we shall refer to pairs (X, A ) where X is a set and A ⊆P(P(X))
is a family of subsets of X as “spaces”.

3.1.2

Morphisms from a space (X, A ) to a space (Y, B) should be the mor-
phisms between the underlying sets X → Y (in the narrow or extended
sense) which are “compatible” with the corresponding families of subsets.
Compatibility will be interpreted in terms of either of the two canonical
relations on the iterated power sets P(P(X)) . These are: ⊆ (containment)
and K (domination below).1 Recall that

A K A ′ if for any A′ ∈ A ′ there exists A ∈ A such that A ⊆ A′ .
(18)

The defining condition of (18) expressed using the quantifier notation:

∀A′∈A ′ ∃A∈A A ⊆ A′.

3.1.3

Containment ⊆ is, so to speak, the “external” ordering while domination
below is the “internal” ordering (in fact, K is only a preorder; it is transitive
and reflexive but not weakly antisymmetric).

3.1.4

Given D ∈ P(X × Y) and a family A ⊆ P(X) we have two ways of
producing a family on Y :

(·D)∗(A ) or (D·)∗(A ).

We can then compare either of these two families with a family B ⊆ Y , and
we can do that using either one of the (pre)-ordering relations ⊆ , K or

1One can also consider the opposite relation ⊇ and the associated with it relation J of
domination above.
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J , or their opposites. This yields 12 possibilities for D to be considered
“compatible” with A and B . If we similarly “compare” the families

(D·)∗(B) or (·D)∗(B)

with A , this will yield additional 12 possibilities (!).

Exercise 11 Show that

(·D)∗(A ) = {B ⊆ Y | B = A · D for some A ∈ A }

and
(D·)∗(A ) = {B ⊆ Y | D · B ∈ A }.

Write down similar representations for (D·)∗(B) nd (·D)∗(B) .

3.1.5

Among these 24 possibilities, some, in fact, are distiguished. Indeed,
((·D)∗, (·D)∗) and ((D·)∗, (D·)∗) form Galois connections for the ⊆ order.

If D is the graph of a map f : X → Y , then ((·D)∗, (D·)∗) form a Galois
connection for the K preorder as the following exrecise shows.

Exercise 12 Show that

( f∗)∗(A ) K B if and only if A K ( f ∗)∗(B). (19)

Exercise 13 Formulate the analog of (19) for J .

3.1.6

We shall see soon that two of scenarios are particularly important:

(D·)∗(B) ⊆ A , (20)

which is equivalent to
B ⊆ (D·)∗(A ), (21)

and
(·D)∗(A ) K B. (22)
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